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A conjugate gradient (CG)-type algorithm CG Plan is introduced for calculating an approximate solution of Newton’s
equation within large-scale optimization frameworks. The approximate solution must satisfy suitable properties to
ensure global convergence. In practice, the CG algorithm is widely used, but it is not suitable when the Hessian matrix
is indefinite, as it can stop prematurely. CG Plan is a symmetric variant of the composite step Bi-CG method of Bank
and Chan, suitably adapted for optimization problems. It is an alternative to CG that copes with the indefinite case.

We show convergence for CG Plan, then prove that the practical implementation always provides a gradient related
direction within a truncated Newton method (algorithm TN Plan). Some preliminary numerical results support the
theory.
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1 INTRODUCTION

This article deals with the definition of a conjugate gradient (CG)-based algorithm for the
iterative solution of large-scale indefinite linear systems that arise in optimization schemes. In
particular, we consider the optimization problem

min
y∈Rn

f (y), (1)

and the solution of the associated Newton equation

∇2f (yh)d = −∇f (yh), (2)
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where∇2f (y) ∈ R
n×n is the symmetric and indefinite Hessian matrix of the twice continuously

differentiable function f : R
n→ R, ∇f (y) ∈ R

n is the gradient of f (y), and n is large. The
use of proper techniques for the solution of large-scale linear system (2) within optimization
frameworks is indispensable. Now, we briefly examine the motivations of this conclusion.

Suppose we want to solve (1) with an iterative algorithm that generates a sequence of iterates
{yh} according to

yh+1 = yh + dh. (3)

For efficiency, Newton’s method may be the method of choice: it starts from the guess yh and
at step h in place of Eq. (1), we tackle the problem

min
d∈Rn

1

2
dT∇2f (yh)

Td + ∇f (yh)
Td + f (yh). (4)

If∇2f (yh) is nonsingular, the stationary point of Eq. (4) is the solution of Eq. (2). Of course, in
general, we would like to retain the good convergence rate of Newton’s method [3]. However,
with large-scale problems, the exact solution of Eq. (2) could require excessive computation
when the current iterate yh is far from the solution y∗. In the latter case, it may be convenient
to calculate an approximate solution d̃h of Newton’s equation (2), and modify the iteration (3)
to be

yh+1 = yh + αhd̃h, (5)

where αh ∈ R is chosen by means of a suitable linesearch technique. We emphasize that the
introduction of the stepsize αh is essential to guarantee global convergence of the overall
optimization algorithm. The truncated solution of Newton’s equation (2), when n is large,
implies some considerations.

• If the Hessian matrix ∇2f (yh) is indefinite, the approximate solution d̃h of Eq. (2) may not
be a descent direction for f (y) at yh; thus, the optimization method should carefully take into
consideration the local information on f (y), provided by d̃h. In other words, the linesearch
technique, we adopt for calculating αh in Eq. (5), always requires specific properties on d̃h.
Consequently, the iterative method used for solving Eq. (2) must be properly chosen.
• The truncated solution d̃h of Eq. (2) may not satisfy an angle condition with the gradient
∇f (yh), i.e., d̃h may not be a so-called gradient related direction [3]. We analyze this case
in Section 5, where we focus on the importance of the latter property in an optimization
framework. We remark that this issue specifically arises whenever we deal with optimization
problems; it may be irrelevant when we solve a general linear system that is not the Newton
equation.

Many algorithms have been proposed in the literature for the solution of Eq. (2). In particular,
it is well known that for large-scale systems the use of iterative methods often reduces the total
computation in comparison with direct methods. For the sake of simplicity, hereafter we adopt
the notation A for ∇2f (yh), x for d , and b for ∇f (yh). Thus, Eq. (2) becomes

Ax = b x ∈ R
n. (6)

Among the wide set of iterative methods for the solution of Eq. (6) [see Refs. 1,23,26], there
are appealing Krylov subspace methods with short recurrences, which perform quite efficiently
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on large-scale problems. These methods start from the initial guess x1 with the residual r1 =
b − Ax1 and generate a sequence of iterates {xk} with the property that

xk ∈ x1 + span{r1, Ar1, . . . , A
k−1r1} .= x1 +Kk(r1, A), (7)

where Kk(r1, A) is the Krylov subspace of order k associated with the pair (r1, A). Some
Krylov methods consider at step k also the subspaces Kk(r1, A

T) or Kk(r1, AAT), depending
on the nature of the linear system (2). Krylov subspace methods are commonly considered
useful tools for linear algebra and within large-scale optimization frameworks, provided that
eventually k � n, and a limited number of residuals from previous iterates are stored during
the computation. A restarting procedure may be imposed (truncated iterative methods) in order
to avoid excessive storage [see for instance Ref. 7]. In this article, we introduce and analyze a
three-term recurrence scheme in the class of Krylov methods. Our method is mainly suitable
for solving Newton’s equation (2) in optimization frameworks, as its practical implementation
always provides an approximate solution d̃h of Eq. (2), which is also gradient related.

Now, we briefly survey some related iterative methods. Even though all these methods
(including our proposal) often work efficiently when a proper preconditioner is adopted, in the
present article we avoid introducing this issue because it deserves specific attention.

When A is positive definite, the CG algorithm originally proposed by Hestenes and
Stiefel [18] is a simple and appealing Krylov method. It is often an efficient method for
solving Eq. (6). A very general CG kth iteration is the following:

xk+1 = xk + αkpk αk = rT
k pk

pT
k Apk

rk+1 = rk − αkApk

pk+1 = rk+1 + βkpk βk = ‖rk+1‖2

‖rk‖2
.

(8)

However, many variants for CG have been proposed [see Refs. 24,27], aimed at improving the
features of stability and accuracy.

When the symmetric matrix A is indefinite, CG can be unstable and may prematurely stop
because the quantity pT

k Apk in coefficient αk may approach zero. In place of CG, some specific
Krylov schemes can be adopted [see Refs. 9,24,25]. The Lanczos expansion was successfully
used within algorithms for solving Eq. (2) [14,15,19,21], even though it does not always provide
solutions that are immediately useful in optimization schemes (see Secs. 5 and 6).

We are interested in describing a Krylov algorithm for the solution of indefinite Newton’s
equation (2). Our interest is twofold: as a linear solver we claim that this algorithm retains
the satisfactory efficiency and accuracy of CG; moreover, despite the linear solvers cited
above, it may guarantee the properties of the approximate solution d̃h that are required in the
optimization framework. In particular, we considered the methods in Refs. [10,17,20], which
have been addressed as planar methods. These algorithms inherit the structure of CG and aim
to overcome its possible breakdown on indefinite systems. Indeed, they substantially coincide
with CG as long as the quantity |pT

k Apk| (see coefficient αk in Eq. (8)) is bounded away from
zero. (In Ref. [17], a slightly different condition is adopted.) If the test fails, the kth CG step
cannot be performed. A second direction pk+1 is then generated in such a way that the search
for the solution of Eq. (6) over the linear manifold xk + αpk , α ∈ R (CG-step) is replaced by
the search on the two-dimensional manifold (planar-step)

xk + span{pk, pk+1}. (9)
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The scheme proposed by Hestenes [17] is more general and our numerical experience reveals
that it is sometimes more precise than the algorithm of Luenberger [20] for solving an indefinite
linear system; however, the computational complexity of Luenberger’s method is preferable.
Therefore, the latter method may be adopted, for instance when high precision is not required
for x. In particular, at step k both the algorithms in Refs. [17,20] perform a composite step if a
suitable test is not fulfilled. The test in Ref. [17] is more complex and involves the quantities
pk , pk+1, Apk and Apk+1, while the test in Ref. [20] simply checks when |pT

k Apk| < ε, k < n,
and ε is ‘small’. The computational experience shows that a possible numerical instability
may arise in Luenberger’s method because of finite precision [13]. The latter aspect will be
investigated in the next sections. Moreover, we shall see that by means of the CG-type method
we propose, the numerical errors are not eliminated but they may be suitably bounded.

The algorithm in this article is specifically designed for solving the Newton equation (2) in
optimization frameworks, while preserving the low computational cost of CG-like algorithms.
Furthermore, a numerical comparison with SYMMLQ [22] (see Sec. 6.1) reveals that our
algorithm may perform not poorly even on a general set of indefinite problems, where CG may
be unstable.

In the sequel, we use the symbol ‖ · ‖ to denote the Euclidean norm for both a real
n-dimensional vector and a real n× n matrix. Moreover, we adopt the symbol ‘

.=’ to indi-
cate by definition. Finally, we introduce the notation λM = λM(A) = max1≤j≤n{|λj (A)|} and
λm = λm(A) = min1≤j≤n{|λj (A)|}, where λj (A) is the j th eigenvalue of matrix A ∈ R

n×n.
In Section 2, we introduce our CG-like algorithm named CG Plan, whose convergence and

complexity properties are examined in Section 3. A full analysis of convergence is given. Sec-
tions 4 and 5 describe TN Plan, the practical implementation of CG Plan within optimization
frameworks. Section 6 provides some preliminary numerical results. The Conclusions and
Appendix complete the article.

2 PLANAR ALGORITHM: PRELIMINARIES

We are now concerned with describing and developing our scheme. On one hand, it approx-
imately solves Newton’s equation (2). On the other hand, we claim that it may ensure the
properties necessary for global convergence of the overall optimization problem. We outline
the algorithm CG Plan where, for the sake of simplicity, we consider the solution of Eq. (6)
in place of Eq. (2). In addition, we assume that the matrix A in Eq. (6) is nonsingular.

Algorithm CG Plan

step 1:
k = 1, x1 ∈ R

n, r1 = b − A x1, p1 = r1.
step k :

If ‖rk‖ = 0 Then STOP Else
Set ck = Apk , δk = cT

k pk

If δk = 0 Then go to step kB Else go to step k A

step kA (CG-step):

xk+1 = xk + αkpk , ρk = rT
k pk , αk = ρk

δk
= r T

1 pk

δk
rk+1 = rk − αkck

pk+1 = rk+1 + βkpk , βk = − rT
k+1ck

δk

= ‖ rk+1‖ 2

‖ rk‖ 2

k ← k + 1 repeat step k
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step k B (Planar-step):
pk+1 = γk ck , γk ∈ R

ak+1 = Apk+1, ωk+1 = aT
k+1pk+1

xk+2 = xk + αkpk + αk+1pk+1, αk = − ρk

γ 2
k ‖ ck‖ 4

ωk+1

rk+2 = rk − αk ck − αk+1 ak+1, αk+1 = ρk

γk ‖ ck‖ 2

pk+2 = rk+2 + σkpk , σk = − rT
k+2ak+1

γk ‖ ck‖ 2

k ← k + 2 repeat step k

First observe that when δk at step k is not zero, then step kA of algorithm CG Plan reduces
exactly to CG, i.e., the steplength αk is chosen along the direction pk .

On the other hand, if δk = 0, then at step kB we generate a vector pk+1, which is orthogonal
to the direction pk (so that {pk, pk+1} is an independent set), and we determine coefficients αk

and αk+1 such that the solution of Eq. (6) is determined on the two-dimensional manifold (9).
We remark that the choice of the direction pk+1 may be inferred from Bank and Chan, in Section
3 of [2], where the problem we are considering is extensively studied in the unsymmetric case.
Further, general references about the idea we adopt here are in Refs. [5,6].

In particular, suppose that algorithm CG Plan stops when k = n. Observe that in case
CG Plan does not perform planar steps, i.e., it coincides with the standard CG, the following
expression for A holds [13] (assuming exact arithmetic):

A = RT RT, T = LDLT,

where

R =
(

r1

‖r1‖ · · ·
rn

‖rn‖
)
∈ R

n×n, (10)

L =




1 0

−√β1
...

...
...

0 −√βn−1 1


 ∈ R

n×n, (11)

D = diag

(
1

αi

)
∈ R

n×n, (12)

and T is tridiagonal. On the other hand, if CG Plan does perform some planar steps, it can
be proved [11] that the matrix D becomes block diagonal, with a 2× 2 block corresponding
to each planar step. Each 2× 2 block prevents a pivot breakdown [2] when δk = 0, i.e., a
premature interruption of the CG process. Step kB determines the new iterate xk+2 such that

xk+2 = xk + αkpk + αk+1pk+1

and, equivalently,

rk+2 = rk − αkApk − αk+1Apk+1. (13)

Now, observe that δk = 0 straightforwardly implies rT
k pk+1 = 0. Thus, imposing the Galerkin

conditions

rT
k+2pk = 0 and rT

k+2pk+1 = 0, (14)
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from Eqs. (13) and (14) and the relation rT
k pk+1 = 0, we obtain the expressions for αk and αk+1:

αk = − ρkωk+1

γ 2
k ‖ck‖4

, αk+1 = ρk

γk‖ck‖2
. (15)

Similarly to Ref. [2], we now complete the definition of the planar step kB in algorithm CG Plan.
As in the other Planar algorithms in Refs. [17,20], we calculate the direction

pk+2 = rk+2 + σkpk + σk+1pk+1 σk, σk+1 ∈ R, (16)

where σk and σk+1 are chosen in such a way that the conjugacy relations

pT
k+2Apk = 0, pT

k+2Apk+1 = 0 (17)

hold. After a few calculations, considering Eq. (14) and relation rT
k pk+1 = 0, we obtain

σk = − rT
k+2ak+1

γk‖ck‖2
, σk+1 = 0. (18)

Before analyzing the convergence properties of algorithm CG Plan, we examine the choice
of the scalar γk whenever δk = 0. We propose for γk the following three choices:

(a) γk = 1,
(b) γk = 1/‖ck‖,
(c) γk = ‖pk‖/‖ck‖.
For all three possibilities we are able to prove convergence of algorithm CG Plan, along with the
features of conjugacy and orthogonality among the vectors it generates (see Sec. 3). Moreover,
it is readily verified that the computational burden of step k is independent of the choice of γk ,
and the same iterates {xk} are generated. However, the parameter γk may affect the practical
implementation (see Sec. 4). Indeed, our experience suggests the following conclusions:

• The exponent of the quantity ‖ck‖ in the denominator of αk , αk+1, and σk depends on the
choice of γk .
• The choice γk = 1/‖ck‖ may be interpreted as a natural scaling for vector pk+1 in step kB .
• The choice γk = ‖pk‖/‖ck‖ implies that the vector pk+1 in step kB is simply rotated by an

angle of π/2 radians with respect to pk , i.e., ‖pk‖ = ‖pk+1‖. In Section 4, we shall consider
this choice for the practical implementation of algorithm CG Plan, because of the stronger
theoretical properties.

3 CONVERGENCE PROPERTIES

The following theorems summarize the convergence features of algorithm CG Plan. In the
sequel, we describe the direction pk+1 at step kB as the ‘fellow direction’ of pk . Moreover, we
shall refer to the ‘singular direction’ pk when pT

k Apk = 0 (i.e., δk = 0 in CG Plan). Now, let
us first highlight the following simple result.

THEOREM 3.1 Let A be nonsingular and possibly indefinite. If at step h ≤ n of algorithm
CG Plan we have rh �= 0, then the following relations hold (where 1 ≤ j < k ≤ h ≤ n):
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(a) rT
h pj = 0,

(b) rT
h rj = 0,

(c) pT
k Apj �= 0⇐⇒ pj is singular and pk is the fellow direction of pj (i.e., pk = pj+1).

Proof The proof1 is by induction on h. Let us consider (a); if either h = 2 (the first step is
1A) or h = 3 (the first step is 1B), then the statement (a) trivially holds because of the choice
of α1 or α1, α2. Thus, supposing (a) holds for index h− 1, let us prove it for the index h.

It must be shown that rT
h pj = 0, ∀j < h; we distinguish two possibilities depending on the

step where rh is calculated:

• if rh was calculated at step (h− 1)A, then a similar reasoning used for the standard CG
yields rT

h pj = 0, j < h.
• if rh was calculated at step (h− 2)B , then

rT
h pj = (rh−2 − αh−2Aph−2 − αh−1Aph−1)

Tpj

= rT
h−2pj − αh−2p

T
h−2Apj − αh−1p

T
h−1Apj j < h,

and for j < h− 2, all three terms in the rightmost expression are zero (assuming complete
induction holds). On the other hand, if either j = h− 2 or j = h− 1, then the last term
on the right-hand side is zero for the choice of coefficients αh−2 and αh−1 (see Eqs. (14)
and (15)).

As regards points (b) and (c), the proof follows directly from Theorem 4.4 in Ref. [2]. �

The following conclusion summarizes one convergence property of algorithm CG Plan.

THEOREM 3.2 Let A be nonsingular and possibly indefinite. Algorithm CG Plan determines
the solution of problem (6) in at most n steps.

Proof The result is inferred from Ref. [2]. �

Now, let us point out some further properties of algorithm CG Plan, related to the other
planar schemes in the literature:

(1) In a practical implementation of algorithm CG Plan, when at step k the quantity |δk|
is ‘numerically small’ though not zero, the step kB is performed. (The same unavoidable
numerical shortcoming occurs in Ref. [20] too, see Secs. 4 and 5.) However, this alters only
partially the conjugacy properties in the set {p1, . . . , pk−1, pk, pk+1}. Indeed, pk+1 at step
kB is orthogonal to the directions p1, . . . , pk−1, regardless of the value of δk; furthermore,
even though δk �= 0, the direction pk+1 is still conjugate to the directions p1, . . . , pk−2

(see Theorem 3.1).
(2) Step kB is always well posed, inasmuch as the quantity ‖ck‖ may approach zero if and

only if A is nearly singular.
(3) Unlike in the Hestenes algorithm [17] and Luenberger’s method [20], the denominators at

steps kA and kB of algorithm CG Plan can be computed without any additional computa-
tional burden: this allows numerical comparisons in advance, in order to detect potential
instability at each step.

1 We remark that if pT
j+1Apj+1 = 0 (i.e., the fellow direction pj+1 is singular too), the statement of the present

theorem still holds, and in algorithm CG Plan we simply have αj = 0. Moreover in the latter case, the direction pj+2
is conjugate to the manifold span{pj , pj+1}.
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(4) We can readily verify that the proposed algorithm has a slightly lower computational
complexity than the algorithms in Refs. [17,20]. Indeed, the planar step kB in the latter
references requires, respectively, two and one additional inner products, with respect to
step kB of CG Plan.

(5) Since the planar methods cope with indefinite matrices, they may be fruitfully considered
also for generating negative curvature directions, in the context of nonlinear optimization.

4 PRACTICAL IMPLEMENTATION OF ALGORITHM CG PLAN

In this section and the next, we investigate the practical implementation of algorithm CG Plan
within optimization frameworks. We study the case when at step k the test pT

k Apk = 0 is
replaced by the more reliable test [see Refs. 13,16]

|pT
k Apk| ≤ εk‖pk‖2 εk > 0 ‘small,’ (19)

and even though step kA is theoretically allowed, it might not be numerically advisable. Equiv-
alently, we have to assess parameter εk properly in Eq. (19) (still an unsolved question in
Ref. [20]).

We remarked in the previous item 1 that if pT
k Apk �= 0, then

pT
k+1Api = 0, i = 1, . . . , k − 2

pT
k+1Apk−1 �= 0,

(20)

i.e., the conjugacy between direction pk+1 in step kB and direction pk−1 can slightly fail.
Here, we calculate a bound for the quantity |pT

k+1Apk−1|whenever the latter situation occurs.
More specifically, we prove that if we apply algorithm CG Plan with γk = ‖pk‖/‖ck‖ and with
the practical test (19) at step k, then pT

k+1Apk−1 approaches zero whenever rk approaches zero
too. This ensures that, if we adopt the practical test (19) in place of the test pT

k Apk = 0, the
closer we are to the solution of Eq. (6), the smaller is the conjugacy error pT

k+1Apk−1. The
following theorem summarizes the latter result.

THEOREM 4.1 Consider algorithm CG Plan where A is nonsingular and possibly indefinite.
Replace the test pT

k Apk = 0 at step k with the test (19). If we choose γi = ‖pi‖/‖Api‖,
i ≤ k, and2

εi ≤ λm

2
min

{(
λm

λM

)3

, 21/2 ‖ri‖
‖pi‖

}
, i ≤ k, (21)

then at step kB , the conjugacy error pT
k+1Apk−1 is bounded as follows:

|pT
k+1Apk−1| ≤

{
ρ1k‖rk‖2 if step kBwas preceded by step (k − 1)A

ρ2k‖rk‖2 if step kBwas preceded by step (k − 2)B,
(22)

where ρ1k and ρ2k are bounded positive constants.

Proof See Appendix. �

2 Observe that ‖ri‖/‖pi‖ ≤ 1, i ≤ k.
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We conclude this section by remarking that relation (21) provides only a theoretical criterion
for the choice of parameter εi ; indeed, ρ1k and ρ2k in Eq. (22) are unrealistic high to be used
in practice (see Appendix). Of course, several other criteria may be adopted for estimating εi

at step i. Nevertheless, our choice for εi suggests that algorithm CG Plan is theoretically more
accurate when the iterates are close to the solution of Eq. (6), i.e., when ‖ri‖ → 0. Indeed, in
this way, the conjugacy error |pT

k+1Apk−1| at step kB can be bounded as in Eq. (22). Observe
that often the quantity ‖ri‖ decreases with the iterations; moreover, even though algorithm
CG Plan converges slowly, relation (34) in Appendix indicates that small values of εk force a
bound on the quantity |pT

k+1Apk−1|.

5 APPLICATION OF ALGORITHM CG PLAN WITHIN OPTIMIZATION

We already recalled that the use of iterative methods within large-scale optimization frame-
works is often advisable for solving linear systems, especially for the Newton equation (2).
However, the approximate solution d̃h of Eq. (2) is required to have certain additional prop-
erties within the optimization framework, in order to preserve the global convergence of the
optimization method in hand. In particular, in a linesearch approach, the approximate solution
d̃h of Eq. (2) may need to be modified in order to be a gradient-related direction [3]. That is,
d̃h must satisfy the relations

d̃T
h∇f (yh) ≤ −q1‖∇f (yh)‖h1 q1, h1 > 0

‖d̃h‖ ≤ q2‖∇f (yh)‖h2 q2, h2 > 0.
(23)

As before, let A denote the Hessian matrix∇2f (yh). We consider the practical implementation
of algorithm CG Plan, where the test on pT

k Apk at step k is based on the results in Refs. [8,16]
and Section 4. In particular in Ref. [8], the authors proposed to solve Eq. (2) approximately by
means of CG, where the CG iterations are stopped if pT

k Apk ≤ εk‖pk‖2. This implies that only
the positive curvature directions of A contributed to form d̃h. In Ref. [16], the test had the more
general form |pT

k Apk| ≤ εk‖pk‖2, in order to retain also the strong contribution of negative
curvature of A to the direction d̃h. The latter strategy, which properly considers the general
valuable role of negative curvatures within optimization, suggests that the test pT

k Apk = 0 at
step k of CG Plan could be replaced by the practical test [see also Ref. 20]:

|pT
k Apk| ≤ εk‖pk‖2 εk > 0. (24)

Of course, this implies that the theoretical properties proved in Section 3 for CG Plan hold as
described in item 1 of page 7, i.e., relations (20) hold. In addition, the proposed algorithm with
the test (24) may be suitable for the solution of Newton’s equation in optimization frameworks.
Indeed, consider Eq. (2) and suppose yh is the current iterate and d̃h the approximate solution
of Eq. (2). We will prove that the proper application of algorithm CG Plan with test (24) at
step k can always provide a sequence of gradient related directions {d̃h} to the stabilization
scheme of an optimization framework.

For this purpose, consider the algorithm CG Plan and the direction d̃h ∈ R
n:

d̃h = dPN + dPla, (25)
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where (see the new test (24) for step k of CG Plan)3

dPN =
∑

k∈IP∪IN

sgn[δk]αkpk

dPla = −
∑

k∈IPla

sgn[ωk+1]αkpk

(26)

IP = {k ≥ 1: k = kA, pT
k Apk ≥ εk‖pk‖2}

IN = {k ≥ 1: k = kA, pT
k Apk ≤ −εk‖pk‖2}

I Pla = {k ≥ 1: k = kB, |pT
k Apk| < εk‖pk‖2}.

In general, suppose that the algorithm CG Plan stops at step l ≤ n. Then, the Newton direction
that solves Eq. (2) is given by (see CG Plan)∑

k<l

αkpk. (27)

In Ref. [8], Dembo and Steihaug proved that the direction dP =∑
k∈IP αkpk is gradient related;

equivalently they proved that the standard CG method for solving Newton’s equation (2), with
A positive definite, generates the direction dP , which is gradient related. In Ref. [16], Grippo
et al. obtained an analogous result for the direction dPN in Eq. (26) (with A nonsingular and
indefinite), which is a slight alteration of the Newton direction (27) in order to obtain a gradient
related direction. In particular, the authors in Ref. [16] simply reverse the negative curvatures
of A that contribute to the Newton direction. Apart from the sign, they do not alter the value
of the coefficient αk , k ∈ IN . Therefore we can conclude that, in some sense, they modify the
pure Newton direction as little as possible. This helps to preserve the fast convergence that can
be expected when Newton’s direction is not harmfully perturbed.

In this section, we show that on one hand, the direction dPN + dPla in Eq. (25) improves
the similarity of d̃h to the Newton direction (i.e., the solution of Eq. (2)), with respect to dPN .
Indeed, dPla takes into account the contribution of pk and pk+1, k ∈ I Pla, to Newton’s direction
(27). In particular, observe that in Eq. (26), the coefficient αk , k ∈ I Pla, of pk is possibly altered
in the sign (sgn[ωk+1]), in order to preserve (in some sense) as much as possible relation (27).

On the other hand, the direction d̃h defined by Eqs. (25) and (26) satisfies properties (23)
as shown below in Theorem 5.1. This completes the evolution drawn by Refs. [8,16], dealing
with the case of a nonsingular indefinite Hessian A in Eq. (2). We remark that in the definition
of the direction dPla, only the vector pk gives a contribution; however, the coefficient of pk

relies on pk+1 (see Eq. (26)) and therefore the information contained in both pk and pk+1,
k ∈ I Pla, contributes to building the direction dPla. Furthermore, if pT

k+1Apk+1 = 0, the step kB

does not contribute to dPla. This implies that formula (26) for dPla may not be adopted for the
algorithm in Ref. [20], where pk+1, k ∈ I Pla, is selected in such a way that pT

k+1Apk+1 = 0.
A numerical comparison between our method and the approach in Ref. [16] is described in
Ref. [12], where several unconstrained problems from the CUTE collection [4] are considered,
and both a monotone and a nonmonotone stabilization scheme is adopted. Unfortunately, in
very few cases the planar steps occur in such problems; therefore, at this stage of the research,
we think that any conclusions would be premature. This motivates the choice of testing, in
Section 6, the effectiveness of our approach with respect to the use of the standard routine
SYMMLQ [22] in optimization frameworks.

3 We define sgn[x] = −1 for x < 0 and sgn[x] = +1 if x ≥ 0.
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Let us now prove that the direction d̃h calculated according to Eqs. (25) and (26) by CG Plan
satisfies Eq. (23).

THEOREM 5.1 Consider iteration (5), where d̃h approximately solves Eq. (2). Suppose that
λm[∇2f (yh)] is uniformly bounded away from zero. Set x1 = 0 i.e. r1 = −∇f (yh) in CG Plan
and choose any γk �= 0, k ≥ 1; then the direction d̃h in Eqs. (25) and (26) is gradient related
to {yh}; i.e. relations (23) hold.

Proof Consider the Newton equation (2) with A = ∇2f (yh). After some rearrangements for
the first relation in Eq. (23), we have

d̃T
h∇f (yh) = (dPN + dPla)T∇f (yh)

= −
∑

k∈IP∪IN

pT
k rk

|pT
k Apk|p

T
k r1 +

∑
k∈IPla

sgn[pT
k+1Apk+1]αkp

T
k r1.

Now, note that the relations p1 = r1, pT
i ri = pT

i r1, and pT
i Ar1 = pT

i Ap1 hold (see
Theorem 3.1). We consider two cases: the first step was 1A, and then

d̃T
h∇f (yh) ≤ − (pT

1 r1)
2

|pT
1 Ap1| ≤ −

‖r1‖4

λM‖r1‖2
= − 1

λM

‖r1‖2;

otherwise the first step was 1B , and since at the kB th planar step pk+1 = γkApk and pT
k Ar1 =

pT
k Ap1 = 0, we have

d̃T
h∇f (yh) ≤

∑
k∈IPla

sgn[pT
k+1Apk+1]αkp

T
k r1

= −
∑

k∈IPla

sgn[pT
k+1Apk+1]

(pT
k r1)

2

‖Apk‖2

(
Apk

‖Apk‖
)T

A

(
Apk

‖Apk‖
)

≤ −
∑

k∈IPla

(pT
k r1)

2

‖Apk‖2
λm ≤ − (pT

1 r1)
2

‖Ap1‖2
λm ≤ − λm

λ2
M

‖r1‖2.

Therefore, we have the final relation

d̃T
h∇f (yh) ≤ −q1‖∇f (yh)‖h1

with

q1 = min

{
1

λM

,
λm

λ2
M

}
= λm

λ2
M

, h1 = 2,

which proves the first part of Eq. (23). For the second part of Eq. (23), in Ref. [16] the following
relations were already proved (where ε = mink≥1{εk} and εk is defined at step k of algorithm
CG Plan, as in Eq. (24)):

‖dPN‖ ≤ 2
n

ε
‖∇f (yh)‖.
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Now, we give evidence that a similar relation holds for the direction dPla. Since pT
k rk = pT

k r1,
we simply have from Eq. (26)

‖dPla‖ ≤
∑

k∈IPla

∥∥∥∥ pT
k rk

γ 2
k ‖Apk‖4

(pT
k+1Apk+1)pk

∥∥∥∥
≤

∑
k∈IPla

[
‖pkp

T
k r1‖

‖Apk‖2
·
∣∣∣∣∣
(

Apk

‖Apk‖
)T

A

(
Apk

‖Apk‖
)∣∣∣∣∣

]

≤
∑

k∈IPla

‖pk‖2λM

‖Apk‖2
‖r1‖ ≤

∑
k∈IPla

[
λM

λ2
m

‖r1‖
]
≤ n

2

λM

λ2
m

‖r1‖.

Therefore, for the second relation in Eq. (23), we have

‖d̃h‖ ≤ q2‖∇f (yh)‖h2

with

q2 = 2n max

{
2

ε
,

λM

2λ2
m

}
, h2 = 1.

�

Algorithm TN Plan

Data: A, g, η > 0, q1 > 0, q2 > 0, h1 > 0, h2 > 0.
Step 1:

k = 1, ε1 > 0, r1 = −g, p1 = r1

d1 = 0, dPN
1 = 0, d Pla

1 = 0.
Step 2:

Set ck = Apk , δk = c T
k pk

If ck = 0 Then go to Step 3.
Elseif | δk| ≥ εk ‖pk‖ 2 Then

dk+1 = dk + αkpk, ρk = rT
k pk, αk = ρk

δk
rk+1 = rk − αkck

dPN
k+1 = dPN

k + sgn [δk] αk pk

d Pla
k+1 = d Pla

k

If ‖rk+1‖ > η ‖g‖ Then
pk+1 = rk+1 + βkpk, βk = ‖rk+1‖ 2

‖rk‖ 2

k ← k + 1
set εk > 0, go to Step 2.

Else go to Step 3.
Else

pk+1 = γk ck, γk ∈ R

ak+1 = Apk+1, ωk+1 = pT
k+1ak+1

dk+2 = dk + αkpk + αk+1pk+1, αk = − ρk ωk+1

γ 2
k
‖ ck‖ 4

rk+2 = rk − αk ck − αk+1 ak+1, αk+1 = ρk

γk ‖ ck‖ 2

dPN
k+2 = dPN

k

d Pla
k+2 = d Pla

k − sgn [ωk+1] αk pk
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If ‖rk+2‖ > η ‖g‖ Then

pk+2 = rk+2 + σkpk, σk = − r T
k+2ak+1

γk ‖ck‖ 2

k ← k + 2
set εk > 0, go to Step 2.

Else go to Step 3.
Step 3:

Choose the gradient related direction d̃h:

d̃h =




−g if k = 1

dk if dT
k g ≤ −q1 ‖g‖ h1 AND ‖dk‖ ≤ q2 ‖g‖ h2

d PN
k + d Pla

k otherwise

and STOP.

We note that the computation of the vector dPla does not need further calculations. Indeed,
observe that both products Apk and Apk+1 are available at the outset of step kB .

Consider also that the previous proof relies on relations pT
i ri = pT

i r1, i ≥ 1. When i is large
the loss of conjugacy due to planar steps might determine condition sgn{pT

k rk} �= sgn{pT
k r1}.

However, we did not observe this drawback over the test problems we considered. Further, we
checked the sequence {∇f (yh)

TdPN
k }, k ≥ 1 and verified that, as expected, it was monotoni-

cally nonincreasing.
We conclude this section by explicitly displaying a truncated Newton scheme [21], namely

Algorithm TN Plan, which uses algorithm CG Plan with test (24) to solve the Newton equation
(2) in an optimization framework. In Section 6, we compare the performance of algorithm
TN Plan with a truncated Newton scheme, where the routine SYMMLQ [22] is used. In
algorithm TN Plan, we set A = ∇2f (yh) and g = ∇f (yh) to simplify the notation. Observe
that, since the test pT

k Apk = 0 of CG Plan is replaced by the test |pT
k Apk| ≤ εk‖pk‖2, Step

3 of TN Plan always provides a direction {d̃h} that is gradient related. In particular, if the
approximate solution dk of Eq. (2) is not gradient related, then the choice d̃h = dPN

k + dPla
k is

gradient related to {yh}.

6 PRELIMINARY NUMERICAL RESULTS

In this section, we include some preliminary numerical results that partially illustrate the
performance of the proposed algorithm, when applied to optimization problems. Because of
the tight test on the quantity pT

k Apk at step k of CG Plan, we expect that our proposal cannot
fruitfully be employed for general purposes too. Therefore, as remarked in Section 1, its
application should be considered for suitable classes of problems. In order to investigate more
accurately the fields of interest, where algorithm CG Plan could be usefully applied, we tested
it in the following cases.

(1) We randomly generated indefinite Hessian matricesA in Eq. (6), and compared the behavior
of algorithm CG Plan with the SYMMLQ routine by Paige and Saunders [22] for simply
solving the linear system Ax = b.

(2) We used algorithm TN Plan as a truncated method for approximately solving the Newton
equation (2) in an optimization framework [see also Refs. [19,21] and references cited
therein].



280 G. FASANO

We compare the performance of CG Plan (and TN Plan) with SYMMLQ (and SYMMLQ-
based truncated Newton method), because SYMMLQ is used in optimization frameworks
for dealing with the solution of indefinite linear systems [see Ref. [21] and references cited
therein].

6.1 Algorithm CG Plan for Indefinite Linear Systems

For case (1) (i.e., to apply CG Plan for solving indefinite linear systems), we first built a problem
generator that provides triples of the form (A, x∗, b), where A ∈ R

n×n is a symmetric and
nonsingular matrix, x∗, b ∈ R

n, and Ax∗ = b. More precisely, matrix A is explicitly calculated
by means of relation

A = HDH,

where D = diag{λ1, . . . , λn} and H is the Householder orthogonal transformation: H = I −
2zzT/‖z‖2, z ∈ R

n, z �= 0. According to the user’s specifications, the generator provides
the sequence of real diagonal elements λi , i ≤ n, which become the eigenvalues of A. Then
the components of z and x∗ are randomly chosen in the interval {−1, 1}. Finally, vector b is
calculated as b = Ax∗. The sequence {λi} may be generated in such a way that the user can
independently assign: the dimension ‘n’ of A, the condition number ‘cond’ of A, a scale factor
‘λ0’ for the eigenvalues of A, whatever clustering for the eigenvalues λ2, . . . , λn−1 of A, and
the inertia of A (the number of positive and negative eigenvalues).

For preliminary testing, we generated indefinite Hessian matrices A, where blocks of
either negative and positive eigenvalues are separately constructed according to the following
parameters:

• n = 500 (though the experience revealed that similar results hold with n = 100 or n =
1000);
• full rank, i.e., A is nonsingular;
• condition number (for each block of positive and negative eigenvalues) cond, where cond =

ei , i = 0, 2, 4, 6;
• inertia equal to (n/2, n/2);
• scale factor of eigenvalues λ0 = 10−4;
• clustering around λ

−/+
m and λ

−/+
M , where λ

−/+
m [λ−/+

M ] indicates the smallest [largest] absolute
value of eigenvalues in either the negative or the positive block.

Tables I and II summarize the results obtained by applying CG Plan and SYMMLQ to
the solution of Ax = b with n = 500. The parameter frac ≤ 1 indicates the width of the
clusters, expressed as a percentage of the positive distance λ

−/+
M − λ

−/+
m (i.e., λ

−/+
i − λ

−/+
m ≤

frac · (λ−/+
M − λ

−/+
m ), i = 2, . . . , (n/2− 1), and λ

−/+
M − λ

−/+
i ≤ frac · (λ−/+

M − λ
−/+
m ), i =

2, . . . , (n/2− 1)).
Finally, each row gives the average results over 10 instances, randomly generated with the

specifications above; ‘it’ is the average number of iterations (we allowed up to 2n iterations
as in Ref. [15]), and ‘pla’ the average number of planar steps. The algorithms used a random
starting point and stopped when the current iterate xk satisfied the following simple test:

‖rk‖ = ‖b − Axk‖ ≤ tol · |A| · ‖xk‖,

where tol = 10−8 and |A| is an estimate of ‖A‖. This test is currently performed within
SYMMLQ and proved to be quite effective within optimization frameworks, since the quantities
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TABLE I Algorithm CG Plan, stopping criterion ‖rk‖ ≤ 10−8‖A‖‖xk‖

n = 500 λi ∈ cluster{λm} λi ∈ cluster{λM }
(cond) ‖x∗ − x1‖ ‖r‖/‖r1‖ it pla ‖x∗ − x1‖ ‖r‖/‖r1‖ it pla

frac = 1.0
e0 3.5E−16 2.0E−13 1.0 0.0 1.6E−11 8.7E−09 1.2 0.2
e2 1.1E−07 1.3E−05 75.0 0.6 1.1E−07 1.3E−05 74.1 0.2
e4 1.1E−07 2.0E−06 437.6 0.4 1.1E−07 1.9E−06 425.4 0.3
e6 2.7E−05 6.8E−05 812.7 0.5 1.2E−06 2.7E−06 829.3 0.6

frac = 0.8
e0 1.2E−15 6.5E−13 1.0 0.0 2.9E−16 1.6E−13 1.0 0.0
e2 1.0E−07 1.5E−05 64.0 0.3 9.6E−08 1.0E−05 43.4 0.2
e4 1.1E−07 2.5E−06 386.3 0.5 1.1E−07 1.7E−06 85.0 0.1
e6 1.8E−06 5.4E−06 881.3 0.8 1.0E−07 2.1E−07 117.9 0.0

frac = 0.6
e0 1.0E−12 5.7E−10 1.2 0.2 2.6E−15 1.4E−12 1.0 0.0
e2 1.0E−07 1.7E−05 52.5 0.4 8.4E−08 8.1E−06 29.8 0.2
e4 1.1E−07 3.2E−06 322.4 0.4 1.0E−07 1.4E−06 47.0 0.2
e6 2.1E−06 7.6E−06 842.6 0.7 8.2E−08 1.5E−07 62.6 0.0

frac = 0.4
e0 1.7E−11 9.7E−09 1.2 0.2 9.2E−12 4.9E−09 1.2 0.2
e2 8.7E−08 1.9E−05 39.4 0.2 6.7E−08 5.9E−06 21.0 0.1
e4 1.1E−07 4.6E−06 241.1 0.4 9.1E−08 1.1E−06 31.0 0.0
e6 6.0E−07 3.4E−06 889.6 1.1 4.3E−08 7.2E−08 41.0 0.0

frac = 0.2
e0 1.5E−15 8.3E−13 1.0 0.0 9.0E−12 5.2E−09 1.4 0.4
e2 8.4E−08 2.6E−05 25.4 0.3 4.2E−08 3.4E−06 15.0 0.0
e4 1.1E−07 8.0E−06 139.0 0.2 5.8E−08 6.4E−07 21.0 0.0
e6 1.1E−07 1.1E−06 683.2 0.8 3.5E−08 5.4E−08 27.0 0.0

|A| and ‖xk‖ properly take into account the scale of the problem. We emphasize that |A| is
the Frobenius norm of a tridiagonal approximation of matrix A. In this preliminary setting,
the algorithm CG Plan performed planar step kB when |pT

k Apk| ≤ 0.5 · 10−6 ‖pk‖2, therefore
we set εk = 0.5 · 10−6, k ≥ 1, and provisionally avoided the use of relation (21). On one hand,
the results reveal that algorithm CG Plan may be competitive as a linear solver only in terms
of the number of iterations, provided that the condition number of matrix A is not large. Fur-
thermore, we observe that the clustering of the eigenvalues improves the performance of the
algorithm CG Plan, as for the standard CG method with positive definite matrix A. These
results are not surprising since SYMMLQ is specifically designed for the indefinite problem
(6). In addition, it is well known that the CG/Lanczos method implemented in SYMMLQ,
though more expensive, is definitely competitive with the standard CG in terms of the preci-
sion of the solution. Anyway, we recall that the solution of Newton’s equation may be effective
even though it is only approximately calculated. Indeed, a higher precision in solving Newton’s
equation may not justify the increase of the overall time of computation. To summarize, if the
condition number of A is not large and we are not concerned with getting a precise solution,
then CG Plan may be an inexpensive solver of indefinite linear systems. Otherwise, SYMMLQ
seems preferable.

All calculations were performed on a PC Pentium II 850 MHz. Algorithm CG Plan was
implemented in Fortran 90 and compiled with Compaq Visual Fortran, with double precision
used throughout.
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TABLE II Algorithm SYMMLQ, stopping criterion ‖rk‖ ≤ 10−8‖A‖‖xk‖

n = 500 λi ∈ cluster{λm} λi ∈ cluster{λM }
(cond) ‖x∗ − x1‖ ‖r‖/‖r1‖ it ‖x∗ − x1‖ ‖r‖/‖r1‖ it

frac = 1.0
e0 2.3E−18 1.2E−15 1.0 2.4E−18 1.3E−15 1.0
e2 5.8E−10 7.0E−08 110.2 5.6E−10 6.7E−08 109.6
e4 9.3E−09 1.6E−07 479.1 8.9E−09 1.5E−07 478.6
e6 7.2E−08 1.7E−07 710.0 7.5E−08 1.7E−07 696.9

frac = 0.8
e0 2.2E−18 1.2E−15 1.0 2.2E−18 1.2E−15 1.0
e2 4.8E−10 6.9E−08 93.6 4.3E−10 4.6E−08 59.0
e4 7.7E−09 1.6E−07 442.2 4.0E−09 6.2E−08 98.3
e6 6.4E−08 1.8E−07 728.0 3.3E−08 7.1E−08 121.3

frac = 0.6
e0 2.2E−18 1.2E−15 1.0 2.3E−18 1.2E−15 1.0
e2 3.1E−10 5.5E−08 78.7 3.0E−10 3.0E−08 39.0
e4 5.4E−09 1.5E−07 382.7 2.2E−09 3.1E−08 55.0
e6 5.0E−08 1.9E−07 692.4 2.1E−08 3.9E−08 65.0

frac = 0.4
e0 2.3E−18 1.2E−15 1.0 2.2E−18 1.2E−15 1.0
e2 2.9E−10 6.5E−08 59.0 1.4E−10 1.3E−08 28.6
e4 4.0E−09 1.6E−07 290.6 9.8E−10 1.2E−08 37.0
e6 4.2E−08 2.4E−07 715.2 7.7E−09 1.2E−08 43.0

frac = 0.2
e0 2.4E−18 1.3E−15 1.0 2.4E−18 1.3E−15 1.0
e2 2.0E−10 6.6E−08 37.0 2.7E−10 2.2E−08 19.0
e4 2.8E−09 2.0E−07 174.2 4.9E−10 5.4E−09 25.0
e6 4.2E−08 4.2E−07 599.0 5.0E−09 7.5E−09 28.8

6.2 Algorithm TN Plan for Optimization Problems

For case (2) (i.e., to test TN Plan within optimization frameworks), we apply a truncated
Newton method to the general problem

min
y∈Rn

f (y) f : R
n −→ R, n large,

where f (y) is allowed to be nonconvex and ‘min’ stands for a local minimum. At the hth
iteration, we apply both algorithms TN Plan (A = ∇2f (yh), g = ∇f (yh), q1 = 10−8, q2 =
108, h1 = 2, h2 = 1, and γk = ‖pk‖/‖Apk‖) and SYMMLQ to determine direction d̃h ∈ R

n

as an approximate solution of Newton’s equation (2)

∇2f (yh)d + ∇f (yh) = 0 d ∈ R
n. (28)

Then, a monotone Armijo-type linesearch is performed along d̃h and a steplength αh is
calculated to obtain the next iterate yh+1 = yh + αhd̃h. Under standard assumptions, the globa-
lization scheme ensures convergence. As stated in Section 5, if d̃h is calculated by means of
TN Plan, it is always gradient related to {yh}. On the other hand, SYMMLQ often does not pro-
vide a gradient related direction; thus some arrangements are necessary, which may diminish
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the efficiency of the overall algorithm. In particular, if SYMMLQ calculates d
LQ
h as a solution

of Eq. (28), then the following direction d̃h is provided to the linesearch:

d̃h =
{

d
LQ
h if d

LQ
h is gradient related to {yh}

−Dh∇f (yh) otherwise,
(29)

where Dh is a suitable positive definite matrix. Frequent use of the modified steepest descent
direction generally leads to intolerably slow progress. In our preliminary tests, we simply set
Dh = I , h ≥ 1, even though a better choice of Dh seems to deserve further investigation. The
choice (29) was successfully adopted in Ref. [19], within a curvilinear stabilization framework.

We tested the scheme over a set of 78 large-scale nonlinear functions from the CUTE
collection [4]; this test set contains both convex and nonconvex functions. We implemented a
truncated Newton scheme with standard settings and a monotone linesearch, with Newton’s
equation (28) being approximately solved by both TN Plan and SYMMLQ. The results are
summarized in Table III (convex problems) and Table IV (nonconvex problems). More specifi-
cally, in Table III, we give the results on the test problems where SYMMLQ always generated
a gradient related direction d

LQ
h that approximately solved (28). In Table IV, we report results

where SYMMLQ generated nongradient related Newton type directions, i.e., those problems,
where for some h we had to choose d̃h = −∇f (yh) for SYMMLQ (see Eq. (29)). We used
an IBM RISC System/6000, and the stopping criterion for the overall optimization method
was simply

‖∇f (yh)‖ < 10−5. (30)

For each optimization step, the truncation criterion for approximately solving Eq. (28) was the
original test of the SYMMLQ routine, i.e.,

‖∇2f (yh)dh + ∇f (yh)‖ ≤ ηh

with ηh = tolh · |A| · ‖dh‖. Similarly to SYMMLQ, |A| is the norm of a tridiagonal approxi-
mation of ∇2f (yh), and [see Ref. 21]

tolh = 10−2 min

{
1

h
, ‖∇f (yh)‖

}
‖∇f (yh)‖.

The acronyms in Tables III and IV represent: the size of the problem (n), the number of outer
iterations (iter) (i.e., the number of points generated by the truncated Newton scheme),
the function evaluations (func), the number of CG Plan iterations (CG-it), the number of
SYMMLQ iterations (SYM-it), the counter of Newton-type directions that are not gradient
related (viol) (i.e., here we choose, respectively, d̃h = dPN

k + dPla
k for TN Plan or d̃h =

−∇f (yh) for SYMMLQ), the function value at the solution (f ) (in Table III it coincides
for TN Plan and SYMMLQ, so we did not report it). On six test problems (EIGENBLS,
GENHUMPS, MSQRTALS, NONCVXUN, NONCVXU2, and SPARSINE, with n = 10,000)
both the algorithms fail, so the relative results are not reported. Finally, we considered a failure
if either iter > 5000 or the time of computation exceeded 0.5 h (MAX time). At the bottom
of Tables III and IV, for each algorithm we report the number of wins, in terms of function
evaluations and inner iterations (since the latter seem the most significant parameters in a
comparison on large-scale problems).

The results confirm (Table III) that in these settings, as long as no negative curvatures are
encountered by the iterative method, or the solution of Eq. (28) is gradient related, SYMMLQ
seems to be more precise and competitive than TN Plan. Indeed, even though in general,
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TABLE III CUTE test problems: convex case

Algorithm TN Plan Algorithm SYMMLQ

Problem n iter func CG−it viol iter func SYM−it viol

ARWHEAD 1000 6 7 2 0 6 7 6 0
ARWHEAD 5000 5 6 1 0 6 7 6 0
BDQRTIC 1000 36 37 60 0 27 28 71 0
BRYBND 1000 17 24 123 0 25 26 113 0
BRYBND 5000 19 25 138 0 19 21 65 0
CRAGGLVY 1000 19 20 179 0 20 21 105 0
DIXMAANA 3000 6 7 3 0 6 8 8 0
DIXMAANB 3000 7 8 3 0 7 8 7 0
DIXMAANC 3000 8 9 3 0 8 9 9 0
DIXMAAND 3000 8 9 3 0 9 10 10 0
DIXMAANE 3000 8 9 306 0 15 16 295 0
DIXMAANF 3000 20 42 1939 0 14 15 385 0
DIXMAANG 3000 19 30 1997 1 15 16 299 0
DIXMAANH 3000 15 22 1383 0 15 16 280 0
DIXMAANI 3000 9 10 5572 0 27 28 4366 0
DQRTIC 1000 30 31 0 0 30 31 57 0
DQRTIC 5000 35 36 0 0 35 36 63 0
EDENSCH 2000 14 16 50 0 13 14 26 0
FMINSURF 1024 22 131 1812 0 50 177 470 0
FMINSURF 5625 33 211 4418 0 99 392 1311 0
FMINSURF 10,000 28 188 4329 0 129 542 2001 0
LIARWHD 1000 39 40 8 0 12 13 12 0
LIARWHD 10,000 17 19 7 0 12 13 12 0
MOREBV 1000 1 2 1999 0 3 4 965 0
MOREBV 5000 1 2 9999 0 2 3 858 0
NONDIA 1000 6 7 3 0 6 7 6 0
NONDIA 10,000 4 5 1 0 5 6 5 0
PENALTY1 1000 40 43 14 0 40 43 40 0
POWELLSG 1000 22 23 47 0 20 21 47 0
POWELLSG 10,000 24 25 51 0 22 23 51 0
POWER 1000 43 44 1092 0 40 41 258 0
QUARTC 1000 30 31 0 0 30 31 57 0
QUARTC 10,000 37 38 0 0 37 38 65 0
SCHMVETT 1000 5 6 72 0 7 8 46 0
SCHMVETT 10,000 6 7 89 0 7 8 47 0
SROSENBR 1000 7 8 3 0 8 10 8 0
SROSENBR 10,000 7 8 3 0 8 10 8 0
TESTQUAD 1000 275 276 3367 0 456 457 3405 0
TOINTGSS 1000 3 4 12 0 4 5 13 0
TOINTGSS 10,000 2 3 1 0 4 5 8 0
TQUARTIC 1000 9 15 5 1 1 2 1 0
TQUARTIC 10,000 8 13 4 0 1 2 1 0
TRIDIA 1000 45 46 638 0 86 87 34 0
TRIDIA 5000 97 98 2095 0 237 238 2534 0
VAREIGVL 1000 14 15 2468 0 14 15 311 0
VAREIGVL 5000 22 32 3912 0 15 16 304 0
Total wins 21 22 15 22
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a larger number of function evaluations are necessary, a smaller number of Lanczos iterations
suffices for estimating the solution of Eq. (28). However, this conclusion is reversed when
nonconvex problems are solved (see Table IV). In this case, the use of −∇f (yh) in place of
d

LQ
h often proves harmful for the overall optimization algorithm. On the contrary, the proper

manipulation of the conjugate directions generated by algorithm TN Plan (vectors dPN and
dPla in Section 5) proved to be significantly useful in providing a gradient-related direction
to the linesearch technique. Thus, we believe that the Lanczos process may be successful
when a curvilinear framework is considered [19,15], or in a trust region approach [14]. In
order to recover the effectiveness of a Lanczos-based method on nonconvex problems, specific
treatment of negative curvature of the Hessian matrix must be considered. Our algorithm
TN Plan provides one such approach.

Unfortunately, only over a few test problems TN Plan performed planar steps. Therefore,
we were not able to experience TN Plan on a significant test set, in order to give also a complete
practical evidence of the theoretical robustness of our approach.

7 CONCLUSIONS AND PERSPECTIVES

In this article, we have proposed a CG-type method, namely CG Plan, in the class of Krylov
subspace methods, for the iterative solution of indefinite linear systems within optimization
frameworks. This new algorithm overcomes the premature possible stopping of CG, in the
case of indefinite linear systems. The practical implementation of CG Plan is affected by the
choice, at step k, of the test on quantity pT

k Apk (see Sec. 5).
The algorithm CG Plan was suitably adapted to solve Newton’s equation, and we proved

that the resulting algorithm (TN Plan) always provides gradient-related search directions
within the optimization framework.

In our opinion, at step k of CG Plan, a careful choice of the parameter εk within the test on
the quantity pT

k Apk (Sec. 5), should be further investigated.
Other interesting issues for future work on algorithm CG Plan are: the possibility of intro-

ducing specific preconditioners for CG Plan, and the use of CG Plan for the generation of
negative curvature directions, in nonconvex optimization. On one hand, we believe that for
large-scale problems, preconditioners often represent a fruitful tool to speed up the conver-
gence of the iterative methods. On the other hand, negative curvature plays a key role within
nonconvex optimization to ensure convergence to local minima that satisfy the second-order
necessary conditions for optimality.
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A APPENDIX

Here, we prove Theorem 4.1 of Section 4. There are two cases to be examined. On one hand,
if step kB is preceded by the step (k − 1)A, then we have

pT
k+1Apk−1 =

(‖pk‖Apk

‖Apk‖
)T

(Apk−1) =
(‖pk‖Apk

‖Apk‖
)T (

rk−1 − rk

αk−1

)

=
(‖pk‖Apk

‖Apk‖
)T [

pk−1 − ω(pk−2, pk−3)

αk−1
− rk

αk−1

]

= −
(‖pk‖Apk

‖Apk‖
)T

rk

αk−1
= − ‖pk‖
‖Apk‖αk−1

pT
k Apk, (31)
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where (see algorithm CG Plan)

ω(pk−2, pk−3) =
{

βk−2pk−2 if pk−1was generated at step (k − 2)A

σk−3pk−3 if pk−1 was generated at step (k − 3)B,

αk−1 = ‖rk−1‖2/pT
k−1Apk−1, and the last equality in Eq. (31) is a consequence of the conjugacy

of vector pk with the directions pk−1, pk−2, pk−3.
On the other hand, if step kB is preceded by step (k − 2)B , from Eq. (19) we cannot

assume, in general, pT
k−2Apk−2 = 0; then we have, for the vector Apk−1 at step (k − 2)B , the

expression Apk−1 = (rk−2 − rk − αk−2Apk−2)/αk−1, where now (after few calculations and
using the reasoning that gave (15))

αk−1 = ‖Apk−2‖3‖rk−2‖2 − (pT
k−2Apk−2)

2‖Apk−2‖
‖pk−2‖‖Apk−2‖4 − ‖pk−2‖(pT

k−2Apk−2)(p
T
k−2A

3pk−2)
, (32)

which yields, along with Theorem 3.1, the relation

pT
k+1Apk−1 = −

(‖pk‖Apk

‖Apk‖
)T

rk

αk−1
= − ‖pk‖
‖Apk‖αk−1

pT
k Apk. (33)

Therefore, from Eqs. (19), (31), and (33), regardless of the step that precedes the current step
kB in algorithm CG Plan, we can ensure that

|pT
k+1Apk−1| ≤ εk

λm|αk−1| ‖pk‖2. (34)

In addition, in order to calculate an upper bound for the quantity |pT
k+1Apk−1| we need some

further results: we calculate a lower bound for the coefficient |αk−1|.
On one hand at general step (i − 1)A, we have pi = ri + βi−1pi−1 and |pT

i−1Api−1| >
εi−1‖pi−1‖2; thus if we consider for the parameter εi−1, the expression

εA
i−1 ≤

λm

2

(
λm

λM

)3

, (35)

where the exponent ‘A’ indicates the step, we obtain

‖pi‖ ≤ ‖ri‖ +
∥∥∥∥∥ rT

i Api−1

pT
i−1Api−1

pi−1

∥∥∥∥∥ = ‖ri‖ +
∥∥∥∥∥pi−1p

T
i−1A

pT
i−1Api−1

ri

∥∥∥∥∥
≤

[
1+ 2

(
λM

λm

)4
]
‖ri‖. (36)

On the other hand at general step (i − 2)B , since γi−2 = ‖pi−2‖/‖Api−2‖ and in general
|pT

i−2Api−2| �= 0, the following relations hold for coefficients σi−2 and σi−1 (see Theorem 3.1):

σi−2 = ‖Api−2‖2rT
i A2pi−2

(pT
i−2Api−2)(p

T
i−2A

3pi−2)− ‖Api−2‖4
,

σi−1 = pT
i−2Api−2

‖pi−2‖
‖Api−2‖rT

i A2pi−2

‖Api−2‖4 − (pT
i−2Api−2)(p

T
i−2A

3pi−2)
;

(37)
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moreover, similarly to Eq. (35) we consider now for εi−2, the expression

εB
i−2 ≤

λm

2
min

{(
λm

λM

)3

, 21/2 ‖ri−2‖
‖pi−2‖

}
, (38)

where the exponent ‘B’ indicates the step, and similarly to Eq. (36) (with |pT
i−2Api−2| <

εi−2‖pi−2‖2), we have

‖pi‖ ≤ ‖ri‖ + ‖σi−1pi−1 + σi−2pi−2‖ (39)

≤ ‖ri‖ +
∥∥pT

i−2Api−2A− ‖Api−2‖2I
∥∥ · ‖pi−2p

T
i−2A

2‖
|‖Api−2‖4 − (pT

i−2Api−2)(p
T
i−2A

3pi−2)| ‖ri‖.

Therefore, we obtain

‖pi‖ ≤ ‖ri‖ + 2λ2
M‖pi−2‖2 λ2

M‖pi−2‖2

λ4
m‖pi−2‖4 − (λm/2)(λm/λM)3‖pi−2‖2λ3

M‖pi−2‖2
‖ri‖

=
[

1+ 4

(
λM

λm

)4
]
‖ri‖. (40)

Finally, with Eq. (38), we can rearrange the expression of αk−1 in Eq. (32) as follows:

|αk−1| ≥ ‖Apk−2‖(λ2
m‖pk−2‖2‖rk−2‖2 − ε2

k−2‖pk−2‖4)

2λ4
M‖pk−2‖5

≥ λm

2λ4
M

(λ2
m‖rk−2‖2 − ε2

k−2‖pk−2‖2)

‖pk−2‖2
≥ λm

4λ4
M

λ2
m

‖rk−2‖2

‖pk−2‖2
. (41)

Now, from Eqs. (36) and (40) we have, respectively,

‖ri‖
‖pi‖ ≥

λ4
m

λ4
m + 2λ4

M

step (i − 1)A,

‖ri‖
‖pi‖ ≥

λ4
m

λ4
m + 4λ4

M

step (i − 2)B.

(42)

Therefore, if the step kB is preceded, respectively, by step (k − 1)A or step (k − 2)B , rela-
tions (34), (36), (40), and (41) yield

|pT
k+1Apk−1| ≤




εA
k

λm

|pT
k−1Apk−1|
‖rk−1‖2

‖pk‖2

εB
k

λm

4λ4
M

λ3
m

‖pk−2‖2

‖rk−2‖2
‖pk‖2,

or, equivalently, from Eqs. (35), (38) and (42)

|pT
k+1Apk−1| ≤




(
λ4

m

2λ3
M

)
λM

λm

‖pk−1‖2

‖rk−1‖2
‖pk‖2 ≤ ρ1k‖rk‖2

ρ2k‖rk‖2,

(43)
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where coefficients ρ1k and ρ2k are defined by (recall that ‖rk‖/‖pk‖ ≤ 1 for any k)

ρ1k = λ3
m

2λ2
M

(
λ4

m + 4λ4
M

λ4
m

)2 (
λ4

m + 2λ4
M

λ4
m

)2

ρ2k = 2 min

{(
λm

λM

)3

, 21/2 ‖rk‖
‖pk‖

}
λ4

M

λ3
m

(
λ4

m + 4λ4
M

λ4
m

)4

.

This completes the proof of Theorem 4.1


