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Abstract We propose a new truncated Newton method for large scale unconstrained
optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve
Newton’s equation. In the current iteration, the Krylov method computes a pair of
search directions: the first approximates the Newton step of the quadratic convex
model, while the second is a suitable negative curvature direction. A test based on the
quadratic model of the objective function is used to select the most promising between
the two search directions. Both the latter selection rule and the CG stopping criterion
for approximately solving Newton’s equation, strongly rely on conjugacy conditions.
An appropriate linesearch technique is adopted for each search direction: a nonmono-
tone stabilization is used with the approximate Newton step, while an Armijo type
linesearch is used for the negative curvature direction. The proposed algorithm is both
globally and superlinearly convergent to stationary points satisfying second order nec-
essary conditions. We carry out a significant numerical experience in order to test our
proposal.
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522 G. Fasano, S. Lucidi

1 Introduction

We consider the solution of the unconstrained minimization problem

min
x∈Rn

f (x), (1.1)

where f (x) is twice continuously differentiable on R
n and n is large. Several appeal-

ing algorithms have already been proposed in the literature to solve (1.1) [1,5,7,8,11,
12,14,18,21], however the definition of both robust and efficient methods for large
scale unconstrained problems is still a challenging task. In particular, we observe that
the state-of-the-art Newton-type methods are based on the idea of exploiting the local
information on the function f (x), obtained by investigating the second order deriva-
tives. In the context of large scale problems, the latter task is pursued by computing at
the outer iteration k the pair (dk, sk) of promising search directions [5,7,8,14,17,20],
by means of efficient iterative techniques. Roughly speaking, dk summarizes the local
convexity of f (x) at the current iterate, while sk takes into account the local non-
convexity of the objective function.

In several earlier papers [5,7,14,18] the latter directions were suitably combined in
a curvilinear framework, so that the new iterate is laid on the two dimensional manifold
identified by the search directions. On the other hand, in [8] a couple of search direc-
tions is computed, too. Then, a suitable test attempts to determine if either the first or
the second direction is more promising. Furthermore, according with the chosen direc-
tion, a proper monotone linesearch technique is applied in order to provide the new
iterate. The rational behind using a different linesearch technique for each direction,
is the possibility of capturing possible differences between the two directions. In [20]
there is an attempt to match both the approaches above, in order to yield an efficient
algorithm for small scale problems, adopting a monotone stabilization technique.

In this paper we draw our inspiration from [8], whose results are suitably extended
and partially generalized. In particular, we extend the approach in [8] by introducing
the following effective ingredients.

(a) We propose an effective use of conjugate directions computed via a Conju-
gate Gradient (CG)-based method, for both the computation and the comparison
between the search directions dk and sk .

(b) We use a new stabilization technique which includes a nonmonotone linesearch
technique along the direction dk , and a monotone one along the negative curvature
direction sk .

As regards (a), the use of CG-based methods has a twofold importance. On one hand,
they are often the methods of choice to inexpensively and reliably compute a satisfac-
tory approximation of Newton’s direction. On the other hand they provide, as a by prod-
uct, a set of conjugate directions, containing relevant local information of the objective
function on an independent set [6]. As a consequence, the conjugate directions can
be suitably combined into the pair of search directions dk and sk , in order to sepa-
rately summarize the local information on the convexity and non-convexity of f (x).
Moreover, the conjugate directions are “similarly scaled” and so are dk , sk . The latter
property may be considerably helpful to select the most promising direction in the pair.
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As regards (b), the role of nonmonotonicity within Newton-type methods was
largely investigated in [5,12–14]. The significant numerical experience reported in
[14,15] suggests that over highly nonlinear and ill-conditioned problems, a nonmono-
tone stabilization can be very effective when combined with a Newton-type direction.

This paper is organized as follows. In Sect. 2, we describe the use of the CG
method to both generate the search directions and satisfy specific conditions for the
convergence. In Sect. 3, we describe our Adaptive Linesearch Algorithm (ALA) for the
solution of problem (1.1), along with the convergence properties. We provide suffi-
cient conditions so that the algorithm ALA is globally and superlinearly convergent to
stationary points, which satisfy both the first and the second order necessary optimality
conditions. Finally, Sect. 4 reports a detailed numerical experience of algorithm ALA,
over a significant set of large scale problems of CUTEr [9], selected from [11].

We use the symbol A � 0 to denote the positive semidefinite matrix A, and ‖ · ‖
represents the Euclidean norm of either a vector or a matrix. With Hk and gk we
respectively indicate the Hessian ∇2 f (xk) and the gradient ∇ f (xk) at the current
iterate xk .

2 The generation of search directions dk and sk

Our truncated Newton method generates the sequence {xk} according with the iterative
scheme:

xk+1 = xk + αk zk,

where zk ∈ {dk, sk} and αk is a suitable stepsize. Throughout this paper we consider
that the following assumption holds.

Assumption 1 The function f (x) is twice continuously differentiable on R
n, and

given x0 ∈ R
n, the level set L0 = {x ∈ R

n : f (x) ≤ f (x0)} is compact.

Let us assume that at the current iterate xk we apply the following iterative scheme
CG_gen to solve the Newton equation.1

CG_gen: Conjugate directions generation

Data. xk , gk , Hk , ε ∈ (0, 2).
Initialization. r0 = −gk , p0 = −gk . Set i = 0.
Do

If |pi
T Hk pi | < ε‖pi‖2 Stop.

Compute ri+1 = ri − ρi Hk pi , with ρi = pi
T ri/pi

T Hk pi .
If a stopping criterion is satisfied Stop (see Sect. 4).
Compute pi+1 = ri+1 + βi pi , with βi = ‖ri+1‖2/‖ri‖2.
Set i = i + 1.

End do

1 For the sake of simplicity we omit the dependency of pi from the index k.
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After m + 1 steps the m + 1 directions p0, . . . , pm have been generated. In particular,
when m > 0 we introduce the disjoint sets of indices

I P
k = {i ∈ [0, m] : pT

i Hk pi ≥ ε‖pi‖2},
I N
k = {i ∈ [0, m] : pT

i Hk pi ≤ −ε‖pi‖2}. (2.1)

Now, we can use the set {p0, . . . , pm} to generate at step k both a negative curvature
direction sk and a positive curvature direction dk (search directions). Furthermore, we
can select the most promising direction between sk and dk , according with the decrease
of the local quadratic model q(xk, z) at iterate xk , defined as

q(xk, z) = 1

2
zT Hk z + gT

k z. (2.2)

We obtain the following resulting scheme (we recall that pT
i ri = −pT

i gk):

Scheme 1

If |p0
T Hk p0| < ε‖p0‖2 then{

dk = p0 = −gk,

sk = 0.
(2.3)

Else

dk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈I P

k

ρi pi = −
∑
i∈I P

k

gT
k pi

pT
i Hk pi

pi , if I P
k �= ∅

0 if I P
k = ∅,

(2.4)

sk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∑
i∈I N

k

ρi pi = −
∑
i∈I N

k

gT
k pi∣∣pT

i Hk pi
∣∣ pi , if I N

k �= ∅

0 if I N
k = ∅.

(2.5)

End if
If q(xk, dk) ≤ q(xk, sk) choose the direction dk .
If q(xk, dk) > q(xk, sk) choose the direction sk .

The next proposition proves that the search direction z corresponding to the largest
decrease of q(xk, z) satisfies a suitable angle condition for an optimization framework.
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Proposition 2.1 Assume that the directions dk and sk are computed by Scheme 1.
Then, there exist positive constants c1 and c2 such that

max{‖dk‖, ‖sk‖} ≤ c1‖gk‖, (2.6)

and

if dk is chosen then gT
k dk ≤ −c2‖gk‖2; (2.7)

if sk is chosen then gT
k sk ≤ −c2‖gk‖2. (2.8)

Proof First we study the case |p0
T Hk p0| < ε‖p0‖2 in Scheme 1. Observe that in the

latter case dk = −gk and sk = 0, so that q(xk, sk) = 0; furthermore, q(xk,−gk) ≤
−‖gk‖2 +ε/2‖gk‖2 = −(1−ε/2)‖gk‖2. Thus, (2.6) and (2.7) hold with c1 = c2 = 1.

On the other hand, for the cases in which |p0
T Hk p0| ≥ ε‖p0‖2, from [12] (see

formulae (11)–(12)) the positive constants c̃1 and c̃2 exist such that

max{‖dk‖, ‖sk‖} ≤ c̃1‖gk‖ (2.9)

gT
k (dk + sk) ≤ −c̃2‖gk‖2. (2.10)

Thus, relation (2.6) follows straightforwardly from (2.9) by setting c1 = c̃1.
Now we prove (2.7) and (2.8). Since the directions {pi } are computed by CG_gen,

the following relations hold:

gT
k dk + 1

2
dT

k Hkdk = gT
k dk + 1

2

⎛
⎜⎝−

∑
i∈I P

k

gT
k pi

pT
i Hk pi

pi

⎞
⎟⎠

T

Hk

⎛
⎜⎝−

∑
i∈I P

k

gT
k pi

pT
i Hk pi

pi

⎞
⎟⎠

= 1

2
gT

k dk, (2.11)

gT
k sk + 1

2
sT

k Hksk = gT
k sk + 1

2

⎛
⎜⎝∑

i∈I N
k

gT
k pi

pT
i Hk pi

pi

⎞
⎟⎠

T

Hk

⎛
⎜⎝∑

i∈I N
k

gT
k pi

pT
i Hk pi

pi

⎞
⎟⎠

= 3

2
gT

k sk . (2.12)

If q(xk, dk) ≤ q(xk, sk), from (2.11) and (2.12)

gT
k dk ≤ 3gT

k sk;

then, (2.10) yields

4gT
k dk ≤ 3gT

k (dk + sk) ≤ −3c̃2‖gk‖2. (2.13)
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On the other hand if q(xk, dk) > q(xk, sk), we have similarly from (2.11) and (2.12)

3gT
k sk < gT

k dk;

then, again (2.10) yields

4gT
k sk < gT

k (dk + sk) ≤ −c̃2‖gk‖2. (2.14)

Finally, relations (2.13) and (2.14) yield (2.7) and (2.8) with respectively c2 = 3/4c̃2
and c2 = c̃2/4. 	


In order to ensure the convergence results to critical points satisfying second order
necessary conditions, we need a negative curvature direction which conveys more
information on the local nonconvexity of the objective function. This can be done by
adding, when needed, to the negative curvature direction produced by Scheme 1, an
additional negative curvature direction ŝk which satisfies the following assumption.

Assumption 2 For any outer iteration k ≥ 0 a bounded direction ŝk exists such that

(a) gT
k ŝk ≤ 0;

(b) ŝT
k Hk ŝk ≤ 0;

(c) for every x∗ ∈ R
n, with ∇ f (x∗) = 0 and ∇2 f (x∗) �� 0, there exist σ > 0 and

ε̃ > 0 such that if ‖xk − x∗‖ ≤ σ , then ŝT
k Hk ŝk ≤ −ε̃.

Assumption 2 generalizes the properties of the negative curvature directions pro-
posed in literature, for defining minimization algorithms globally converging towards
second order stationary points (see, for example [5,4,14,17]).

Now we can consider the following Scheme 2 including ŝk .

Scheme 2

Data: let d̄k and s̄k be directions given by (2.3)-(2.5) of Scheme 1,
let ŝk be a direction satisfying Assumption 2.

Compute:

dk = d̄k

sk =
{

s̄k + ŝk, if (s̄k + ŝk)
T Hk(s̄k + ŝk) < 0,

s̄k otherwise.
(2.15)

If q(xk, dk) ≤ q(xk, sk) choose the direction dk .
If q(xk, dk) > q(xk, sk) choose the direction sk .
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The following proposition describes the properties of the directions computed by
Scheme 2.

Proposition 2.2 Let us assume that the directions dk and sk are computed by Scheme 2.
Then,

(i) there exist positive constants ĉ1 and ĉ2 such that

max{‖dk‖, ‖sk‖} ≤ ĉ1, (2.16)

and

if dk is chosen then gT
k dk ≤ −ĉ2‖gk‖2, (2.17)

if sk is chosen then gT
k sk + 1

2
sT

k Hksk ≤ −ĉ2‖gk‖2; (2.18)

(ii) for every x∗ ∈ R
n, with ∇ f (x∗) = 0 and ∇2 f (x∗) �� 0, there exist σ > 0 and

ε̃ > 0 such that if ‖xk − x∗‖ ≤ σ , then

gT
k sk + 1

2
sT

k Hksk < − ε̃

4
.

Proof As regards (i), relation (2.16) follows directly from Proposition 2.1 and
Assumption 2.

Now, to prove (2.17) and (2.18) we first consider the case |p0
T Hk p0| < ε‖p0‖2

in Scheme 1. In this case dk = −gk and s̄k = 0, and two subcases must be consid-
ered. If q(xk,−gk) ≤ q(xk, sk) ≡ q(xk, ŝk) then (2.17) follows from the proof of
Proposition 2.1. On the other hand if q(xk,−gk) > q(xk, ŝk) then we have

gT
k sk + 1

2
sT

k Hksk =gT
k ŝk + 1

2
ŝT

k Hk ŝk < −‖gk‖2+ 1

2
gT

k Hk gk ≤−
(

1 − 1

2
ε

)
‖gk‖2,

so that (2.18) holds with ĉ2 = 1 − ε/2.
Let us consider now the case |p0

T Hk p0| ≥ ε‖p0‖2 in Scheme 1. If q(xk, dk) ≤
q(xk, sk) then the Scheme 2 and the Assumption 2 yield:

gT
k dk + 1

2
dT

k Hkdk ≤ gT
k sk + 1

2
sT

k Hksk ≤ gT
k s̄k . (2.19)

Moreover, since the directions d̄k and s̄k are computed in Scheme 1, it is possible to
repeat the arguments of Proposition 2.1. In particular, recalling (2.11), relation (2.19)
yields
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gT
k dk + 1

2
dT

k Hkdk = gT
k d̄k + 1

2
d̄T

k Hkd̄k = 1

2
gT

k d̄k ≤ gT
k s̄k,

from which, using (2.10)

3

2
gT

k d̄k ≤ gT
k (d̄k + s̄k) ≤ −ĉ2‖gk‖2, (2.20)

so that (2.17) holds with ĉ2 = c̃2.
If q(xk, sk) < q(xk, dk), since dk = d̄k and the direction d̄k is given by (2.4), we

can use again (2.11) to obtain

gT
k sk + 1

2
sT

k Hksk <
1

2
gT

k d̄k; (2.21)

then, by the definition of sk

1

2

[
gT

k sk + 1

2
sT

k Hksk

]
<

1

2
gT

k s̄k . (2.22)

Adding term to term (2.21) and (2.22), recalling again (2.10), we obtain:

3

2

[
gT

k sk + 1

2
sT

k Hksk

]
<

1

2
gT

k (d̄k + s̄k) < −1

2
c̃2‖gk‖2, (2.23)

which yields (2.18) with ĉ2 = c̃2/2.
The proof of (ii) easily follows from (2.6) and Assumption 2. In fact, (2.6) ensures

that for every stationary point x∗ of f (x), there are neighborhoods where the norm
of s̄k is sufficiently small. On the other hand, Assumption 2 implies that the negative
scalar ŝT

k Hk ŝk is bounded away from zero in a sufficiently small neighborhood of
the stationary point x∗, which does not satisfy the second order necessary conditions.
Therefore we can conclude that for such stationary points there exists sufficiently
small σ > 0, such that if ‖xk − x∗‖ ≤ σ , then from Assumption 2

gT
k sk + 1

2
sT

k Hksk < − ε̃

4
.
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3 The adaptive linesearch algorithm

In this section, we describe our new algorithmic framework, which uses the search
directions dk and sk computed in Sect. 2. We propose at the outer iteration k an
Adaptive Linesearch Algorithm (ALA), in which the globalization strategy is tailored
on the local curvatures of f (x). The relevant steps of algorithm ALA are summarized
in the following points:

Computation and choice of the search direction: We compute at the current iterate xk

the pair of search directions dk and sk , according with either Scheme 1 or Scheme 2.
The first direction dk is given by a linear combination of conjugate vectors, which
are positive curvature directions for f (x) at xk . It can be regarded as a Newton-type
direction. On the other hand, the vector sk is a negative curvature direction for f (x)

at xk , which contains relevant information on the subspace of non-convexity of f (x)

at xk . Then, a test based on a quadratic model of f (x) is used to select either dk or
sk . Observe that to generate dk and sk , the use of the Conjugate Gradient has two
advantages with respect to the Lanczos process. First, the CG is slightly cheaper;
then, it provides directly a set of conjugate directions, while the Lanczos process
would require an additional computation.
Computation of the new point along the positive curvature direction: When the
Newton-type direction dk is selected by the test, we investigate whether xk is in a
region where the superlinear convergence rate holds for dk (i.e. ‖dk‖ decreases at a
suitable rate). In this case, the unit stepsize is desirable for dk [1]. Thus, we adopt
a nonmonotone strategy to allow the acceptance of the unit stepsize along dk , as
frequently as possible [13].
Computation of the new point along the negative curvature direction: In case
the negative curvature direction sk is selected by the test, a stepsize is computed by
a monotone linesearch, which includes the negative term sT

k Hksk (see also [16]).
In order to compute stepsizes which take advantage of the second order descent
property of negative curvature directions, we also include extrapolation along sk .

For the sake of simplicity, we prefer to give here an informal description of some
quantities used in Algorithm ALA. We defer the interested reader to [3], for a complete
and rigorous description of both the Algorithm ALA and its theoretical properties.
Similarly to [13], in algorithm ALA the objective function is not evaluated at any iter-
ate xk ; anyway, it is computed at least once on any N iterations. In addition, when
linesearch is performed at iteration k along the search direction dk , then the objective
function values on the trial points are not compared with f (xk). Indeed, they are com-
pared with the largest value of the objective function, over the last M iterates before
k in which it was computed.
On this guideline, at iteration k we denote by � the largest iteration index, not exceed-
ing k, where f is evaluated. Moreover, we use f M

� to indicate the largest value of the
objective function, over the last M iterates before k in which it was computed (see
also [13]).

According with the latter notation we propose the following algorithm ALA.
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ALA (Adaptive Linesearch Algorithm)

Step 0. Choose x0 ∈ R
n, β ∈ (0, 1), �0 > 0, δ ∈ (0, 1), N > 0, M ≥ 0,

µ ∈ (0, 1
2 ).

Set k = � = 0, � = �0.
Step 1. Computation and choice of the search direction.

If direction sk is computed and chosen then execute Step 2, else execute Step 3.
Step 2. Linesearch along the negative curvature direction.

Step 2.1. Check on the function.
i. If k �= � compute f (xk);
ii. if f (xk) ≥ f M

� , backtrack to x� and go to Step 1, else set � = k;
Step 2.2. Monotone linesearch.

i. If f (xk + sk) ≤ f (xk)+µ
(
σk gT

k sk + 1
2 sT

k Hksk
)
, set αk = βh, where

h is the largest non-positive integer such that

f (xk + αksk) ≤ f (xk) + µ

(
αk gT

k sk + 1

2
α2

k sT
k Hksk

)
(3.1)

f

(
xk + αk

β
sk

)
> f (xk)+µ

(
αk

β
gT

k sk + 1

2

(
αk

β

)2

sT
k Hksk

)
(3.2)

else set αk = βh, where h is the smallest positive integer such that
(3.1) holds.

ii. Set xk+1 = xk + αksk , k = k + 1, � = k and go to Step 1.
Step 3. Linesearch along the Truncated Newton direction.

Step 3.1. Function control every N steps.
i. If k = � + N compute f (xk);
ii. if f (xk) ≥ f M

� , backtrack to x� and go to Step 1, else set � = k.
Step 3.2. Test for acceptance.

If ‖ dk ‖≤ �, set xk+1 = xk + dk, k = k + 1, � = δ� and go to
Step 1,
else,

A. if k �= � compute f (xk);
B. if f (xk) ≥ f M

� , backtrack to x� and go to Step 1, else � = k.
Step 3.3. Nonmonotone linesearch.

(a) Set αk = βh where h is the smallest nonnegative integer such that

f (xk + αkdk) ≤ f M
� + αkµgT

k dk, (3.3)

(b) set xk+1 = xk + αkdk , k = k + 1, � = k and go to Step 1.

Now we complete this section by reporting the main convergence results relative
to the algorithm ALA.
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Theorem 3.1 Suppose the algorithm ALA generates the sequence {xk}.
(a) If the search directions are computed by Scheme 1 then, either an integer h ≥ 0

exists such that ∇ f (xh) = 0, or the sequence {xk} is infinite, every limit point
x∗ belongs to L0 and satisfies the relation ∇ f (x∗) = 0.

(b) If the search directions are computed by Scheme 2 then, either an integer h ≥ 0
exists such that ∇ f (xh) = 0 and ∇2 f (xh) � 0, or the sequence {xk} is infinite
and every limit point x∗ satisfies the relations ∇ f (x∗) = 0 and ∇2 f (x∗) � 0.

Proof The main ideas in the proof of this theorem, along with some intermediate
lemmas, use the reasoning in the papers [8,13]. For brevity’s sake we omit the proofs
and again defer the reader to [3]. 	


4 Implementation issues and numerical results

We report here a numerical experience with our algorithm ALA on a set of standard test
problems from the literature. We applied the algorithm ALA in order to generate the
sequence {xk}. In the practical implementation of ALA x0 is the starting point proposed
in the literature. Moreover, in ALAwe set the parameters β = 0.5, �0 = 103, δ = 0.9,
N = 20, M = 100, µ = 10−3, and in the procedure CG_gen we set ε = 10−8. We
considered the test set from CUTEr collection [9] proposed in [11], discarding the test
problems with too few unknowns (< 49). Anyway, we included some test functions
with a number n of unknowns in the range 50 ≤ n ≤ 500, since they are considered
pretty difficult test problems. The list of our test problems and the relative number of
unknowns is reported in Table 1.

Table 1 List of our test problems from CUTEr [9]

ARGLINA 200 ARGLINB 200 ARGLINC 200 ARWHEAD 5000 BDQRTIC 5000

BROWNAL 200 BRYBND 5000 CHAINWOO 4000 CLPLATEA 9900 CLPLATEB 4970

CLPLATEC 4970 COSINE 10000 CRAGGLVY 5000 CURLY10 10000 CURLY20 10000

CURLY30 1000 DIXMAANA 9000 DIXMAANB 9000 DIXMAANC 9000 DIXMAAND 9000

DIXMAANE 9000 DIXMAANF 9000 DIXMAANG 9000 DIXMAANH 9000 DIXMAANI 9000

DIXMAANJ 9000 DIXMAANK 9000 DIXMAANL 9000 DIXON3DQ 10000 DQDRTIC 5000

DQRTIC 5000 EDENSCH 10000 EG2 1000 EIGENALS 2550 EIGENBLS 2550

EIGENCLS 2652 ENGVAL1 10000 EXTROSNB 1000 FMINSRF2 5625 FMINSURF 49

FREUROTH 5000 GENROSE 500 HYDC20LS 99 LIARWHD 5000 LMINSURF 5329

MANCINO 100 MOREBV 5000 MSQRTALS 1024 MSQRTBLS 1024 NCB20 5010

NCB20B 5000 NLMSURF 5329 NONCVXU2 5000 NONCVXUN 5000 NONDIA 5000

NONDQUAR 5000 NONMSQRT 100 ODC 4900 PENALTY1 1000 PENALTY2 200

PENALTY3 120 POWELLSG 5000 POWER 100 QUARTC 5000

RAYBENDL 2046 RAYBENDS 2046 SBRYBND 500 SCHMVETT 5000 SCOSINE 5000

SCURLY10 100 SCURLY20 100 SCURLY30 100 SENSORS 100 SINQUAD 10000

SPARSINE 5000 SPARSQUR 10000 SPMSRTLS 4900 SROSENBR 5000 SSC 4900

TESTQUAD 5000 TOINTGSS 5000 TQUARTIC 5000 TRIDIA 5000 VARDIM 200

VAREIGVL 50 WOODS 10000
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We coded ALA in Fortran 90 (Compaq Visual Fortran) and we used a Pentium
4, 2.53 Ghz, 1 Gb RAM, to perform the computation. For all the algorithms in our
numerical experience we set the following limits: 1,800s (1/2 hour) CPU-time, 100,000
outer iterations or function evaluations, 300,000 inner iterations. The stopping crite-
rion in the iterative scheme CG-gen is the Nash-Sofer rule in [19]. However, based
on our experience, we reformulated the latter rule and considered:

• the possible nonconvexity of the objective function;
• the possible conjugacy loss.

On this purpose, in order to cope with the nonconvexity of f (x), the Nash-Sofer
stopping criterion is modified as

∣∣∣∣q(xk, di ) − q(xk, di−1)

q(xk, di )/ i

∣∣∣∣ ≤ γ, γ ∈ (0, 1). (4.1)

In addition, observe from (2.11) that dT
i Hkdi + gT

k di = 0 and gT
k di = 2q(xk, di ), so

that

2q(xk, di )=gT
k di =gT

k di − 2(dT
i Hkdi + gT

k di )=−2dT
i Hkdi − gT

k di =−q̃(xk, di ).

Thus, the criterion (4.1) can be replaced by

∣∣∣∣ q̃(xk, di ) − q̃(xk, di−1)

q̃(xk, di )/ i

∣∣∣∣ ≤ γ, γ ∈ (0, 1), (4.2)

and since q̃(xk, di ) = 2dT
i Hkdi + gT

k di = 3/2dT
i Hkdi + q(xk, di ), from (4.1) and

(4.2) we have

∣∣∣∣∣
[q(xk, di ) − q(xk, di−1)] − 3

2 [gT
k di − gT

k di−1]
q(xk, di ) − 3

2 gT
k di

∣∣∣∣∣ i ≤ γ, γ ∈ (0, 1), (4.3)

which is the criterion we used. We remark that (4.3) is theoretically equivalent to (4.1)
in exact arithmetic. However, on our test set when conjugacy loss is experienced in
practice, (4.3) performs much better. The latter result may be interpreted as follows.
When i increases, the conjugacy loss may seriously affect the quadratic model used
in the test (4.1). In (4.3) (see Proposition 2.2) we monitor the decrease of both the
quadratic model and the directional derivative of the current Newton-type direction
di , in order to deflate the conjugacy loss.

For LANCELOT B and the Lanczos-based algorithm we adopted the stopping cri-
terion on inner iterations (i.e. the truncation rule) respectively specified in [10] and
[14].

Finally, the direction ŝk in Scheme 2 may be computed as in [4] so that the the-
oretical assumptions on ŝk are satisfied (in addition, the latter choice of ŝk always
satisfies the condition (s̄k + ŝk)

T Hk(s̄k + ŝk) < 0 in Scheme 2). However, for practical
efficiency (see Fig. 1 for comparative results), we preferred to set sk = αN pN , where
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Fig. 1 (left) Detail of the performance profile and (right) complete performance profile, on the comparison
among three implementations of ALA. The negative curvature direction sk in the three implementations is
given by: (dn_first) sk = αN pN , where pN is the first conjugate direction computed by CG_gen, such that
pT

N Hk pN < 0; (dn + dn_best) sk = s̄k + ŝk as in Scheme 2, where ŝk is computed according with [4];
(dn_first + dn_best) sk = αN pN + ŝk , where again ŝk is computed as in [4]. Despite the theoretical results
in Sect. 2, a fast computation of the negative curvature direction (dn_first) is often a winning strategy. The
comparison refers to inner iterations

pN is the first conjugate direction computed by CG_gen, such that pT
N Hk pN < 0.

As remarked in [6], the latter choice is partially motivated by the fact that in the early
inner iterations the CG exploits the eigenspaces associated with the largest (in abso-
lute value) eigenvalues of Hk . Thus, the first conjugate directions collect significant
information on the local curvatures of the objective function.

The algorithms involved in our numerical experience stop (as in [10]) when

‖∇ f (xk)‖∞ ≤ 10−5.

Figures 2 and 3 report the performance profiles [2] of a comparison among LAN-
CELOT B, the curvilinear truncated Newton method in [14] and ALA. The profiles
compare the number of inner iterations (Fig. 2), and the time of computation (Fig. 3).
The legends in the figures also report the failures of each algorithm on the test set. All
the algorithms, in the profiles of Figs. 1, 2, and 3, fail on the eight problems: HYDC20LS,
RAYBENDL, RAYBENDS, SBRYBND, SCOSINE, SCURLY10, SCURLY20, SCURLY30. In addi-
tion, LANCELOT B fails on NONCVXUN, the Lanczos-based method fails on ARGLINB,
ARGLINC, NONCVXUN, and in Fig. 1ALA-(dn+dn_best) fails on the three problems
EIGENCLS, MSQRTBLS, NONCVXUN.

As regards Figs. 2 and 3, LANCELOT B always fails since the number of inner
iterations exceeds 300,000. The Lanczos-based method fails on the problem RAY-

BENDL, because a very small steplength was detected (linesearch failure), and on the
problem RAYBENDS, because the time limit was exceeded. Finally, also our proposal
ALA-(dn_first) fails on RAYBENDL and RAYBENDS because of a linesearch fail-
ure, while the other failures occur since the inner iterations exceed 300,000.
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Fig. 2 (left) Detail of the performance profile and (right) complete performance profile, on the comparison
among LANCELOT B, the curvilinear Lanczos-based code in [14] and ALA. Here, the negative curvature
direction sk used inALA is given by sk = αN pN , where pN is simply the first conjugate direction computed
by CG_gen, such that pT

N Hk pN < 0. The comparison refers to inner iterations

1 2 3 4 5 6 7 8 9 10
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Fig. 3 (left) Detail of the performance profile and (right) complete performance profile, on the comparison
among LANCELOT B, the curvilinear Lanczos-based code in [14] and ALA. As in Fig. 2, the negative cur-
vature direction sk used in ALA is given by sk = αN pN , where pN is simply the first conjugate direction
computed by CG_gen, such that pT

N Hk pN < 0. The comparison refers to the time of computation

The results seem to suggest that, on the test set adopted, the curvilinear stabiliza-
tion performs less efficiently than the schemes which adopt a strategy of alternating
directions.
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