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Planar Conjugate Gradient Algorithm for Large-Scale
Unconstrained Optimization, Part 2: Application1,2
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Abstract. In this paper, we describe an application of the planar
conjugate gradient method introduced in Part 1 (Ref. 1) and aimed
at solving indefinite nonsingular sets of linear equations. We prove
that it can be used fruitfully within optimization frameworks; in par-
ticular, we present a globally convergent truncated Newton scheme,
which uses the above planar method for solving the Newton equa-
tion. Finally, our approach is tested over several problems from the
CUTE collection (Ref. 2).
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1. Introduction

In this paper, we consider the application of a conjugate gradi-
ent (CG) based algorithm (namely, Algorithm FLR) described in Part
1 (Ref. 1) within optimization frameworks. Algorithm FLR is a Krylov
subspace method (Ref. 3) for the iterative solution of indefinite and non-
singular linear systems. In particular, we adopt it for solving the Newton
equation

Hkd +gk =0, (1)
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where Hk =∇2f (xk) is the Hessian matrix and gk =∇f (xk) is the gradient
of a nonconvex function f :Rn →R, with f ∈C2(Rn) and n large. Equation
(1) arises frequently within large-scale optimization and in a wide range of
gradient methods (Ref. 4). In particular, we focus on the iterative appli-
cation of Newton-type methods, which are very popular algorithms. The
success of Newton-type methods is due mainly to their fast convergence
near the solution, along with reasonable use of resources (Ref. 4); indeed,
unlike the pure Newton method, they do not require second derivatives.

The above schemes attempt at solving iteratively the general optimi-
zation problem

min
x∈Rn

f (x), n large; (2)

then update the current iterate xk according to one of the relations

xk+1 =xk +αkdk, (3a)

xk+1 =xk +αkdk +βksk, (3b)

where the direction dk is an approximate solution (Newton-type direction)
of (1), while sk is a nonascent negative curvature direction (Ref. 5); i.e.,

sT
k Hksk ≤0,

gT
k sk ≤0,

which summarize the knowledge of f (x) on a concavity region near xk.

Newton-type algorithms employing relation (3a) can guarantee weaker
properties for the solution with respect to the use of relation (3b). More
exactly, Eq. (3b) is used in case we claim for the solution point x∗ to ver-
ify the second-order necessary conditions of optimality, i.e. ∇f (x∗)=0 and
∇2f (x∗)�0. On the other hand, by means of Eq. (3a), it is only possible
to converge to stationary points, which are not maximizers of f (x); see
Refs. 6–7. In this paper, we consider in Section 3 an iterative scheme cor-
responding to Eq. (3a).

The coefficient αk, βk in (3) are chosen according to a stabilization
technique [either a monotone one (Ref. 5) or a nonmonotone one (Ref. 8)],
which ensures the global convergence of the overall algorithm. Algorithms
which employ iteratively Eq. (3a) have been studied in Refs. 9–11; on the
other hand, methods designed according to the Eq. (3b) have been studied
in Refs. 12–14.

When n is large, the solution of (1) is often investigated by means
of a conjugate gradient based iterative method (Ref. 10); the efficiency in
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Table 1. Truncated Newton Algorithm TN for solving the Problem (2).

For k =0,1, . . . , repeat the steps below until convergence:
(a) Compute f (xk),∇f (xk).
(b) Verify a test for convergence on ‖∇f (xk)‖.
(c) Solve approximately (1), compute dk (gradient related) and possibly sk .
(d) Compute αk and possibly βk in (3) with a line search procedure.
(e) Update the iterate xk+1 according to (3).

solving (1) relies substantially on the possibility of using the same itera-
tive method for computing rapidly the directions dk and sk. Also, when
n is large, the convergence of the overall optimization method see for an
approximate solution of equation (1); see Refs. 9, 15. This is a well-known
result for Newton-type methods and a relevant issue within the so-called
truncated Newton methods. These are very general efficient schemes for
approaching the iterative solution of large-scale unconstrained optimiza-
tion problems (Ref. 10). In particular, truncated Newton methods con-
sider the problem (2) and work according to Table 1. Observe that at Step
(c), a choice of the iterative method for solving approximately Eq. (1) is
required.

In Section 3, we propose a truncated Newton scheme, which imple-
ments a globally convergent modified Newton method (Ref. 4) for the
solution of the general optimization problem (2), where f is a noncon-
vex function. For the approximate solution of Eq. (1), we adopt the
planar CG Algorithm FLR of Ref. 1, which is effective and inexpen-
sive with respect to other planar algorithms (Refs. 16–18); see Section
2. In Section 2.1, we prove that the vector dk provided at Step (c) by
Algorithm FLR can be worthwhile when used within truncated Newton
schemes.

For a complete list of practical problems solved by means of trun-
cated Newton schemes, we suggest Ref. 10 and the cited references.

In this paper, we use the symbol ‖ · ‖ for indicating the Euclidean
norm of either a real vector or a real matrix. With xT y, we denote the
Euclidean inner product between the vectors x, y ∈ Rn. For a positive-
definite [semidefinite] matrix A ∈ Rn×n, we use the notation A � 0 [A � 0].
The symbol ≡ stands for equivalent; λM,λm represent the largest and the
smallest absolute value of the eigenvalues of the Hessian matrix Hk =
∇2f (xk). Quantities calculated Step k are denoted with the subscript k.

In Section 2, we describe the use of Algorithm FLR for approx-
imately solving the Newton Eq. (1). Section 3 describes a truncated
Newton method based on Algorithm FLR. Section 4 deals with the
numerical results. Finally, Section 5 contains the conclusions.
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2. Algorithm FLR for the Newton Equation

As observed in the previous section, the solution of the large-
scale Newton equation (1) requires the application of a suitable itera-
tive method. In this section, we consider the use of Algorithm FLR,
introduced in Part 1 (Ref. 1). The latter method is suitable in case the
Newton equation is indefinite and nonsingular; therefore, it may be a nat-
ural tool within algorithms for solving iteratively the nonconvex problem
(2). In Table 2, the computational complexity of Algorithm FLR is com-
pared with that of the planar methods proposed in Ref. 17 (Algorithm
Lue) Ref. 18 (Algorithm Fas), and Ref. 16 (Algorithm Hes). In particu-
lar, for these algorithms, we report in Table 2 the following three features,
related to the complexity of computation:

(i) the engaging memory (Mem), including the machine registers
used in each step;

(ii) the number of floating point operations (Flops);
(iii) the number of matrix × vector products (H∗p).

For each planar algorithm reported, we considered features (i), (ii), (iii) for
three different steps: the initialization, the standard CG step (Step iA), and
the planar CG step (Step iB ). In particular, Flops represents the number
of floating point operations (multiplications) required by the step: a matrix
× vector product requires n2 operations, while an inner product requires
n operations. Observe that Step iB in Algorithms Hes and FLR requires
the same computational burden; on the other hand, Step iA in Algorithm
FLR is significantly cheaper with respect to Algorithm Hes.

2.1. Using Algorithm FLR for Generating Gradient Related Directions.
We consider the solution of the Newton equation (1) within a truncated
Newton scheme; in particular, the solution is to be achieved by means of
Algorithm FLR.

In Sections 1 and 2, we discussed the motivation for using a spe-
cific iterative method for solving efficiently the Newton equation (1) in the
case where Hk 
� 0. We described the importance of using a proper itera-
tive method for exploring the regions of convexity and concavity of f (x)

in (2). Now, suppose that the iterative method has detected a vector d ∈Rn

such that

dT Hkd <0; (4)

then (see page 9 of Ref. 10) “such a direction can be used as part of a
search direction, since either d or −d is a direction of nonascent.” This
idea is discussed in Refs. 13, 11, 19.
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Table 2. Comparison among complexities of planar CG methods.

Algorithm Step Mem Flops H∗p

CG Initialization 2n+O(1) n2 1
Step iA 4n+O(1) n2 +6n+O(1) 1

Hes Initialization 3n+O(1) 2n2 2
Step iA 5n+O(1) 2n2 +8n+O(1) 2
Step iB 7n+O(1) 2n2 +14n+O(1) 2

Lue Initialization 2n+O(1) n2 1
Step iA 4n+O(1) n2 +6n+O(1) 1
Step iB 6n+O(1) 2n2 +13n+O(1) 2

Fas Initialization 2n+O(1) n2 1
Step iA 4n+O(1) n2 +6n+O(1) 1
Step iB 6n+O(1) 2n2 +12n+O(1) 2

FLR Initialization 2n+O(1) n2 1
Step iA 5n+O(1) n2 +7n+O(1) 1
Step iB 7n+O(1) 2n2 +14n+O(1) 2

To maintain the global convergence properties of the line search
based truncated Newton method in Table 1, the search direction dk sat-
isfies the relations (Ref. 10)

dT
k gk ≤−c1‖gk‖h1 , c1, h1 >0, (5a)

‖dk‖≤ c2‖gk‖h2 , c2, h2 >0; (5b)

i.e., dk is gradient related. Here, we prove that the use of Algorithm FLR
for solving the Newton equation (1), can provide iteratively a gradient-
related direction dk. More specifically, we calculate dk as

dk =dP
k +dN

k +dPla
k , (6)

where (see the test on the quantity pT
i Hkpi at Step i of Algorithm FLR)

dP
k =

∑

i∈IP

(pT
i ri/p

T
i Hkpi)pi,

IP ={i ≥1 :P T
i HkPi ≥∈i ‖Pi‖};

dN
k =−

∑

i∈IN

(pT
i ri/p

T
i Hkpi)pi,

IN ={i ≥1 :P T
i HkPi ≤−∈i ‖Pi‖2};

dPla
k =

∑

i∈IP la

[
(pT

i ri/‖Hkpi‖2)pi + (qT
i ri/‖Hkqi‖2)qi

]
,

IPla ={i ≥1 : |P T
i HkPi |<∈i ‖Pi‖2}.
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In Ref. 7, Dembo and Steihaug proved that the direction dP
k is gradi-

ent related (equivalently, they proved that the CG applied to the linear sys-
tem (1), with Hk positive definite, generates the gradient-related direction
dP
k ). Similarly, in Ref. 6, Grippo, Lampariello, and Lucidi obtained the

same result with the direction dP
k + dN

k , which better resembles the New-
ton direction in respect to dP

k , since it considers also the contribution of
vectors with the property (4). Here, we give evidence that the definition of
the new direction dPla

k , introduced with the application of the planar Algo-
rithm FLR, improves the likelihood of dk with Newton direction in respect
to dP

k +dN
k (see also Section 3) and yields the properties (5). This aims at

completing the evolution drawn by Refs. 7, 6 when dealing with the indefi-
nite and nonsingular matrix Hk.

Theorem 2.1. Consider the Newton equation (1) and let the symmet-
ric matrix Hk be indefinite and nonsingular. Suppose that for all k≥1, the
quantity λm is uniformly bounded away from zero. Then, the direction dk

defined in (6) and (7), calculated with Algorithm FLR, is gradient related
i.e., the relations (5) hold.

Proof. After few arrangements and considering that r1 = −gk, for
(5a) we have

dT
k gk = (dP

k +dN
k +dPla

k )T gk

=
∑

i∈IP

−(pT
i ri/p

T
i Hkpi)p

T
i r1 +

[
−

∑

i∈IN

−(pT
i ri/p

T
i Hkpi)p

T
i r1

]

+
∑

i∈IP la

−
[
(pT

i ri/‖Hkpi‖2)pT
i r1 + (qT

i ri/‖Hkqi‖2)qT
i r1

]
,

and from Theorem 2.1 of Ref. 1 the relation

pT
i ri =pT

i r1, i ≥1,

holds. Moreover, we prove that

qT
i ri =qT

i r1, i ≥1.

Let ti and αi, i ≥1, be defined as (see Ref. 1 and Algorithm FLR)

if |pT
i Api |≥ εi‖pi‖2, then αi =ai and ti =pi,

if |pT
i Api |<εi‖pi‖2, then

{
αi = ĉi , ti =pi,

αi+1 = d̂i , ti+1 =qi.
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Then, since

ri = r1 −
i−1∑

j=1

αjHktj ,

from (B2) of Theorem 2.1 in Ref. 1, we obtain

qT
i ri =qT

i



r1 −
i−1∑

j=1

αjHktj



=qT
i r1.

For proving (5a), two cases must be analyzed: either the first step of Algo-
rithm FLR is Step 1A and we have

(dP
k +dN

k +dPla
k )T gk ≤−(pT

1 r1)
2/|pT

1 Hkp1|
≤−‖r1‖4/λM‖r1‖2

=−(1/λM)‖r1‖2,

or the first step is Step 1B and we have

(dP
k +dN

k +dPla
k )T gk ≤−(pT

1 r1)
2/‖Hkp1‖2

≤−‖r1‖4/λ2
M‖r1‖2

=−(1/λ2
M)‖r1‖2. (7)

Therefore, we obtain the final relation

dT
k gk ≤−min

{
1/λ2

M,1/λM

}‖gk‖2, (8)

which proves (5a).

For proving (5b) [again pT
i ri = pT

i r1 and let ε = mini{εi}, with εi

defined at Step i of algorithm FLR], recalling that r1 =−gk,

‖dP
k ‖≤

∥∥∥∥∥∥

∑

i∈IP

(pip
T
i /pT

i Hkpi)r1

∥∥∥∥∥∥

≤
∑

i∈IP

(‖pip
T
i ‖epsiloni‖pi‖2)‖r1‖

≤ (n/ε)‖gk‖
and similarly,

‖dN
k ‖≤ (n/ε)‖gk‖.
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Thus, for proving (5b) it suffices to give evidence that a similar inequality
holds for the direction dPla

k . Since again

pT
i ri =pT

i r1 and qT
i ri =qT

i r1,

we simply have

‖dPla
k ‖≤

∑

i∈IP la

[∥∥(pT
i ri/‖Hkpi‖2)pi

∥∥+∥∥(qT
i ri/‖Hkqi‖2)qi

∥∥
]

≤
∑

i∈IP la

[
‖pip

T
i ‖‖r1‖/‖Hkpi‖2 +‖qiq

T
i ‖‖r1‖/‖Hkqi‖2

]

≤
∑

i∈IP la

[
‖pi‖2/λ2

m‖pi‖2 +‖qi‖2/λ2
m‖qi‖2

]
‖r1‖

≤ (n/2)(2/λ2
m)‖r1‖

≤ (n/λ2
m)‖r1‖; (9)

therefore, (5b) holds with

‖dk‖≤3nmax{1/ε,1/λ2
m}‖gk‖. (10)

Observe that the inequalities (8) and (10) imply the standard uniform
descent condition

dT
k gk ≤−ε0‖dk‖‖gk‖, k ≥1,

where ε0 depends on ε, λm, λM . We conclude this section remarking that
the computation of the vector dPla

k does not need further calculation with
respect to the computational burden involved in performing planar steps.
In particular, both the matrix × vector products Hkpi and Hkqi are avail-
able already at the outset of Step iB .

3. Truncated Newton Method Based on Algorithm FLR

In Section 2, we have highlighted that, in the case where the New-
ton equation (1) is solved by means of Algorithm FLR, a gradient-related
direction dk is available when the iterative method stops. This suggests
a natural embedding of Algorithm FLR within the truncated Newton
algorithm introduced in Table 1, where the global convergence of the opti-
mization method requires the generation of descent directions which are
gradient related too. Here, we present the scheme TNFLR, which uses
Algorithm FLR at step (c); i.e., we use Algorithm FLR to generate a
gradient-related direction for the line search procedure. In Table 3, we
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Table 3. Algorithm TNFLR providing the gradient related direction dk .

Step 0. Data. Hk , gk , 0<ηk <1, γ1 >0, γ2 >0, h1 >0, h2 >0.

Step 1. Set i =1, r1 =−gk , p1 = r1, d1 =0, d̄1 =0.

Step 2. Compute vi =pT
i Hkpi , set εi >0.

If Hkpi =0, then go to Step 3.

If |vi |≥ εi‖pi‖2, then go to CG-iA.

If |vi |<εi‖pi‖2, then go to PL-iB .

CG-iA Compute αi = rT
i pi/vi , set di+1 =di +αipi , ri+1 = ri −αiHkpi.

Set d̄i+1 =
{

d̄i −αipi, if vi ≤−εi‖pi‖2,

d̄i +αipi, if vi ≥ εi‖pi‖2.

If ‖ri+1‖>ηk‖r1‖, then

compute βi =‖ri+1‖2/‖ri‖2,

set pi+1 = ri+1 +βipi ,

set i = i +1, go to Step 2.

If ‖ri+1‖≤ηk‖r1‖, then set i = i +1, go to Step 3.

PL-iB . If i =1, then set qi =Hkpi .

If i >1 and the previous step is CG-(i −1)A, then set

βi−1 =−(Hkpi−1)
T Hkpi/vi−1 and qi =Hkpi +βi−1pi−1.

If i >1 and the previous step is PL-(i −2)B , then set

β̂i−2=−(Hkqi−2)
T Hkpi and qi=Hkpi+β̂i−2(vi−2qi−2 − δi−2pi−2)/�i−2.

Compute ci= rT
i pi , fi= rT

i qi , δi=pT
i Hkqi , ei =qT

i Hkqi , �i =viei− δ2
i.

Compute ĉi = (ciei − δifi)/�i , d̂i = (vifi − δici)/�i .

Set di+2 =di + ĉipi + d̂iqi , ri+2 = ri − ĉiHkpi − d̂iHkqi .

Set d̄i+2 = d̄i + ci/‖Hkpi‖2pi +fi/‖Hkqi‖2qi .

If ‖ri+2‖>ηk‖r1‖, then

compute b̂i =−qT
i Hkri+2,

Set pi+2 = ri+2 + b̂i (viqi − δipi)/�i ,

set i = i +2, go to Step 2.

If ‖ri+1‖≤ηk‖r1‖, then set i = i +2, go to Step 3.

Step 3. Compute the gradient-related direction dk as

dk =






−gk, if i =1,

di , if dT
i gk ≤−γ1‖gk‖h1 and ‖di‖≤γ2‖gk‖h2 ,

d̄i , otherwise.
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report this scheme, which stops at Step 3 after generating the direction dk.
According to Theorem 2.3 of Ref. 1, Algorithm TNFLR of Table 3 can-
not cycle infinitely.

Substantially, after the initialization in Step 0 and Step 1, at Step 2 a
test decides whether Algorithm FLR performs a conjugate gradient (CG-
iA) iteration or a planar (PL-iB ) iteration. Then, within each iteration, the
vector di and d̄i are updated iteratively. In the end, when the algorithm
stops, a gradient-related direction dk is available at Step 3, using the infor-
mation contained in either the current Newton direction di or the vec-
tor d̄i . This guarantees (see Section 2.1) that, in any case, dk is gradient
related. Observe that, in contrast to the standard CG, the iterative pro-
cedure that we adopt does not stop prematurely, provided that the Hes-
sian matrix Hk is nonsingular. This aims at approximating the Newton
direction as much as possible, even in the case where Hk � 0. In other
words, we trust that the efficiency of the overall optimization algorithm
may be improved if we take into account also the concavity region of
f (x), exploited by our planar-CG algorithm. We shall see in Section 4 that
this idea has a positive effect when the iterate xk is still far from the solu-
tion point x∗, i.e., when the Hessian matrix Hk may be indefinite.

Observe that, for the indefiniteness of Hk, we are not ensured that,
at steps CG-iA and PL-iB , the directions pi and qi are descent directions.
Hence, it may happen that the current approximation of the Newton direc-
tion di is not a descent too. This motivates the choice of the alternative
direction d̄i : it represents a compromise, between the necessity of resem-
bling as much as possible the Newton direction (see also page 117 of
Ref. 20) and the requirement on dk to be a gradient-related direction. In
particular, consider the expression for updating the vector d̄i in a planar
iteration,

d̄i = d̄i−2 + (pT
i−2ri−2/‖Hkpi−2‖2)pi−2 + (qT

i−2ri−2/‖Hkqi−2‖2)qi−2. (11)

The quantities pT
i−2ri−2/‖Hkpi−2‖2 and qT

i−2ri−2/‖Hkqi−2‖2 are chosen
with a twin purpose: on the one hand, they resemble as much as possi-
ble the structure of the coefficient αi−2 at iteration CG-(i − 2)A; i.e., the
relation (11) aims at formally altering as less as possible a double CG iter-
ation. On the other hand, they are designed in such a way that relations
(7) and (9) hold; i.e., d̄i is gradient related whenever d̄i 
=0. Finally, notice
that, in the case where Algorithm TNFLR performs only CG iterations,
with the quantity pT

i Hkpi positive, then di ≡ d̄i .
Moreover, due to the fast convergence of the pure Newton method,

the decision rule at Step 3 of Algorithm TNFLR is aimed at using as
much as possible the Newton direction di , as long as di is gradient related.
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Nevertheless, observe that, from Section 2.1, a different algorithm may be
considered, where the direction d̄i is always taken in the selection strategy
at Step 3.

The following result summarizes the convergence properties of the
algorithm which uses the scheme TNFLR of Table 3. We remark that
Algorithm TNFLR considers only the first relation (3); i.e. we set sk = 0
in relation (3). We are still investigating the possibility of defining a trun-
cated Newton scheme which includes both the directions dk and sk.

Theorem 3.1. Consider the problem (2), where f : Rn → R and f ∈
C2(Rn). Let xi ∈ Rn such that the level set L1 = {x ∈ Rn : f (x) ≤ f (x1)} is
compact; consider the truncated Newton method in Table 1, where dk is
computed by means of Algorithm TNFLR and αk at Step (d) is the step-
length from the nonmonotone, Armijo-type line search in Ref. 8. Then, we
have:

(i) every limit point of {xk} is a stationary point of f (x);
(ii) every limit point of {xk} cannot be a maximum of f (x);
(iii) if {xk} converges to x∗, where x∗ is a stationary point with

∇f (x∗)=0 and ∇2f (x∗)�0, then {xk} converges superlinearly.

Proof. This is a standard result, which follows form Refs. 8, 6.

4. Preliminary Numerical Results

A truncated Newton algorithm (see Table 1), which uses Algorithm
TNFLR at Step (c), was applied for solving several large-scale optimiza-
tion problems. In the general setting of this approach, we generate the new
iterate

xk+1 =xk +αkdk (12)

in such a way that {xk}→x∗, where x∗ is solution of the problem

min
x∈Rn

f (x), f : Rn →R. (13)

The vector dk (computed by means of Algorithm TNFLR in Table 3)
is a Newton-type direction which solves approximately

∇2f (xk)d +∇f (xk)=0. (14)

Moreover, αk is the steplength provided by a suitable Armijo-type line
search. In order to preserve the efficiency of the method, the general strat-
egy of a truncated scheme reduces to the following: as long as xk is far
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from the stationary points x∗, dk may be even a coarse approximate solu-
tion of (14). Conversely, whenever xk approaches x∗, dk is required to
solve (14) more accurately and this implies a larger computational bur-
den. We ensure the efficiency of the algorithm (i.e., the q-superlinear rate
of convergence) by solving Eq. (14) according to the relation

‖∇2f (xk)dk +∇f (xk)‖≤ηk,

where in our implementation ηk has the expression (see Refs. 15, 13, 21)

ηk =10−1 min{1,‖∇f (xk)‖max{1/k,1/ exp (10k/n)}}‖∇2f (xk)‖‖dk‖. (15)

In this section, we compare the following choices:

(C1) dk is calculated at Step 3 of Algorithm TNFLR; i.e., in gen-
eral dk contains information on both the positive and the neg-
ative curvature directions generated by the iterative method
TNFLR; see Tables 5 and 6 of Ref. 22.

(C2) dk is calculated by means of the routine SYMMLQ (Ref. 21);
i.e., dk contains information on both the positive and the neg-
ative curvature directions generated by a Lanczos-CG iterative
method; see Tables 7 and 8 of Ref. 22.

We specify that, in (C2), the SYMMLQ routine is used for approxi-
mately solving the Newton equation (14) and providing a provisional solu-
tion d̃k. Then, the direction dk of Step (c) of Algorithm TN in Table 1 is
chosen according to

dk =
{

d̃k, if d̃k is gradient related to {xk},
−Dk∇f (xk), otherwise (Dk �0).

(16)

Roughly speaking, the above two choices correspond to applying respec-
tively Algorithm FLR and the SYMMLQ for solving equation (14), in
order to provide a gradient-related direction to the scheme TN. In our
test, we set Dk = I when we applied the SYMMLQ routine. However,
other possible choices might be considered, which take into account the
knowledge of the Hessian matrix.

The resulting method was tested over several problems from the
CUTE collection (Ref. 2); the results are reported in Tables 5–8 of Ref.
22. In this preliminary setting, we adopted the efficient nonmonotone sta-
bilization technique in Ref. 23, which was used successfully in Ref. 13 too
with the SYMMLQ routine.

We considered 87 test problems from the CUTE collection, both convex
and nonconvex; over two problems (BROYDN7D-1000 and NONCVXU2-
1000), the two choices of dk investigated converged to different points. For
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the remaining 85 problems, Table 4 summarizes the comparative perfor-
mances of the two choices for dk, in terms of function evaluations and inner
iterations (the costly parameters in a truncated Newton method). In partic-
ular, we report in two columns the successes for each of the two choices (not
including the failures of the other algorithm); as a consequence, the results
in any column may not add up to 85 problems. This is because, for some
test problems, once a parameter is considered (either function evaluations
or inner iterations), no algorithm is preferable to the others, with respect to
that parameter.

As expected, the SYMMLQ performed quite well over convex prob-
lems; in particular, the Newton-type direction that it provides is well
scaled (very few function evaluations). On this stream, we remark that in
general the choice of the forcing term ηk is crucial for the overall perfor-
mances of the optimization method. Therefore, to stress the performance
of Algorithm TNFLR in a challenging setting, we chose the forcing term
(15), which was designed specifically in Refs. 13, 21 for the SYMMLQ
method.

Unfortunately, over the test problems that we considered, Algorithm
TNFLR performed the planar Step PL-iB very rarely (see Pla in Tables
5, 6 of Ref. 22). Nevertheless, the possibility of performing a planar iter-
ation, in case at Step 2 the quantity pT

i Hkpi is too small, ensures that
our algorithm does not stop beforehand over a class of specific problems.
On the other hand, for nonconvex problems, there was a contribution of
the negative curvature to the final Newton-type direction dk. To sum up,
considering the number of successes and failures in the previous table, the
choice (C1) of calculating the Newton-type direction dk seems in general
preferable for nonconvex problems, with respect to the choice (C2). How-
ever, numerical experimentation over a larger number of problems, includ-
ing real applications, seems necessary to further emphasize the importance
of our approach.

Observe that, when we consider the choice (C2) (SYMMLQ routine),
over nonconvex problems, resorting to the use of −∇f (xk) according to
(16) turns out to be harmful. This may be interpreted in the following
way: when the iterate xk is far from the solution points x∗ and we are in a
region of nonconvexity for f (x), then the choice (C2) for dk seems to par-
tially ignore the local knowledge on f (x). This leads to slow convergence
of the overall algorithm.

Within Algorithm TNFLR, the planar step PL-iB was performed
when the quantity |pT

i Hkpi | was too small, as in the relation

|pT
i Hkpi |≤0.5 ·10−6 min{‖pi‖2,1},
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Table 4. Comparative results over 85 test problems.

Convex problems Nonconvex problems

Successes Successes
Function Inner Function Inner

Choice of dk evaluations iterations Failures evaluations iterations Failures

(C1) 7 24 0 11 10 2
(C2) 21 19 0 5 6 13

while we adopted for the overall method the strong stopping criterion
‖∇f (xk)‖ ≤ 10−5. Finally we remark that the quantity ‖∇2f (xk)‖ in rela-
tion (15) is evaluated approximately by calculating iteratively the norm of
the matrix Tk, which is a tridiagonalization of ∇2f (xk). For the calcula-
tion, we used IBM RISC System 6000; a Fortran 90 code was developed
and double precision was considered for the variables.

5. Conclusions

Considering the results summarized in Table 4 of this paper and Table
2 in Ref. 1, we can conclude that, at the moment, the proposed Algorithm
FLR is expected to be fruitfully employed in optimization frameworks,
rather than as solver of indefinite linear systems. Indeed in preliminary
numerical experience (not reported here), the SYMMLQ routine seems to
be more stable as solver of linear systems, though it is slightly more expen-
sive than our algorithm. However, there is not a clear evidence that a more
accurate implementation of our method cannot be competitive.

On the other hand, the scheme in Table 4 reveals that our algorithm
seems to be more efficient in using the negative curvature directions of
the current Hessian matrix Hk in optimization frameworks. This feature
needs further investigation. Indeed, in case we want to adopt the iterative
scheme reported in relation (3b), then an effective negative curvature direc-
tion sk has to be computed. We recall that, in large-scale optimization,
the calculation of sk is indispensable whenever the algorithm is asked to
converge to second-order points (Refs. 14, 12), i.e., those minimum points
which satisfy the second-order necessary conditions of optimality.

In the near future, we are going to test our algorithm over real prob-
lems, where the nonconvexity of the objective function forces the algo-
rithm to perform a significant number of planar steps. Furthermore, the
use of a suitable preconditioner is another relevant issue when dealing
with large-scale problems. Though the introduction of a preconditioner at



JOTA: VOL. 125, NO. 3, JUNE 2005 557

Step CG-iA of Algorithm FLR simply yields a preconditioned CG, the use
of a preconditioner within the planar Step PL-iB is not completely clear.
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