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The general large-scale unconstrained
optimization problem can be formulated as
follows:

min
x∈IRn

f (x), (1)

where f : IRn → IR is a real-valued objective
function, and the parameter n is large.
Observe that in general the minimization
in Equation (1) refers to the search for a
local minimizer of f (x). Standard assump-
tions ensure that the problem (1) admits
solution. In particular, if the level set
L0 = {x ∈ IRn : f (x) ≤ f (x0)} is compact and
f (x) is continuous on L0, then by the Weier-
strass theorem (1) has a solution. Moreover,
if the objective function is coercive, that is,
lim‖x‖→+∞ f (x) = +∞ (which usually holds in
real applications), then all the level sets of
f (x) are compact.

The definition of ‘‘large n’’ is a little vague
for the problem (1), in that it does not specify
exactly a range of values and is straight-
forwardly machine dependent. Indeed,
broadly speaking, n may be considered
large on a particular machine, if standard
optimization techniques for Equation (1)
become progressively inadequate when n
increases, so that ad hoc methods must
be adopted. Anyway, 106 –107 may be
considered a reference value for n, on a
serial machine, in order to consider Equation
(1) a large-scale continuous optimization
problem. Real-life applications increasingly
yield complex models that require efficient
techniques (see the Nonlinear Optimiza-
tion Models collected by Robert Vanderbei
on http://www.orfe.princeton.edu/~ rvdb/

ampl/nlmodels). This has led in the last
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decades to a growing interest for large-scale
optimization, so that the latter topic can be
considered by this time a mature field of
research.

Optimization methods for small- and
medium-scale problems [1–4] are usually
hardly adaptable to large-scale problems.
Indeed, though they may be still effective
in most of the cases, on problems where n
is large they often prove not to be efficient
enough (i.e., they are unable to solve the
problems using a reasonable workload).

As for most of the algorithms for continu-
ous unconstrained optimization, methods for
large values of n claim for suitable search
directions and stepsizes along them, too. In
particular, the choice of the search directions
is responsible for the efficiency of the meth-
ods (i.e., the rate of convergence), while a
proper choice of the steplength ensures the
effectiveness. When n is large, iterative meth-
ods typically show a reduced computational
burden with respect to direct methods. They
generate a sequence of iterates {xk} approach-
ing a solution, which usually follows one of
the following patterns:

1. xk+1 = xk + αkdk in case convergence to
a stationary point x∗ is sought, which
satisfies the first-order necessary opti-
mality conditions;

2. xk+1 = xk + φd(αk)dk + φu(αk)uk in case
convergence to a stationary point x∗ is
sought, which satisfies the second order
necessary optimality conditions;

where dk ∈ IRn is a search direction that
approximates a Newton-type direction at xk,
uk ∈ IRn is a search direction that takes into
account the local curvature of the objective
function at xk, φd(·), and φu(·) are polynomial
functions of degree at most two, and αk is a
suitable stepsize. The schemes in the classes
(1) and (2) may typically be differentiated on
the basis of the information on f (x), which is
available at the iterate xk. In particular, if
at xk we can simply use f (xk), ∇f (xk), and a
partial information on ∇2f (xk), then we will
be able to generate {xk} according to 1.
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On the other hand, if in addition we
get information on the eigenpair associated
with the smallest eigenvalue of the Hessian
matrix ∇2f (xk), we can generate the sequence
{xk} according to (2). Observe that the last
statement does not imply that a full knowl-
edge (and possibly the storage) of ∇2f (xk)
is required (which is commonly considered
cumbersome). When n increases, though in
principle the entries of the Hessian matrix
could be computed by finite differences,
iterative methods commonly need to perform
only the product Hessian × vector, which
is computationally cheaper. Alternatively,
in case f (x) is explicitly defined and is not
a black box, automatic differentiation [5]
is often adopted to provide information on
∇2f (xk).

GLOBAL CONVERGENCE AND GRADIENT
METHODS

A very general convergence result may
be proved for the iterative scheme (1).
Indeed, introducing the forcing function σ () :
IR+ → IR+, such that limk→∞ σ (wk) = 0
implies limk→∞ wk = 0, we have [6]:

Proposition 1. Let {xk} be the sequence
generated by the scheme (1) starting from
x0 ∈ IRn. Suppose the level set L0 is compact
and for any k we have dk 	= 0 if ∇f (xk) 	= 0,
with f (xk+1) ≤ f (xk). Assume that

1. we have

lim
k→∞

∇f (xk)Tdk

‖dk‖ = 0,

2. for any k for which dk 	= 0

|∇f (xk)Tdk|
‖dk‖ ≥ σ

(‖∇f (xk)‖) .

Then, either there exists a finite index k̂
such that ∇f (xk̂) = 0, or the infinite sequence
{xk} satisfies

• xk ∈ L0 for any k;
• the sequence {f (xk)} converges;

• for any infinite subsequence K of indices

lim
k→∞, k∈K

‖∇f (xk)‖ = 0.

A very simple class of iterative methods
for large-scale unconstrained optimization,
which satisfy the hypotheses of Proposition
1, is given by the so-called gradient methods
[4,7], which may be specified in the form

xk+1 = xk − αkDk∇f (xk), (2)

with Dk ∈ IRn×n positive definite for any k.
Observe that whenever ∇f (xk) 	= 0 the search
direction dk = −Dk∇f (xk) in Equation (2) is
of descent at the nonstationary point xk, and
satisfies statement (2) of Proposition 1. More-
over, an Armijo-type linesearch procedure [8]
should be adopted to compute αk in Equation
(2) in order to satisfy also statement (1) of
Proposition 1. Of course, when Dk = I, for
any k, then the iteration (2) reduces to the
standard steepest descent method, which is
equivalent to minimize the First-order local
model of the objective function. The steepest
descent method yields a linear convergence
rate, and it is not scale invariant under a
coordinate transformation. In case the eval-
uation of f (x) is expensive (e.g., for several
simulation problems [9]), a constant value
for the stepsize αk may be adopted in place of
the linesearch procedure. On the other hand,
a computationally efficient choice for αk and
Dk was suggested in Barzilai and Borwein
[10] and Raydan [11], where Dk = I, for any
k, and

αk = ‖xk − xk−1‖2

(xk − xk−1)T
[∇f (xk) − ∇f (xk−1)

] .

Finally, when Dk = [∇2f (xk)]−1 and αk = 1
the iteration (2) reduces to Newton’s method,
which corresponds to minimize the local
quadratic model of f (x) at xk. The latter tech-
nique is appealing thanks to its quadratic
rate of convergence and the scale invariance.
However, when ∇2f (xk) is dense and n is
large, it may not be a suitable choice. In
the latter case, fully computing [∇2f (xk)]−1

by means of a Cholesky factorization or a
symmetric indefinite factorization requires
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nearly 1/3n3 floating-point operations,
while for sparse Hessians the workload is
proportional to the sparsity pattern.

INEXACT AND TRUNCATED NEWTON
METHODS

The application of Newton’s method
requires one to compute the direction dk =
− [∇2f (xk)]−1∇f (xk), which is equivalent to
solving Newton’s equation

∇2f (xk)d = −∇f (xk). (3)

When the iterate xk is still ‘‘far’’ from the
stationary point x∗, an accurate solution of
Equation (3) may be unjustified; thus, when
n is large the solution of Equation (3) may be
obtained by an iterative procedure. In addi-
tion, in order to preserve the global conver-
gence of Newton’s method, a suitable choice
of αk must be computed (a globalization tech-
nique), either based on a linesearch approach
[1,12,13] or a trust-region approach [14,15].
On these guidelines, for large values of n,
inexact Newton method has been proposed

in the literature [16]. The underpinning idea
of these schemes is that we can balance the
computational burden of solving Equation (3)
and the accuracy of the solution obtained.
In particular, from Dembo et al. [16], if the
approximate solution dk of Equation (3) is
computed, such that (truncation rule)

lim
k→∞

‖∇2f (xk)dk + ∇f (xk)‖
‖∇f (xk)‖ = 0 (4)

holds, then the sequence of iterates {xk} is
superlinearly convergent to a stationary point
x∗. Broadly speaking, the condition (4) states
that when k increases, the gradient of the
quadratic local model of f (x) at xk approaches
zero ‘‘more quickly’’ than the gradient ∇f (xk)
of the objective function. When n is large, iter-
ative methods such as the conjugate gradient
(CG) may be used to compute an approxi-
mate solution dk of Equation (3), such that
Equation (4) holds. The latter philosophy is
based on truncated Newton methods [17–19],
which proved to be a very efficient tool [20,21].
An example of truncated Newton method,
based on a linesearch approach to ensure the
global convergence, is the following:

Linesearch-based Truncated Newton scheme

Set x0 ∈ IRn

Set ηk ∈ [0, 1) for any k, with {ηk} → 0
OUTER ITERATIONS

for k = 0, 1, . . .

Compute ∇f (xk); if ‖∇f (xk)‖ is small then STOP
INNER ITERATIONS

Compute dk which approximately solves Equation (3)
and satisfies the truncation rule

‖∇2f (xk)dk + ∇f (xk)‖ ≤ ηk‖∇f (xk)‖
Compute the steplength αk by an Armijo-type linesearch scheme
Update xk+1 = xk + αkdk

endfor

Observe that at the outer iteration k a
second-order expansion of the function f (x) is
considered, whose stationary point (if any) is
detected by solving Equation (3). The num-
ber of inner iterations, which are necessary
to approximately solve Newton’s equation
(3), depends on the current parameter ηk.

Thus, a fine (and more expensive) solution of
Equation (3) is required only when k → ∞.
The truncation rule (4) is often replaced in
practice by more efficient conditions [22,23].

The Hessian matrix in Equation (3)
may be possibly indefinite. Thus, additional
safeguard is required for the choice of the
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iterative solver, since for instance a negative
curvature direction for function f (x) at xk
may be detected, or a pivot breakdown may
occur with the CG method. The Lanczos
process and suitable extensions of the
CG method (namely, the planar CG) may
successfully be used as alternatives to the
CG [24–28]. Furthermore, finite differences
have also been used in the past, in order
to approximately compute the information
on the Hessian matrix, within a truncated
Newton method (see TNPACK in Schlick and
Fogelson [29]).

Three other relevant issues have been
studied in the last two decades, in order
to drastically improve the performance of
truncated Newton methods: the precondition-
ing strategies to solve Newton’s equation, the
exploitation of negative curvature directions
of the objective function, and the introduc-
tion of nonmonotone globalization schemes.
The first issue studies efficient precondition-
ers of the matrix ∇2f (xk), for the specific case
of large n, when the Hessian is either pos-
itive definite or indefinite [14,30–32]. The
second issue needs a specific treatment when
n is large, since it deals with the careful
choice for the iterative solver of Newton’s
equation. Moreover, an accurate exploration
of the negative curvatures of f (x) is essen-
tial in order to prove the convergence of
truncated methods toward solutions that sat-
isfy the second-order optimality conditions
[33,34]. The latter task is pursued by com-
puting the pair of promising search direc-
tions (dk, uk) at the outer iteration k [20,25,
35–37], by means of efficient iterative tech-
niques. Roughly speaking, dk contains infor-
mation on the local convexity of f (x) at xk,
while uk conveys information on the local
nonconvexity of f (x), and approximates the
eigenvector corresponding to the minimum
negative eigenvalue of ∇2f (xk). Then, in order
to guarantee the convergence to second-order
points, the two directions may be combined
to produce the next iterate, as in (see pattern
(2) mentioned in the introductory text.)

xk+1 = xk + φd(αk)dk + φu(αk)uk,

where αk is chosen by a proper line-
search procedure. The introduction of

nonmonotone globalization schemes, in
truncated Newton methods, was first pro-
posed in Grippo et al. [38] (see also Grippo
et al. [13], Ferris et al. [35], and Lucidi
et al. [25], Ferris et al. [35]). Considering
the standard Armijo linesearch scheme
f (xk + αdk) ≤ f (xk) + γα∇f (xk)Tdk, where
γ ∈ (0, 1/2), the main idea behind a non-
monotone approach generalizes the mono-
tone decreasing of f (xk), as in the scheme

f (xk + αdk) ≤ max
0≤i≤M

{f (xk−i)} + γα∇f (xk)Tdk,

where the integer M indicates the ‘‘memory’’
of the scheme. The nonmonotone approach
proves to be particularly efficient in the case
of highly nonlinear functions, where enforc-
ing the monotonic decrease of f (x) may cause
the algorithms to be trapped within narrow
valleys.

Global convergence of truncated Newton
methods may be proved either using a line-
search framework, or adopting a trust-region
approach [14]. A trust-region scheme pro-
vides the new iterate xk+1 = xk + dk at step k
(i.e., now dk includes both the search direc-
tion and the steplength), by solving the con-
strained subproblem

min
d

Qk(d)

s.t. ‖�kd‖ ≤ �k,
(5)

where Qk(d) = f (xk) + ∇f (xk)Td + 1
2 dT∇2

f (xk)d and �k is a scaling matrix (possibly
�k = I, for any k), which may be regarded
as introducing an implicit preconditioning.
The basic trust-region approach adaptively
assesses the trust-region radius �k in Equa-
tion (5) with the following idea: as long as the
solution dk of Equation (5) yields a value for
ρk close to 1, where

ρk = f (xk) − f (xk + dk)
Qk(0) − Qk(dk)

, (6)

Qk(d) is a ‘‘trusted’’ local model of f (x) and
the radius �k+1 may be possibly larger than
�k. On the contrary, if ρk in Equation (6)
is relatively small, then the model Qk(d) is
not reliable and the radius �k+1 at the next
iteration satisfies �k+1 < �k.
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When n is large, the trust-region approach
requires both a strategy to assess the param-
eter �k and an efficient procedure to approx-
imately solve Equation (5). Among the first
techniques to solve Equation (5), the dogleg
schemes proposed to investigate the solution
over a suitable one-dimensional arc [39,40].

In Byrd et al. [41], a pair of feasible
directions for Equation (5) is preliminarily
computed, then the minimization of Qk(d)
is performed over the two-dimensional
manifold associated with the latter vectors.
Another approach to solve Equation (5)
imposes the KKT conditions of Equation (5),Q1
and solves a resulting perturbation of the
Newton equation for f (x) [42,43].

Since the previous approaches may recur
to direct solvers (e.g., Cholesky factoriza-
tion), when n is large, a different strategy
is suggested in Steihaug [44] and Toint [45].
Here, CG is used to minimize f (x); then, a
piecewise path connecting the feasible iter-
ates generated by CG is considered, and
can be followed up to the boundary of the
trust region. Alternatively, both the steep-
est descent direction (moving to the Cauchy
point1 on the boundary of the trust region)
and possibly a negative curvature direction
(in case ∇2f (xk) is indefinite) are investigated.
An example of a robust and reliable truncated
Newton method, in a trust region rather
than a linesearch framework, is given by the
package LANCELOT [21]. Trust-region methods
have several advantages, including the fact
that they show strong convergence properties
[14]. However, in case for several values of
k the Hessian matrix ∇2f (xk) is indefinite,
these methods may be inefficient, inasmuch
as they can stop the inner iterations pre-
maturely, when approximately minimizing
Qk(d). These drawbacks have been addressed
and partially overcome in Gould et al. [26],
by using the Lanczos process for the solu-
tion of large symmetric and indefinite linear
systems, and exploiting its relation with the
CG (see also Stoer [46]).

1The Cauchy point is the minimizer of Qk(d) along
the direction −∇f (xk), subject to the trust-region
bound.

NONLINEAR CONJUGATE GRADIENT
METHODS

The CG used for the minimization of a strictly
convex quadratic function has been extended
to the minimization of nonlinear functions,
by suitably modifying the computation of
its coefficients [47–49]. In particular, sup-
pose that at step k the directions {p1, . . . , pk}
were generated by the Nonlinear Conjugate
Gradient (NCG). Then, the steplength αk is
chosen to satisfy the standard first Wolfe
linesearch condition (minimization along the
direction pk)

f (xk + αkpk) ≤ f (xk) + γαk∇f (xk)Tpk,

γ ∈ (0, 1/2) (7)

and either one of the following additional
relations (Wolfe conditions)

∇f (xk + αkpk)Tpk ≥ θ∇f (xk)Tpk,

θ ∈ (γ , 1) (8)

|∇f (xk + αkpk)Tpk| ≤ θ |∇f (xk)Tpk|,
θ ∈ (γ , 1) (9)

(theoretical reasons may impose the more
restrictive condition θ ∈ (γ , 1/2)). Further-
more, in the NCG, it is possible to adopt
different formulae for the computation of
the coefficient βk used in the iteration
pk = −∇f (xk) + βkpk−1. Very standard for-
mulae for βk in the literature are [48]

Fletcher–Reeves:
‖∇f (xk)‖2

‖∇f (xk−1)‖2 ,

Polak–Ribiere:[∇f (xk) − ∇f (xk−1)
]T ∇f (xk)

‖∇f (xk−1)‖2 ,

Hestenes–Stiefel:[∇f (xk) − ∇f (xk−1)
]T ∇f (xk)

[∇f (xk) − ∇f (xk−1)
]T pk−1

. (10)

We report below a general scheme for the
NCG. We remark that, apart from Equation
(10), several other choices for the coefficient
βk have been studied in the literature [48].



UNCORRECTED P
ROOFS

Cochran eorms0521.tex V1 - August 24, 2010 6:07 P.M. P. 6

6 METHODS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION

Nonlinear Conjugate Gradient (NCG) method

Step 0: Choose x0 ∈ IRn, set k = 0
Step 1: Compute ∇f (xk). If ∇f (xk) = 0 then STOP
Step 2: If k 	= 0 compute βk as in Equation (10). Compute the direction

pk =
⎧⎨
⎩

−∇f (xk) k = 0

−∇f (xk) + βkpk−1 k ≥ 1

Step 3: Choose αk such that Equation (7) is satisfied, along with either Equation (8) or (9)
Step 4: Set xk+1 = xk + αkpk, k = k + 1 and go to Step 1

Unlike the CG, the NCG does not gen-
erally retain global convergence properties,
because of the loss of conjugacy caused by
the nonlinearity of f (x). In order to enforce
global convergence, a periodic restart may be
imposed, either when k > n or if a test on the
conjugacy loss, like

|∇f (xk)T∇f (xk−1)| > σ‖∇f (xk−1)‖2,

σ ∈ (0, 1)

is satisfied. However, when n is large,
the latter choice is impracticable (very
rarely adopted) and proved to be ineffi-
cient. Using the formula of βk, proposed by
Fletcher–Reeves, in case αk is computed
by an exact linesearch procedure [50], or
by an Armijo-type linesearch based on the
strong Wolfe condition (9) with θ < 1/2
[2,51], the global converge is retained and
lim infk→∞ ‖∇f (xk)‖ = 0. In Gilbert and
Nocedal [49], the global convergence was also
proved for the case |βk| ≤ βFR

k , where βFR
k

refers to the formula proposed by Fletcher
and Reeves.

Though the choice of βPR
k made by Polak–

Ribiere proved to be computationally more
efficient than βFR

k [2,48], convergence prop-
erties for the NCG with βPR

k have always
been more difficult to investigate. In particu-
lar, the global convergence was proved under
strong convexity assumption of f (x), using
βk = max{0, βPR

k }, with an inexact linesearch
procedure which also satisfies Equation (9).
Only recently [52], by using a more sophis-
ticated linesearch procedure, the global con-
vergence of NCG using βPR

k was proved (in
the sense that limk→∞ ‖∇f (xk)‖ = 0), with-
out the strong convexity assumption on f (x).

An extension of the NCG, which uses the
Polak–Ribiere value βPR

k , is implemented in
the routine VA14, of the Harwell Subroutine
Library [53].

QUASI-NEWTON METHODS AND
PARTIALLY SEPARABLE FUNCTIONS

Quasi-Newton methods are a powerful tool
for large-scale optimization. They are used
to solve Newton’s equation, without using
the second-order derivatives. In Particular,
these methods generate the sequence {xk}
by iteratively solving the modified Newton’s
equation

Bkd = −∇f (xk),

with Bk positive definite

and computing xk+1 = xk − αkB−1
k ∇f (xk),

where Bk in some sense approximates
the Hessian matrix ∇2f (xk) of f (x). More
specifically, Bk+1 is the solution of the
subproblem

minB ‖B − Bk‖F

s.t. B = BT

Bsk = yk,

where ‖ · ‖F indicates the Frobenius norm,
sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk),
so that no second-order derivatives are
required. Several quasi-Newton schemes
have been developed, using approxima-
tions of either ∇2f (xk) or [∇2f (xk)]−1

[2,12,48,54,55]. One of the most effective, in
small-scale and medium-scale optimization,
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is BFGS (Broyden–Fletcher–Goldfarb–
Shanno). Here, a sequence {Hk} of approx-
imations of [∇2f (xk)]−1 is generated, with
Hk being positive definite, by solving the
subproblem

minH ‖H − Hk‖F

s.t. H = HT

sk = Hyk,

so that xk+1 = xk − αkHk∇f (xk). Moreover,
the global convergence properties can be
proved by computing the steplength αk via an
Armijo-type linesearch procedure, satisfying
also Equation (9). It can be easily proved [2]
that the matrices {Hk} satisfy the relation

Hk+1 = VT
k HkVk + ρksksT

k ,

where Vk = I − ρkyksT
k and ρk = 1/yT

k sk, so
that the pairs {(sk, yk)} are necessary and suf-
ficient to generate the whole sequence {Hk}.
We remark that an interesting relationship
between NCG and BFGS can be stated (see
Nocedal and Wright [2] or Pytlak [48]), both
for quadratic and general nonlinear func-
tions.

In a large-scale setting, the storage of Vk
cannot be proposed; Thus, the formula to
update Hk+1 is suitably modified by using just
the most m recent pairs (si, yi), i = 1, . . . , m.
On this guideline, the matrix Hk is com-
puted as

Hk = (VT
k−1 . . . VT

k−m)H0
k(Vk−m . . . Vk−1)

+ ρk−m(VT
k−1 . . . VT

k−m+1)

sk−msT
k−m(Vk−m+1 . . . Vk−1)

+ ρk−m+1(VT
k−1 · · · VT

k−m+2)

sk−m+1sT
k−m+1(Vk−m+2 . . . Vk−1)

+ · · ·
+ ρk−1sk−1sT

k−1,

and a practical choice of H0
k is often H0

k = γkI,
with γk = sT

k−1yk−1/yT
k−1yk−1. The storage of

Hk now requires only the pairs (si, yi), i ≤
m, so that it can be defined by setting the
parameter m. The resulting new sequence
{Hk} yields a very efficient method called L-
BFGS [56–58] (where ‘‘L’’ stands for limited
memory).

Observe that in practice very small val-
ues of m are used (say 3 ≤ m ≤ 8) and the
L-BFGS method often may be competitive
with truncated Newton methods or the NCG
[59]. In addition, thanks to the simplified
structure of Hk, iterative Krylov-based meth-
ods may be easily applied when performing
the product Hk∇f (xk) in the iteration xk+1 =
xk − αkHk∇f (xk). In order to cope with prob-
lems of illconditioning of the Hessian matrix,
a combined approach between L-BFGS and
the discrete Newton method was studied in
Byrd et al. [60]. The L-BFGS method was
coded and is available in the routine VA15,
of the Harwell Subroutine Library [53]. The
memory storage of the NCG implemented in
the routine VA14 is 6n, while the memory stor-
age of the L-BFGS method implemented in
the routine VA15 is 2nm + 4n.

When the scale n of problem (1) is large,
also another strategy may be adopted to
tackle a minimum point: namely, partially
separable functions can be exploited. Suppose
f (x) is a partially separable function, that is,
it can be written in the form

f (x) =
p∑

i=1

fi(x), (11)

where each of the functions f1(x), . . . , fp(x)
depends just on a subset of the unknowns x.
Evidently, by Equation (11) the gradient and
the Hessian matrix of f (x) are given by

∇f (x) =
p∑

i=1

∇fi(x); ∇2f (x) =
p∑

i=1

∇2fi(x).

Thus, drawing our inspiration from the
quasi-Newton methods, let B be a quasi-
Newton approximation of ∇2f (x), while Bi,
i = 1, . . . , p, is a quasi-Newton approxima-
tion of ∇2fi(x). Then, numerical experiences
proved that

∑p
i=1 Bi is often a better approx-

imation of ∇2f (x) than B, as long as a satis-
factory quasi-Newton approximation of each
∇2fi(x) is given.

The AMPL modeling language [61] con-
tains a specific tool, which is able to compute
the approximation Bi of ∇2fi(x) by automatic
differentiation [5], so that a sparse repre-
sentation of ∇2f (x) is available. For other
references on this topic see also Griewank
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and Toint [62,63] and Malmedy Toint [64]
and the references therein.

MULTIGRID OPTIMIZATION

Optimization-based multigrid methods are
a class of algorithms which have had a fast
development in the last decade [65–67],
since efficient methods for the optimization
of large-scale nonlinear systems governed
by differential equations are sought. In
particular, let us consider the problem

minx f [x, u(x)]
s.t. S[x, u(x)] = 0, (12)

where f : IRn × IRm → IR, and the variables
u = u(x), with u : IRn → IRm, are commonly
called state unknowns and are implicitly
defined by the system of partial differen-
tial equations (PDE) S[x, u(x)] = 0 (state
equations).

Optimization-based multigrid methods
for solving Equation (12) consider a fam-
ily of optimization problems, associated
with Equation (12), each corresponding
to a different discretization of the system
S[x, u(x)] = 0. Intuitively speaking, the
workload to solve Equation (12) by choosing
a finer discretization (grid) is larger than
that by choosing a coarser grid. These meth-
ods use the computation on a coarser grid
(which implies the solution of unconstrained
optimization subproblems), in order to
improve an approximate solution of problem
(12) on a finer grid.

A very general algorithm for the latter
purpose is MG/Opt, which is described in
Nash [66]. This algorithm does not apply to
a specific family of grids; moreover, it relies
on the use of optimization models along with
a linesearch procedure, in order to guarantee
the global convergence of the method. Fur-
ther details and a numerical experience for
multigrid methods are given in Lewis and
Nash [67] and the references therein.

Similar ideas for unconstrained optimiza-
tion problems have been investigated in Toint
et al. [68] and Gratton et al. [69], in order to
solve very large-scale trust-region subprob-
lems. Here, some convergence issues related

to solutions satisfying both first- and second-
order optimality conditions were studied.
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