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Abstract 
In this work we analyze and implement different Reinforcement Learning (RL) algorithms in 
financial trading system applications. RL-based algorithms applied to financial systems aim to 
find an optimal policy, that is an optimal mapping between the variables describing the state of 
the system and the actions available to an agent, by interacting with the system itself in order to 
maximize a cumulative return. In this contribution we compare the results obtained 
considering different on-policy (SARSA) and off-policy (Q-Learning, Greedy-GQ) RL 
algorithms applied to daily trading in the Italian stock market. We consider both computational 
issues related to the implementation of the algorithms, and issues originating from practical 
application to real stock markets, in an effort to improve previous results while keeping a 
simple and understandable structure of the used models. 
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1 Introduction

Starting from the Mid-Eighties of the past century, there has been an increasingly growing
employment of intelligent approaches for creating and developing innovative methods and
tools for financial problem-solving and decision-making. In particular, a large number of
such methods and tools has been devoted to the creation and development of systems for
automated capital management (for a survey of intelligent applications in finance since the
initial phase of their appearance, see [1]).

In this paper, we propose and apply some novel automated Financial Trading Systems
(FTSs) based on a self-adaptive machine learning approach generally known as Reinforce-
ment Learning (RL). In particular, we deeply investigate potentialities and the effectiveness
of automated FTSs based on the intelligent approaches State-Action-Reward-State-Action
(SARSA) (see for instance [19, 3]) and Q-Learning (QL) (see for instance [25, 3]), together
with its recent development Greedy-GQ (see [17]), which belong to the family of the RL
methodologies.

The above algorithms concern an agent dynamically interacting with an environment.
During this interaction, the agent perceives the state of the environment and takes an
action. The environment, on the basis of such an action, provides a negative or a positive
reward. This process allows the agent to heuristically detect a policy that maximizes a
cumulative reward over time (for details see Section 2). In our case, the agent is a FTS and
the environment is a financial market. The FTS, once perceived the state of the market,
decides to sell/buy an asset or to stay out of the market. In response, the market provides
a loss or a gain to the FTS. This permits the online detection of a trading strategy for the
maximization over time of a cumulative performance measure (for details see Section 3).

Prior to begin the above investigation, the following crucial matter has to be dealt with:
why developing trading strategies based on intelligent techniques and, in particular, on RL
methodologies? The answer needs some preliminary considerations concerning the refer-
ence theoretical frameworks through which one formalizes the functioning of the financial
markets.

According to the mainstream financial theory of the Efficient Market Hypothesis (EMH)
in its weak form, it is not possible to systematically make profitable trading in financial
markets. In fact, according to this theory, the economic agents acting in such markets are
fully rational, that is, through the law of the demand and the supply, they are able to
instantaneously and appropriately vary the prices of the financial assets simply on the basis
of the recent information. In this theoretical framework, the only source of (unpredictable)
variations of the prices of the financial assets, between two consecutive time instants, is



represented by the arrival of unexpected new information (for more details see for instance
[9]).

However, as common sense suggests and as behavioural finance substantiates, human
beings – and therefore economic agents – are often non fully rational when making decisions,
especially under uncertainty. In fact, since the Seventies of the past century, experimental
economists have documented several departures of the real investors’ behaviours from those
prescribed by the EMH. The main implication coming from these departures from the EMH
consists in the fact that financial markets are not so rarely inefficient, and consequently that
they, more or less frequently, offer possibilities of profitable trading.

Of course, as a matter of fact, sometimes the financial markets can be inefficient, it
is of some importance to give an answer to the question: how taking advantage of these
possibilities of trading? The answer depends on the chosen reference theoretical framework.
In our opinion, the currently most convincing attempt to reconcile the EMH with the
empirical departures from it is given by the so-called Adaptive Market Hypothesis (AMH)
(see for more details [13], [14], [15] and [16]). Following this novel theory, a financial
market can be viewed as an evolutionary environment in which different partly rational but
anyway intelligent “species” (for instance, hedge funds, market makers, pension funds, retail
investors, speculators and so on) interact among them in order to achieve a satisfactory,
not necessarily optimal, level of some measure of profitability. Note that, as these species
are partly rational, their adaptations to the various stimuli is neither instantaneous nor
immediately appropriate, and this generally does not imply the efficiency of the financial
market. Because of that, the AMH entails that�[f]rom an evolutionary perspective, the very
existence of active liquid financial markets implies that profit opportunities must be present.
As they are exploited, they disappear. But new opportunities are also constantly being created
as certain species die out, as others are born, and as institutions and business conditions
change� [13, p. 24]. So, coming back to the previous question, it seems reasonable that an
effective FTS has to be a new intelligent specie able to real-time interact with the considered
financial market, in order to learn its unknown and structurally time-varying dynamics, and
able to exploit this knowledge in order to real-time detecting profitable financial trading
policies.

Therefore, it is on the basis of the reference theoretical framework we have chosen (i.e.
the AMH), and of the features of the FTS we have required, that in this paper we resort to
the self-adaptive machine learning methodology-type approach known as RL for developing
automated intelligent FTSs. This approach is also known as Neuro-Dynamic Programming
(see for instance [5]) and Dynamic Programming Stochastic Approximation (see for instance
[11]). More specifically, we consider the RL methodology to create and develop automated
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FTSs as it can be viewed as a stochastic optimal control problem solver that has to discover
the optimal financial trading strategies.

Note that QL, Greedy-GQ and SARSA methodologies do not provide optimal solutions
but good near-optimal ones. So, last matter to tackle: why not resorting to more classical
stochastic dynamic programming methods guaranteeing the achievement of optimal solu-
tions? Generally speaking, the latter typology of methods needs the precise description
of the probabilistic features of the investigated financial markets. But, as we state below,
once chosen AMH as reference theoretical framework, the dynamics of financial markets
are unknown and structurally time-varying, from which the impossibility of providing such
a required precise description. Differently, �RL does not need apriori knowledge of the
transition probability matrices� [11, p. 199].

The remainder of the paper is organized as follows. In the next section, we describe
the background of RL theory which QL, Greedy-GQ and SARSA are based on. In Section
3 we present our implementations of the FTSs based on the aforementioned algorithms
and consider the problem of the description of the financial environment state and of its
implications in terms of differences of the considered learning approaches. In Section 4 we
analyze the results obtained by applying the developed FTSs to several stocks of the Italian
FTSE Mib market. Finally, in Section 5 we give some final considerations.

2 Reinforcement learning background

Reinforcement Learning (see [3]) can be described as a class of machine learning solution
methods developed to find optimal actions in a subset of possible choices for the current
state of the system. The state is determined interacting over time with a given framework,
in order to maximize a reward which can depend on future states of the framework itself.
Actually, RL considers problems where the following elements can be identified: (i) the
agent, which is a learning decision maker, (ii) the environment the agent interacts with in
subsequent time steps, (iii) a set of possible actions to choose among at each time step, (iv)
a feedback signal, namely the reward, that the environment awards responding to actions
chosen by the agent. To formally describe the problems that RL methods aim to solve, the
theory of finite Markov Decision Processes (MDPs) (see [18]) needs first to be considered.

The interaction between the agent and the environment occurs at finite time steps
t = 0, 1, 2, . . . , and at each time step t the agent is given a description of current environment
state St ∈ S, being S the set of all possible states. The agent then selects an action
At ∈ A(St) ⊂ A among the possible ones (i.e. A(St)) in the current state, so that at the
subsequent time step t+ 1 it receives both a reward Rt+1 ∈ R ⊂ R and the new description
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of environment state St+1.

Agent

Environment

Action AtNew state St+1 Reward Rt+1

The next assumption holds within the current paper.

Assumption 2.1 The sets S,A and R have a finite number of elements. Then, random
variables Rt, St have a discrete probability distribution conditioned only on preceding state
and action, i.e.

p(s′, r|s, a) := P
[
St+1 = s′, Rt+1 = r|St = s,At = a

]
, (1)

which expresses the Markov property for the states in a MDP.

A key feature of RL methods is the reward hypothesis: that is, the agent’s objective is
simply to maximize some cumulative amount of the rewards it receives over time. The most
common formalization of this hypothesis is obtained by the introduction of the discounted
return

Gt :=
∞∑
k=0

γkRt+k+1 (2)

where 0 ≤ γ ≤ 1 is the discount rate.
Indeed, to select how relevant is for the agent a specific action in a given state, the

majority of RL algorithms computes action-value functions based on expected discounted
returns. Since future rewards are also determined on the base of future actions, action-value
functions are defined in terms of rules (namely policies), that assign at every time step the
probability of choosing an action given a state. That is, given s as in (1), a policy π(a|s)
is a discrete probability distribution over A(s) for every s ∈ S, and the corresponding
action-value function qπ(s, a) is defined as (see (2))
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qπ(s, a) := Eπ [Gt|St = s,At = a] (3)

where the expected value Eπ is meant to be computed given that the agent follows the
policy π after choosing a ∈ A(s).

Using the fact (see (2)) that Gt = Rt+1 + γGt+1, it is easy to prove (see also [3])
that action-value functions satisfy the following recursive relation between the value of the
current state-action pair (i.e. (s, a)) and the possible subsequent pair (s′, a′), i.e.

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)

r + γ
∑

a′∈A(s′)
π(a′|s′)qπ(s′, a′)

 . (4)

Equation (4) is the so called Bellman equation for qπ(s, a), and for finite MDPs has a unique
solution (see also [4]).

The goal of a RL algorithm is to find an optimal policy π′, considering the partial order
induced on policies by defining π′ � π if and only if vπ′(s) ≥ vπ(s), for every s ∈ S, where

vπ(s) =
∑

a∈A(s)
π(a|s)qπ(s, a).

All optimal policies have the same optimal action-value function, which is given by q∗(s, a) =
maxπ qπ(s, a). Such a function satisfies the following special form of Bellman equation (see
also [4])

q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γ max

a′∈A(s′)
q∗(s′, a′)

]
, (5)

being v∗(s) = maxπ
∑
a∈A(s) π(a|s)qπ(s, a) = maxa∈A(s) q∗(s, a). Equation (5) yields actu-

ally a system of equations of cardinality |S||A| that can in principle be solved if the dynamic
conditioned probability p(s′, r|s, a) of the MDP is known. If q∗(s, a) is given, then the opti-
mal policy would be the greedy one with respect to the optimal action-value function, that
is the one such that, for each state s ∈ S, an action a with a ∈ arg maxa∈A(s) q∗(s, a) is
selected.

However, the explicit determination of the optimal action-value function is often of dif-
ficult computation. Indeed, even if the dynamics of the MDP is known and the Markov
property holds, then |S||A| could be so large to discourage the direct computation of q∗(s, a).
RL methods tackle this problem by approximately determining (sub-)optimal action-value
functions, using information the agent obtains by direct interaction with the environment,
without assuming a complete knowledge of a model for the probability distribution of re-
wards and states of the system.
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In order to better understand how RL algorithm works, it is useful to recall some
ideas from Dynamic Programming (see [6]). Assuming that we have a finite MDP (i.e.
Assumption 2.1 holds) and its dynamics p(s′, r|s, a) is known, suppose we need to evaluate
the action-value function corresponding to a given policy π. Then, it is possible to prove
(see [12]) that starting from an arbitrary approximation q0(s, a), the iterative sequence
{qk(s, a)}k=0,1,... can be computed such that

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

π(a′|s′)qk(s′, a′)
]
, (6)

and under suitable assumptions {qk(s, a)} will converge to a unique fixed point, which is
qπ(s, a) as by Bellman equation (4). Once qπ(s, a) has been determined, we can improve
current policy π by replacing it with π′(s, a), which is the greedy one with respect to qπ(s, a);
then, we evaluate again its action-value function, and so on. This procedure is called policy
iteration, and under suitable assumptions it will converge to an optimal policy and to the
corresponding action-value function. Indeed, it is possible to prove that the described policy
evaluation and the resulting improvement steps can be combined in the following unique
iterative procedure involving action-value functions

qk+1(s, a) =
∑

s′∈S,r∈R
p(s′, r|s, a)

[
r + γ max

a′∈A(s′)
qk(s′, a′)

]
. (7)

The iteration (7) is expected to converge to the optimal action-value function, from which
we can obtain the optimal greedy policy.

RL methods try to extend this approach to more general problems, where a probabilistic
description of the environment is unknown and its dynamics is not given. Nevertheless, RL
replaces it using the experience obtained from sample sequences of actual or simulated
states, actions, and rewards S0, A0, R1, A1, R2, . . . In this contribution we will focus our
attention on some methods belonging to RL Temporal-Difference (TD) family (see [22]),
which can be seen as a combination of Monte Carlo RL methods (see [21]) and Decision
Processes.

Since by (3) action-value functions represent the expected value of discounted returns,
we may consider their estimates Q(s, a) at each time step t. Then, Q(s, a) can be updated
using experienced or simulated rewards, in order to average them over a finite time horizon
(see [3]), i.e.

Q(St, At)← Q(St, At) + αt [Gt −Q(St, At)] , (8)

where Q(St, At) is the current estimate of q(s, a) for encountered state St and chosen ac-
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tion At, Gt is the computed return (average of rewards) after time t, and αt is a step-
size parameter which is called the learning rate of the algorithm. This is what is usu-
ally done in Monte Carlo RL algorithms, and it requires that a complete list (or episode)
St, At, Rt+1, St+1, At+1, . . . , ST−1, AT−1, RT is available in order to compute Gt. Conversely,
TD algorithms simplify this aspect by considering only the immediate reward and the value
of subsequent experienced states and actions, in order to update the current estimate of
the action-value function. In particular, the first TD algorithm considered in this work,
SARSA, uses the following update rule

Q(St, At)← Q(St, At) + αt [Rt+1 + γQ(St+1, At+1)−Q(St, At)] , (9)

where actions at each time step t are chosen using an ε-greedy policy with respect to Q,
that is, At ∈ arg maxa∈A(St)Q(St, a) with probability 1 − εt, and a is randomly chosen in
A(St) with probability εt, being 0 < εt << 1 a step-size parameter which expresses the
balance between exploration and exploitation in the considered algorithms. The second TD
algorithm we considered here is QL, which uses the slightly different update rule

Q(St, At)← Q(St, At) + αt

[
Rt+1 + γ max

a∈A(St+1)
Q(St+1, a)−Q(St, At)

]
. (10)

Since in QL actions are again selected according to an ε-greedy policy with respect to Q,
the difference between it and SARSA is that the former is an on-policy control algorithm,
i.e. the estimates of Q are updated using a correction factor given by actions selected using
the current policy. On the contrary, QL is an off-policy control algorithm, meaning that
the correction factor is determined using an action possibly different from the actual chosen
one.

It is possible to prove that under suitable assumption both algorithms converge to an
optimal action-value function, provided that all state-action pairs are visited an infinite
number of times and suitable conditions on the parameters αt and εt are satisfied (see
[20] for technical details). However, the first requirement is hardly fulfilled when dealing
with large state spaces. Indeed, the real bounds on computational resources at disposal,
in terms of memory needed to store large arrays of Q(s, a) values and of time needed to
evaluate them, prevent from a direct application of the so called tabular version of these
two algorithms. In order to tackle this issue, an alternative approach is the one provided by
generalization from experience through the use of approximations q̂(s, a,w) of action-value
functions, where w ∈ Rd is a vector of weights which becomes the vector of unknowns of
an optimization procedure.
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Indeed, the Mean Squared Value Error to assess the approximation q̂(s, a,w) of the true
action-value function qπ(s, a) of a given policy π, can be defined as

V E(w) ≡
∑
s∈S

µ(s)
∑

a∈A(s)
π(a|s) [qπ(s, a)− q̂(s, a,w)]2 , (11)

where µ(s) is some distribution (so that µ(s) ≥ 0,
∑
s µ(s) = 1) over S. RL approximate

solution methods aim to find a good local minimum w∗ for V E(w) by using Stochastic
Gradient-Descent methods (SGD), whose update rule at each time step is

wt+1 = wt + α [Ut − q̂(St, At,wt)]∇wq̂(St, At,wt), (12)

where Ut is the current estimate of qπ(St, At) and α [Ut − q̂(St, At,wt)] represents the step-
size. Convergence properties for SGD depend on the kind of estimator Ut, on the type of the
functional approximator q̂(s, a,w) used, and on the fact that the control algorithm used is an
on-policy or off-policy one (see [3]). In this work we will consider the linear function approxi-
mation, that is q̂(s, a,w) = wᵀx(s, a) =

∑d
i=1wixi(s, a), where xi : S → R are called feature

representations of state-action couples (s, a). In this case clearly ∇wq̂(s, a,w) = x(s, a), so
that combining (12) with the idea in SARSA updating rule (9), we obtain

wt+1 ← wt + α [Rt+1 + γwᵀ
tx(St+1, At+1)−wᵀ

tx(St, At)] x(St, At) (13)

and analogously

wt+1 ← wt + α

[
Rt+1 + γ max

a∈A(St+1)
wᵀ
tx(St+1, a)−wᵀ

tx(St, At)
]

x(St, At) (14)

for QL.
It is possible to prove (see [24]) that, assuming technical conditions on the rewards,

features, and the iterative decrease of the step-size parameters, the iteration (13) converges
to a fixed point w̃ where V E(w̃) is within a bounded expansion of the lowest possible
error. Unfortunately, the same theoretical results do not hold in general for off-policy
control algorithms with linear approximation, since divergence of the norm associated with
the vector of weights could occur (see [2]). For these reasons recently a new algorithm
has been introduced, namely Greedy-GQ, which is a generalization of QL using the linear
approximation case and keeps the desired convergence properties. This algorithm needs
to store values for an additional sequence of weights θt ∈ Rd and an additional step-size
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parameter βt, so that its updating rules are the following

δt+1 ←
[
Rt+1 + γwᵀ

tx(St+1, a
′)−wᵀ

tx(St, At)
]

(15)

wt+1 ← wt + αt [δt+1x(St, At)− γθᵀ
t x(St, At)] x(St+1, a

′) (16)

θt+1 ← θt + β [δt+1 − θᵀ
t x(St, At)] x(St, At) (17)

with a′ ∈ arg maxa∈A(St+1) wᵀ
tx(St+1, a). Note that by setting θ0 = 0 and βt = 0 the

algorithm (15)-(17) reduces to QL.

3 Algorithms and Trading System

In this section we present the details of the applications of the three algorithms described in
the previous section, to the development of automatic trading systems operating on Italian
FTSE Mib stock market. The source of the data we used is the Bloomberg© database (see
[7]), from which we collected daily close prices for five major companies (Enel, Generali,
Intesa, Tim, Unicredit) from January 2000 to October 2018. Our aim is to improve the
results obtained in [8] while keeping a similar simple structure of both the state space
representing the stock market and the trading actions available.

Then we assume that at every time step t the trading system can invest all of its current
capital opening or keeping a short or long position on a single stock, or it can close it and
stay out of the market. This is formalized by setting A(St) = A = {−1, 0, 1} for each time
t and each state St. Actions are chosen according to an ε-greedy policy with respect to the
current approximation of the action-value function for the selected algorithm, with random
ones picked from an uniform probability distribution on A.

Feature representation of environmental states is a crucial topic for RL linear methods
and can have a relevant impact on the efficiency of the algorithm. In this contribution we
generalize the approach used in [8] by considering features not only for a given number n of
past logarithmic returns of the considered stock price, but also for the current performance
of the trade in action.

Formally, we first consider the vector y(St, At) ∈ Rn+1 define by

yi(St, At) = φ

(
ln
(

Pt−n+i
Pt−(n+1)+i

))
, for i = 1, . . . , n (18)

yn+1(St, At) = φ(PLt) (19)

where PLt = 0 if At−1 = 0, otherwise it is the logarithmic return of the current trade, and
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φ(x) is the same real-valued logistic function used in [8], that is

φ(x) = a

1 + be−cx
− d. (20)

Then, for the actual feature vector x(St, At) we adopt a block representation commonly
used in RL algorithms (see [10]). That is, the vector y(St, At) is copied to one of the three
slots of a zero vector with |A| · (n+ 1) = 3 · (n+ 1) elements according to the following rule:

x(St, At) =


[
y(St, At) 0n+1 0n+1]ᵀ , if At = −1[
0n+1 y(St, At) 0n+1]ᵀ , if At = 0[
0n+1 0n+1 y(St, At)

]ᵀ
, if At = 1

(21)

where 0n+1 is the null vector in Rn+1.
For the reward Rt+1 we considered two choices; the first one, as in [8] is

Rt+1 = µ(gl,t+1)
σ(gl,t+1) Sharpe Ratio (22)

where µ and σ are respectively the sample mean and standard deviation of the rewards in
the last l trading days.

The second one is

Rt+1 = µ(gl,t+1)
1 + maxDDl,t+1

Calmar Ratio (23)

where maxDDl,t+1 is the maximum drawdown, that is the difference between the maximum
value of the equity gained by the trading system in the last l trading days and the subsequent
minimum value.

Before going into the detailed presentation of the actual implementation of the used
algorithms and of the results obtained, we want to highlight some differences of our modeling
with respect to the one provided in [8]. First, one possible main drawback of the latter is
that the average annual number of transactions of the algorithms is quite low. This could
be related to the relative importance given to weight of the current trading action by the
special form on linear approximation used in that contribution. Our choice (21) aims to a
greater flexibility with respect to this perspective.

Second, in all our rests we used the same neutral initialization of the action-value func-
tion: that is we set the weights w = 0 for the linear version of SARSA, QL and Greedy-GQ
algorithms (13)-(17). This is another difference as compared to the approach used in [8],
where a random initialization has been used. Indeed, we believe that on one hand the choice
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of ε-greedy actions is enough to introduce a significant diversity between the behavior of
algorithms in each run, which could be then exploited in order to select a single efficient
trading system. On the other hand, the random initialization is a source of some kind of
supervised information which could bias the algorithms towards some possibly not optimal
policy.

4 Data and results

A preliminary analysis on the data provided by Bloomberg© database has been conducted
by comparing them with the ones provided by another source of information (http://www.

investing.com) in order to exclude missing, duplicated or incorrect prices from the time
series, since this appears to negatively influence the performance of the used RL algorithms.

To keep into account transaction costs required for opening and closing each position, we
considered them as a percentage rate of 0.15% that diminishes the return obtained by the
current trading operation. As for the values of the parameters of the logistic transformation
(20), we set them to a = 2, b = 1, c = 102, d = 1 after some preliminary tests regarding the
impact of the value of c on the steepness of φ(x).

We then did a first analysis of the performance of the algorithms by running several
simulations for each algorithm in order to compare their performance with respect to the
choice of the step-size parameters, α, β, γ, ε. More specifically, we analyzed the difference
in the performance between setting them constant or decreasing over time according to the
required conditions to ensure the convergence of the algorithms. Indeed it is reasonable to
assume that the rewards in a noisy environment, as the stock market is, do not derive from
a stationary probability distribution. In this case it could be argued that there does not
exist a fixed optimal policy, instead it is changing over time, and the same apply obviously
to optimal action-value functions. Consequently, the algorithm needs to go on performing
exploratory actions (that means keeping εt constant) and learning and modifying action-
value functions (that means keeping αt and βt constant).

So, we first considered several possible values for α = β ∈ {0.05, 0.1, 0.15, 0.25, 0.1},
γ ∈ {0.5, 0.75, 0.975, 1}, ε ∈ {0.05, 0.1, 0.25, 0.5}, keeping fixed the values for n = 5 and l = 5
and we performed N = 1000 simulations for each combination of them and each algorithm
with the two reward metrics (22)-(23). Then, we selected the values of the parameters that
produce on average the best final equity value, namely α = β = 0.05, γ = 0.975, ε = 0.05.
Furthermore we compared the results obtained using this setting with the ones obtained
by imposing convergence-required decreasing values, that is αt = βt = 1

t , εt = 0.5
t . The

results are shown in Table 1 in terms of the ratio between averaged annual returns in the
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continuous learning algorithms and the convergent ones. Is it remarkable that we always
get best results with the constant choice of the step-size parameters, which confirms the
non-stationary based hypothesis on the distribution of rewards. Moreover, we highlight
that we have reported the result only for three of the considered stocks, since for the
remaining two ones the average equity obtained with decreasing step-size parameters was
lower then the initial capital. According to those results, we decided to adopt the continuous
learning setting, with the above determined constant values of the step-size parameters in
the subsequent analysis of the FTSs based on the three considered algorithms.

Table 1: Ratio between average annual returns in the continuous (α = β = 0.05, γ =
0.975, ε = 0.05) learning and convergent (αt = βt = 1

t , εt = 0.5
t ) algorithms.

Unicredit Intesa Tim
Sharpe QL 3.33 1.55 1.74

SARSA 3.06 1.43 1.66
Greedy-GQ 4.32 2.32 2.22

Calmar QL 3.15 1.65 2.05
SARSA 2.85 1.65 1.98
Greedy-GQ 4.51 2.47 2.75

One first question we have been able to get a positive answer for is the one related to the
effective learning capability of the algorithms. In figures 1-10 we show some examples of the
plots of respectively all and average equity lines for N = 5000 simulations of the algorithms
applied to the different stocks with an initial capital C = 100. It is possible to see that,
even with the presence of some periods with a drawdown and remarkable differences in the
final value of equity across the considered stocks, after around t = 2000 time periods all
the algorithms obtain a constantly increasing mean equity value. This behaviour can be
explained as if the algorithms need a training period of around t = 2000 time periods, after
which they effectively learn on average a sub-optimal policy.

Since however in every single simulation we get a possibly different policy, as the figures
of the equity lines for each simulation show, we then considered the issue of selecting a single
operational FTS on the basis of the different N actions selected at each time step t. The
approach we adopted consists in computing before the average value At =

∑N

i=1 Ai,t

N of the
actions taken at each time step in each run of the selected algorithm, and then to determine
the operative action Ãt on the basis that this value satisfies some criterion. In particular,
we considered two possibilities. For the first one we used a threshold based criterion:
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Figure 1: QL-based FTSs, Enel equity lines, Calmar Ratio, α = β = 0.05, γ = 0.975, ε =
0.05, n = 20, l = 5, N = 5000
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Figure 2: QL-based FTSs, Enel mean equity line, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 20, l = 5, N = 5000
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Figure 3: Greedy-GQ-based FTSs, Generali equity lines, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 5, l = 5, N = 5000
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Figure 4: Greedy-GQ-based FTSs, Generali mean equity line, Calmar Ratio, α = β =
0.05, γ = 0.975, ε = 0.05, n = 5, l = 5, N = 5000
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Figure 5: SARSA-based FTSs, Intesa equity lines, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 10, l = 5, N = 5000
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Figure 6: SARSA-based FTSs, Intesa mean equity line, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 10, l = 5, N = 5000
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Figure 7: Greedy-GQ-based FTSs, Tim equity lines, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 20, l = 5, N = 5000
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Figure 8: Greedy-GQ-based FTSs, Tim mean equity line, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 20, l = 5, N = 5000
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Figure 9: SARSA-based FTSs, Unicredit equity lines, Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, n = 20, l = 5, N = 5000
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Figure 10: SARSA-based FTSs, Unicredit mean equity line, Calmar Ratio, α = β =
0.05, γ = 0.975, ε = 0.05, n = 20, l = 5, N = 5000
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Ãt =


−1, if At ∈ [−1,−τ)

0, if At ∈ [−τ, τ ]
1, if At ∈ (τ, 1]

. (24)

where τ ∈ (0, 1). Another criterion we adopted is the following one: first we employ a
Student t-test of the null hypothesis that the sample data {Ai,t}Ni=1 are from a population
with mean equal to zero at a given significance level alpha. If the null hypothesis is accepted,
then we set Ãt = 0, otherwise Ãt = sgn(At). After some preliminary test to determine the
best values for τ and alpha, we set them respectively to τ = 0.05 and alpha = 5%.

In Tables 2-11 we show the results of the applications of these two criteria to all consid-
ered stocks, using both the Sharpe and Calmar ratio reward metrics, for different values of
the number of past returns n considered in the feature representation of the stock market
state and of the past l days considered in the computation of the rewards. In every table
for each algorithm we report the two values of the annual average return obtained by the
correspondent FTS: that is in the first row there is the one obtained using the threshold
based operative FTS, and in the second one the t-test based one. Although there are signif-
icant differences in the returns obtained for the different stocks, some general properties of
the FTSs can be remarked. First of all, it can be observed that there isn’t a reward metric
that is certainly better for each combination of n, l, stock, and FTS, while it appears that
the choice mostly depends on the considered stock.

Instead, with regards to the algorithms the FTS are based on, we notice that for each
stock the maximum return is obtained using the Greedy-GQ algorithm, regardless of the
reward metrics considered, except for the Enel S.p.A one where the best algorithm is the
SARSA one. Then, even though, as we have seen from Table 1, convergence conditions
on the step-size parameters don’t give better performances, nevertheless FTSs based on
the two algorithms for which a theoretical convergence property is established seems to
behave better than QL based one. This is confirmed when comparing the performances
of the FTSs for each stock and for each combination of reward metric, n, l, and operative
criterion used: for each stock we have 24 possible outcomes, for a total of 120 ones. Indeed,
SARSA based FTSs are better than QL ones in 89 occurrences, that corresponds to 74, 16%,
and Greedy-GQ based ones are better in 113 ones, that correspond to 94, 17%.
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Table 2: Enel S.p.A., Operative annual returns (%), Sharpe Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 10.64 7.64 12.94

10.33 7.91 12.86
10 9.33 9.48 16.59

8.89 9.44 16.61
10 5 14.40 11.66 14.09

15.18 11.56 14.26
10 11.39 7.36 10.75

11.97 7.17 10.70
20 5 18.04 14.56 15.16

18.57 14.84 15.44
10 12.99 7.78 13.78

13.57 8.65 13.66

Table 3: Enel S.p.A., Operative annual returns (%), Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 13.18 9.94 12.20

13.25 10.53 12.20
10 16.14 15.78 16.12

16.34 16.02 16.13
10 5 13.90 14.50 14.68

14.21 13.92 15.28
10 12.97 10.32 13.18

12.46 11.07 13.22
20 5 20.35 17.72 18.08

20.28 18.15 18.10
10 12.46 9.38 15.53

12.46 9.11 15.68

As for the choice of best values for n and l, we notice that the maximum return is
obtained in 7 out of 10 possible times using n = 20, so it appears that, despite the increase in
the dimension of the state space and the consequent impact on the approximation effort, the
more information about past returns is used, the best performance is achieved. This possibly
suggests that several past trading days are needed in order to obtain a representation of
the state space for which Assumption 2.1 is satisfied. There is instead not a clear rule for
the choice of the best value of l, even if it appears that when using a shorter history for the
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returns of the stocks (n = 5, 10), better results are obtained using l = 10: this can possibly
be seen as a sort of compensation between the information provided to the agent from
states and rewards. Finally, we remark that there are not statistically significant differences
between the performances obtained by FTSs based on the threshold criterion and the ones
based on the t-test.

Table 4: Generali S.p.A., Operative annual returns (%), Sharpe Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 20.15 14.74 20.80

20.37 15.20 20.72
10 19.67 14.93 21.31

19.50 14.60 21.58
10 5 20.03 19.26 21.18

19.72 18.87 20.65
10 18.91 9.72 14.82

19.02 9.74 14.57
20 5 16.53 22.73 23.31

16.06 22.41 23.59
10 10.84 13.11 23.44

10.36 13.67 23.91

Table 5: Generali S.p.A., Operative annual returns (%), Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 19.69 21.02 26.67

19.32 21.21 26.16
10 18.78 18.30 26.63

18.78 19.57 26.64
10 5 24.07 21.55 20.70

24.22 21.36 20.59
10 19.01 10.28 18.91

18.43 10.45 18.75
20 5 11.94 18.68 22.26

13.39 18.24 21.73
10 14.30 16.41 21.23

13.90 16.94 21.98
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Table 6: Intesa S.p.A., Operative annual returns (%), Sharpe Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 48,98 42,59 46,87

49,83 42,77 46,81
10 40,76 43,60 49,31

40,84 43,44 49,17
10 5 50,45 48,71 54,94

50,13 48,00 54,50
10 37,95 31,45 47,10

37,89 31,13 46,90
20 5 33,76 42,25 49,65

34,25 41,27 49,84
10 26,82 33,70 39,06

25,87 33,74 38,48

Table 7: Intesa S.p.A., Operative annual returns (%), Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 49.37 44.26 49.50

49.01 45.02 50.07
10 50.72 42.49 51.49

51.14 41.98 50.74
10 5 45.68 43.10 48.64

46.45 43.56 48.73
10 38.34 30.55 41.79

39.38 29.89 41.93
20 5 32.13 37.90 42.69

32.55 37.00 42.32
10 25.00 34.92 35.61

24.86 35.84 35.09

In Figures 11-13 we show some examples of the behaviour of the operative FTSs. Each
figure is composed of three panels: in the first one there is the daily end-of-day price of the
considered stock, in the second one there is the action undertaken by the FTS, and in the
third one there are both the gross (that is, without considering transaction costs), and the
net equity line obtained by the FTS. It can be seen that the FTSs are in general performing
a large number of operations,1 and this reflects on the fact that there is a large difference

1A switch of position from long to short and vice versa is counted as two operations.
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in plots between gross and net equity obtained by the FTSs. This is a clear difference with
respect to the behaviour of the FTSs analyzed in [8], where the average annual number of
operations was quite low, and confirms the greater flexibility of the choice (21) of the linear
approximation adopted in this contribution.

Table 8: Tim S.p.A., Operative annual returns (%), Sharpe Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 21.56 20.14 21.01

22.09 20.17 20.96
10 20.76 15.34 27.59

20.75 15.71 27.40
10 5 20.16 13.80 22.31

19.63 13.61 22.40
10 17.45 14.11 22.73

16.37 13.65 22.02
20 5 17.73 8.73 32.22

18.60 8.95 32.58
10 14.49 7.76 30.58

13.88 7.38 30.60

Table 9: Tim S.p.A., Operative annual returns (%), Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 25.93 19.35 19.70

26.28 19.71 19.71
10 20.70 20.60 29.59

20.63 20.85 29.52
10 5 19.54 14.80 23.98

18.94 14.29 23.74
10 17.56 20.03 21.89

17.40 19.65 21.76
20 5 15.87 6.66 30.18

16.42 7.04 31.27
10 9.87 4.31 25.16

10.66 4.28 25.58

As a final result, in table 12 we show the values of the maximal drawdown and of the
effective equity Calmar ratio for the FTSs which achieved the best annual average return for
each stock and for the two reward metrics (22) and (23). While one should expect that FTS
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which use the Calmar ratio based reward metric should give lower drawdown and better
effective Calmar ratio, it can be seen that in some cases this is not true, and generally the
maximum drawdown for all the FTSs is quite high. This suggests that in RL framework
the classical financial measures of risk should be considered with care when used as rewards
metrics.

Table 10: Unicredit S.p.A., Operative annual returns (%), Sharpe Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 64.74 63.98 62.32

64.76 63.08 62.99
10 34.91 37.49 65.79

36.99 36.05 65.81
10 5 60.11 58.43 68.77

59.51 61.05 68.59
10 46.20 35.56 61.43

45.58 36.23 61.86
20 5 68.86 64.42 78.51

69.29 64.61 79.51
10 51.08 29.04 74.19

50.33 29.96 75.06

Table 11: Unicredit S.p.A., Operative annual returns (%), Calmar Ratio, α = β = 0.05, γ =
0.975, ε = 0.05, τ = 0.05, δ = 0.15%, 5000 tests

n l SARSA QL Greedy-GQ
5 5 60.11 64.61 64.58

60.04 64.18 64.22
10 52.69 48.69 62.86

53.28 49.78 63.19
10 5 55.26 47.90 57.79

55.90 48.07 58.70
10 47.94 32.03 54.85

47.49 33.26 54.78
20 5 75.33 69.34 74.04

74.86 68.76 73.02
10 62.04 42.68 75.58

61.75 45.12 76.45

28



50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

t

12345 Price

G
re

ed
y-

G
Q

: S
to

ck
 p

ri
ce

, a
ct

io
ns

, e
qu

ity

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

t

-1

-0
.50

0.
51

Action

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

t

1234 Operational equity line

10
6

G
ro

ss
N

et

Figure 11: Greedy-GQ threshold-based FTS, Intesa S.p.A operative results, Calmar Ratio,
α = β = 0.05, γ = 0.975, ε = 0.05, n = 10, l = 5
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Figure 12: SARSA threshold-based FTS, Enel S.p.A operative results, Calmar Ratio, α =
β = 0.05, γ = 0.975, ε = 0.05, n = 20, l = 5
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Figure 13: QL t-test-based FTS, Unicredit S.p.A operative results, Calmar Ratio, α = β =
0.05, γ = 0.975, ε = 0.05, n = 20, l = 5
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Table 12: Maximal drawdown (%) and Calmar Ratio for the best FTSs obtained with the
two reward metrics for each stock

Sharpe Calmar
Stock Return maxDD Calmar Ratio Return maxDD Calmar Ratio
Enel 18.57% 41,83% 0.44 20.35% 40.01% 0.51
Generali 23.91% 36.84% 0.65 26.67% 39.76% 0.67
Intesa 54.94% 38.22% 1.44 51.49% 43.89% 1.17
Tim 32.58% 30.82% 1.06 31.27% 36.79% 0.85
Unicredit 79.51% 42.07% 1.89 76.45% 35.38% 2.16

5 Conclusions and future works

All the FTSs presented in this contribution obtain positive results, especially in terms of
the pure profitability, with differences mainly related to the specific stock they have been
applied to. In particular, FTSs based on the Greedy-GQ algorithm show the best results
in almost all considered cases. Generally, the results obtained show improvements with
respect to the ones obtained in [8], but they also introduce some questions that require
further investigation. The high number of annual operations carried out by the FTSs is a
possible drawback in the case of an increase in the percentage transaction cost in order to
compute also the effect of taxation in the profitability of the FTSs. Moreover, despite the
high annual rewards obtained, the presence of large drawdowns is a concern for investors.
In the future we aim to study the sensitivity of the performance of the FTSs with respect
to change in the reward metrics, in order to minimize the two aforementioned drawbacks.
Moreover, the role of the parameter c of the function φ(x), is another issue of interest for
future investigation. Indeed, choosing high values for c from one hand allows to obtain
a very steep increasing function, which increases the sensitivity of the algorithm to small
differences in the returns of stock prices. On the other hand, this suggests that an alternative
way to describe the state of the stock market could be the one that classifies every return
as a member of a finite set. Then, if the cardinality of this set is not too high, a tabular
version of the (9) or (10) could be more appropriate to solve the RL problem, and in the
future we are interested in comparing results obtained with this approach to the present
ones.
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