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Abstract

This paper extends some theoretical properties of the Conjugate Gradient-type method FLR
[Fas05], for iteratively solving inde¯nite linear systems of equations. The latter algorithm is a
generalization of the Conjugate Gradient (CG) by Hestenes and Stiefel [HS52].
On one hand, here we carry out a complete relationship between algorithm FLR and the Lanc-
zos process, in case of inde¯nite and possibly singular matrices. On the other hand we develop
simple theoretical results for algorithm FLR, in order to construct an approximation of the Moore-
Penrose pseudoinverse of an inde¯nite matrix. Our approach supplies theory for applications within
nonconvex optimization.

Keywords : unconstrained optimization, Krilov subspace methods, planar conjugate gradient,
Moore-Penrose pseudoinverse.

AMS subject classī cation: 90C30

1 Introduction

In this paper we consider the solution of the dense linear system

Ax = b; (1)

where the symmetric matrix A 2 IRn£n is inde¯nite and possibly singular, b 2 IRn and n is

large. Many real large scale problems require the solution of linear system (1) and they often
need the use of e±cient solvers, along with easy and handable software packages. A great deal of
iterative algorithms for solving linear system (1) provide us with useful and e±cient tools [GV89];
nevertheless, the selection of the appropriate method is often a sti® problem for non-specialists.
In case Krylov subspace methods are considered [Gre97, SVdV00] and good preconditioners are
adopted, the di®erences among methods become less relevant [Han98]. However, this trivially shifts
the problem to the identi¯cation of a suitable general purpose preconditioner.

When problem (1) becomes ill-conditioned, the numerical treatment is more complicated and
some regularization techniques, which use additional information for stabilizing the solution, are
often advisable [Han98]. Moreover, optimization frameworks provide strong motivations for inves-
tigating the solution of possibly singular system (1).
In particular, consider the solution of nonlinear least squares problem

min
x2IRn

1

2
kr(x)k2; r : IRn ! IRm; (2)

by means of the damped Gauss-Newton method [Bjo96]. Let J(x) 2 IRm£n be the Jacobian of
vector function r(x), at current point x. Then, at step k the latter method considers the linear
approximation r(xk) + J(xk)dk of r(x) at xk, and computes dk as a solution of the unconstrained

subproblem
min
d2IRn

kr(xk) + J(xk)dk: (3)

Then, the next iterate is xk+1 = xk +®kdk, where the steplength ®k 2 IR is selected by a linesearch
procedure [McC83]. Let J+(xk) be the Moore-Penrose pseudoinverse of matrix J(xk) [CM79]: the
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choice dk = ¡J+(xk)r(xk) among the solutions of (3) has a couple of remarkable advantages. It is
invariant under linear transformation on x, and it is a descent direction for the objective function
in (2) [Bjo96]. In particular, the latter property is used in [LS03, FLS04], where the CG is adopted
to compute dk, i.e. for equivalently solving the linear system JT(xk)J(xk)d = ¡JT (xk)r(xk) (see
also [Hes75]). Observe that in general the matrix JT (xk)J(xk) is rank de¯cient.

Another application within nonconvex optimization, which involves the solution of possibly
singular system (1), is the Newton method for eigenvector computation. Suppose ¸ 2 IR is an
approximate eigenvalue of the inde¯nite matrix H 2 IRn£n, associated to eigenvector v 2 IRn.
Then, a non-trivial solution x¤ of the linear system (H ¡ ¸I)x = 0 yields an approximation of
vector v. The Newton method is often the method of choice to this purpose and gives the iterate
[WSS98]

xk+1 = xk ¡ (H ¡ ¸I)¡1rk; (4)

where rk = (H ¡ ¸I)xk, x0 2 IRn. Since (4) is not well de¯ned, it is turned into iteration [GV89]

xk+1 = xk ¡ (H ¡ ¸I)+rk; (5)

by introducing the Moore-Penrose pseudoinverse of (H ¡ ¸I). Under suitable assumptions (5) is
convergent to an approximation x¤ of eigenvector v. Observe that the pseudoinverse (H ¡ ¸I)+ is
also an inner inverse, i.e. (H ¡ ¸I)(H ¡ ¸I)+(H ¡ ¸I) = (H ¡ ¸I), and that rk = (H ¡ ¸I)xk.
Therefore, on large scale problems, iteration (5) may be solved as the equation

(H ¡ ¸I)(xk+1 ¡ xk) = ¡rk; (6)

and a Krylov based method may be adopted. Unfortunately, since matrix H is inde¯nite, the CG
may fail. We consider in this paper a generalized CG method, and we prove that under suitable
assumptions it provides the pseudoinverse solution of equation (6). An iteration similar to (5) is
introduced when the Jacobi-Davidson method [SVdV96] is used, in place of Newton's method, for
computing the eigenvector v.

The above examples, along with the low computational cost and the low memory-demand of
CG-like methods, induced us to study and consider algorithm FLR in [Fas05], as a possible candi-
date for solving (1).
We also prove the complete theoretical relationship between algorithm FLR and the Lanczos pro-
cess. Equivalently, under few assumptions, algorithm FLR is proved to generate, in exact arith-
metic, the sequence of Lanczos vectors.

In the following sections we use the symbol k ¢ k to denote the Euclidean norm for both a real
n-dimensional vector and a real n £ n matrix. We use the notation xTy for the inner product
between vectors x; y 2 IRn, so that x ? y is equivalent to xTy = 0. 0[m;n] is the m £ n matrix
with all entries equal to zero. With R(A) and N(A) we respectively denote the range and the
null space of the symmetric matrix A 2 IRn£n. With Ki(v; A) we indicate the Krylov subspace
spanfv;Av; : : : ;Ai¡1vg associated to vector v 2 IRn and matrix A 2 IRn£n. PrW (v) indicates
the projection of vector v onto the linear vector space W . Finally, ¸m = minj j j̧(A)j and ¸M =
maxj j j̧(A)j, where ¸j(A), j ¸ 1, are the eigenvalues of the symmetric matrix A.

The paper is organized as follows: Section 2 deals with the description of few general prelimi-

naries. Sections 3 and 3.1 provide some relevant features of the CG, when used for solving (1) and
the coe±cient matrix A is positive semide¯nite. Sections 4 and 4.1 extend the results of Sections 3
and 3.1, to the application of planar algorithm FLR in [Fas05]. Here, under mild assumptions the
latter algorithm is used to construct an approximation of the Moore-Penrose pseudoinverse A+.
Section 5 provides a noteworthy relation between algorithm FLR and the Lanczos process. Finally,
Section 6 contains both conclusions and perspectives related to the treated subject.
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Table 1: Algorithm CG for solving the linear system (1).

Step 1. Set k = 1, x1 2 IRn, r1 = b ¡ Ax1.
If r1 = 0, then STOP. Else, set p1 = r1.

Step k. Compute dk = pT
k Apk, ®k = rT

k pk=dk,
xk+1 = xk + ®kpk, rk+1 = rk ¡ ®kApk.
If rk+1 = 0, then STOP. Else,
set ¯k = ¡pT

k Ark+1=dk, pk+1 = rk+1 + ¯kpk.

Set k = k + 1 go to Step k.

Table 2: The Lanczos process applied to system (1).

Step 0. k = 0, v0 = b 2 IRn,
u0 = 0, ±0 = kbk.

Step k. If ±k = 0, then STOP. Else, uk+1 = vk=±k.
Set k = k +1, °k = uT

k Auk,
vk = (A ¡ °kI)uk ¡ ±k¡1uk¡1

±k = kvkk, go to Step k.

2 Some general results

In this section we introduce few general results for the solution of (1) which will be largely used

in the sequel. Consider the CG-based algorithm FLR described in [Fas05] (see Table 3). The
latter algorithm is a general planar method [Lue69, Hes80, LS91, DDS85, MC69] for solving (1),
when A is inde¯nite; i.e. it avoids the possible pivot breakdown of the CG in the inde¯nite case,
by introducing 2 £ 2 pivot elements. We are concerned with proposing some new properties of
algorithm FLR in case matrix A in (1) is singular. Tables 1 and 3 brie°y recall both the CG and
FLR methods for the convenience of the reader.
We remark that the Krylov based algorithm FLR is a generalization of the CG in case matrix A is
inde¯nite. Indeed from Table 3, as long as the quantity dk at step k is relatively large, a CG step
is performed at step kA. On the contrary, whenever dk is relatively small the vector qk is generated
at step kB, so that the search of the solution for (1) is detected over the 2-dimensional manifold
spanfpk; qkg (see also [BC94]).

Now, on one hand we aim at determining properties of algorithms CG and FLR in case matrix
A is singular. Then, we study the relationship between the sets of orthogonal directions generated
by the Lanczos process and algorithm FLR, when solving (1). To this end consider algorithms CG,
FLR and the Lanczos process (Table 2), where without loss of generality we assumed v0 = b at

Step 0 (see [S03] for a more general choice). Recalling the symmetry of matrix A, let either the
¯rst nonzero Lanczos vector u1 or the ¯rst residual r1 in algorithms CG and FLR be given by

u1 = y + z; y = P rR(A)(u1); z = PrN(A)(u1);
r1 = y + z; y = PrR(A)(r1); z = P rN(A)(r1):

(7)

Then, the following general result holds:
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Table 3: Algorithm FLR for solving the linear system (1).

Step 1. Set k = 1, x1 2 IRn, r1 = b ¡ Ax1.
If r1 = 0, then STOP. Else, set p1 = r1.

Step k. Compute dk = pT
k Apk; set ²k > 0.

If jdkj ¸ ²kkpkk2, go to Step kA.
If jdkj < ²kkpkk2, go to Step kB.

Step kA . Set ak = rT
k pk=dk, xk+1 = xk + akpk, rk+1 = rk ¡ akApk.

If rk+1 = 0, then STOP. Else,
set bk = ¡pT

k Ark+1=dk and pk+1 = rk+1 + bkpk.
Set k = k + 1 go to Step k.

Step kB. If k = 1, then set qk = Apk.

If k > 1 and the previous Step is (k ¡ 1)A, then
set ¯k¡1 = ¡(Apk¡1)

T Apk=dk¡1 and qk = Apk + ¯k¡1pk¡1.
If k > 1 and the previous Step is (k ¡ 2)B, then

set ^̄
k¡2 = ¡(Aqk¡2)T Apk and qk = Apk + ^̄

k¡2(dk¡2qk¡2 ¡ ±k¡2pk¡2)=¢k¡2.
Compute ck = rT

k pk, ±k = pT
k Aqk, ek = qT

k Aqk, ¢k = dkek ¡ ±2
k and

ĉk = (ckek ¡ ±kqT
k rk)=¢k, d̂k = (dkqT

k rk ¡ ±kck)=¢k.

Set xk+2 = xk + ĉkpk + d̂kqk, rk+2 = rk ¡ ĉkApk ¡ d̂kAqk.
If rk+2 = 0, then STOP. Else,

compute b̂k = ¡qT
k Ark+2 and set pk+2 = rk+2 + b̂k(dkqk ¡ ±kpk)=¢k.

Set k = k + 2 go to Step k.
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Lemma 2.1 Given the symmetric matrix A 2 IRn£n, let Pi(²) be a nonzero real polynomial of
¯nite degree i ¸ 1. Let y1; : : : ; yk be eigenvectors of matrix A associated to nonzero eigenvalues
¸1; : : : ; ¸k of A.

1. If vector y has nonzero orthogonal projection only on eigenvectors yj1; : : : ; yjl , with jh 2
f1; : : : ; kg, h = 1; : : : ; l, then we have Pi(A)y = 0 only if i ¸ l̂, where l̂ · l is the number of
distinct eigenvalues out of the l eigenvalues associated to yj1; : : : ; yjl .

2. The sequence fPi(A)yg, which is dependent on index i, contains at most l̂ linearly independent
vectors.

Proof.
As regards 1. let the vector y have nonzero orthogonal projection on the l eigenvectors yj1; : : : ; yjl ,

then the vector c 2 IRl exists such that y =
Pl

h=1 cjhyjh, cjh 6= 0, h = 1; : : : ; l. From the symmetry

of matrix A the orthogonal matrix V 2 IRn£n exists such that:

A = V DV T; D = diagf¸1; : : : ; ¸k;0[n¡k]g; V = [y1 ¢ ¢ ¢ ykz1 ¢ ¢ ¢ zn¡k]; (8)

where z1; : : : ; zn¡k are orthonormal eigenvectors associated to the zero eigenvalue. Thus, for any i

Pi(A) = V Pi(D)V T ; (9)

and consequently Pi(A)y is given by:

Pi(A)y = V

0
BBBBBBBBBB@

Pi(¸1)
. . .

Pi(¸l)
Pi( ļ+1)

. . .

Pi(¸k)
Pi(0[n¡k;n¡k])

1
CCCCCCCCCCA

lX

h=1

cjhV Tyjh

= V v;

where v 2 IRn and for p = 1; : : : ; n

vp =

8
<
:

cpPi(¸p) if p 2 fj1; : : : ; jlg

0 otherwise:

Since cjh 6= 0, for any jh 2 fj1; : : : ; jlg, and V is nonsingular, Pi(A)y = 0 if and only if Pi( j̧h) = 0,

jh 2 fj1; : : : ; jlg. In particular this implies that all the l̂ distinct eigenvalues in the set f j̧1; : : : ;¸jl g
are roots of the polynomial Pi(¸). Consequently, if Pi(A)y = 0 then i ¸ l̂.

As regards 2. let f j̧1; : : : ;¸ĵl
g be the distinct eigenvalues out of the l eigenvalues associated to

eigenvectors yj1 ; : : : ; yjl. Then, from the hypothesis

y =
lX

h=1

cjhyjh =
l̂X

¾=1

0
@ X

jh2¤¾

cjhyjh

1
A =

l̂X

¾=1

w¾ ; (10)

where ¤¾ = fjh 2 fj1; : : : ; jlg s:t: 9¸¾ 2 IR; Ayjh = ¸¾yjhg and w¾ =
P

jh2¤¾
cjhyjh . Observe

that (¸¾ ;w¾) is an eigenpair of matrix A and eigenvectors w1; : : : ;w
l̂

are independent, therefore
from (10) Pi(A)y 2 spanfw1; : : : ; w

l̂
g, for any i ¸ 1. This implies that the sequence fPi(A)yg

contains at most l̂ linearly independent vectors, regardless of the choice of index i ¸ 1. 2
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Remark 2.1 Observe that according with the de¯nitions used in [S03], the integer l̂ of Lemma 2.1
is the grade of y with respect to matrix A, i.e. the lowest degree of the polynomial P(A) such that
P (A)y = 0. Therefore Lemma 2.1 states a relationship between the grade of y and the eigenpairs
of matrix A. Furthermore, connections between the polynomial Pl̂(A) and the minimal polynomial
of matrix A were highlighted in [Hes75].

3 Issues on the CG when matrix A is singular

Consider the solution of linear system (1) by means of CG. A sequence of conjugate directions
is generated, provided that matrix A is positive de¯nite. We brie°y recast a similar result when
matrix A is positive semide¯nite, using Lemma 2.1 (see also [Hes75]). Let matrix A be positive
semide¯nite and

¸i > 0; i = 1; : : : ; k; (11)

¸i = 0; i = k + 1; : : : ;n; (12)

where f i̧g are the real eigenvalues of A. Thus, for any vector p 2 IRn, coe±cients ci 2 IR,
i = 1; : : : ; k, exist such that

p = z +
kX

i=1

ciyi; (13)

where z is the orthogonal projection of vector p onto the subspace N(A), while yi, i = 1; : : : ; k,
are k orthonormal eigenvectors associated to the eigenvalues (11). From (11), (12), (13) and the
symmetry of matrix A we obtain

pT Ap =
kX

i=1

c2
i i̧: (14)

Thus, if matrix A is positive semide¯nite then pT Ap 6= 0 if and only if p 62 N (A). This implies that
in the semide¯nite case, the CG in Table 1 does not stop untimely as long as pi 62 N(A), i ¸ 1,

where pi is the conjugate direction generated by the CG at step i ¡ 1. In addition we have some
further results:

Proposition 3.1 Let matrix A in (1) be positive semide¯nite, and let r1 in Table 1 satisfy (7) and
the hypothesis of Lemma 2.1. If algorithm CG generates the mutually conjugate vectors p1; : : : ; pl̂ ,

with pi 62 N(A), i = 1; : : : ; l̂, then the latter vectors are linearly independent.

(The proof of the above proposition trivially follows from Lemma 2.1 and the guidelines of the
positive de¯nite case). The statements of Lemma 2.1 and Proposition 3.1 yield the following result:

Theorem 3.1 Consider the linear system (1) and let matrix A be positive semide¯nite. Let in the
CG of Table 1

r1 = y + z; y = PrR(A)(r1); z = PrN(A)(r1): (15)

Suppose vector y has nonzero projection on the eigenvectors yj1; : : : ; yjl of A, and only l̂ · l eigen-
values associated to yj1; : : : ; yjl are distinct. Then algorithm CG generates the sequences

ri = ¡i¡1(A)y + z; i = 1; : : : ; l̂;

pi = i¡1(A)y + !i¡1z; i = 1; : : : ; l̂;
(16)
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where ¡j(²) and j(²) are real polynomials with degree j, !j 2 IR, j < l̂. The quantities ¡j(A),
j(A) and !j are recursively de¯ned as follows:

¡0(A) = I, ¡j(A) = ¡j¡1(A) ¡ ®jAj¡1(A), j ¸ 1,
0(A) = I , j(A) = ¡j(A) + ¯jj¡1(A), j ¸ 1,
!0 = 1, !j = 1 + ¯j!j¡1, j ¸ 1,

(17)

where ®j and ¯j are calculated in algorithm CG. Finally, directions pi, i = 1; : : : ; l̂, satisfy condition
pi 62 N(A) and are linearly independent.

Proof.
By complete induction, when i = 1 it is r1 = p1 = y + z, ¡0(A) = 0(A) = I and !0 = 1. Now, let

ri¡1 = ¡i¡2(A)y + z;
pi¡1 = i¡2(A)y + !i¡2z;

with ¡i¡2(A) = ¡i¡3(A)¡®i¡2Ai¡3(A), i¡2(A) = ¡i¡2(A)+¯i¡2i¡3(A), !i¡2 = 1+¯i¡2!i¡3.
Then, from Table 1 and (15) vectors ri and pi are given by

ri = ri¡1 ¡ ®i¡1Api¡1 = ¡i¡2(A)y + z ¡ ®i¡1Ai¡2(A)y = ¡i¡1(A)y + z; (18)

pi = ri + ¯i¡1pi¡1 = ¡i¡1(A)y + z + ¯i¡1i¡2(A)y + ¯i¡1!i¡2z = i¡1(A)y + !i¡1z:(19)

Hence, (16) and (17) hold. It remains to prove that directions p1; : : : ; pl̂ are linearly independent

and satisfy pi 62 N(A), i · l̂. The symmetry of matrix A yields yT z = 0, thus from (16), pi 2 N(A)
if and only if i¡1(A)y = 0. However, from Lemma 2.1 the latter equality cannot be satis¯ed as
long as i · l̂. Therefore pi 62 N(A), i = 1; : : : ; l̂, so that the results of Proposition 3.1 complete the
proof. 2

In other words, if vector y has nonzero projection on eigenvectors yj1; : : : ; yĵl
, then from Lemma

2.1 the CG generates exactly l̂ conjugate directions pi 62 N(A), i · l̂, before stopping.

3.1 The CG and the Moore-Penrose pseudoinverse

Let r1 = y +z in Table 1, with y = P rR(A)(r1), z = P rN(A)(r1). If z 6= 0 we have from (16) ri 6= 0,
for any i ¸ 1. Thus, if z 6= 0 the CG will not converge to a solution of linear system (1).

On the contrary if r1 2 R(A), then from (16) ri = 0 if and only if ¡i¡1(A)y = 0 (i.e. i ¡ 1 = l̂).
Moreover from Theorem 3.1 if r1 2 R(A), then ri 6= 0, i = 1; : : : ; l̂, and Lemma 2.1 yields r

l̂+1
= 0.

Thus, if z = 0 algorithm CG eventually provides a solution ~x of (1).
Consider the Moore-Penrose generalized inverse A+ [CM79] of the positive semide¯nite matrix A

in (1). If A~x = b then A+b = PrR(A)(~x) [CM79]. Since by de¯nition r1 = b ¡ Ax1, we get

P rR(A)(~x) = A+b = A+(r1 + Ax1) = A+r1 + PrR(A)(x1): (20)

Now, let r1 = y + z, with z = 0, and let RS(r1;A) = spanfyj1; : : : ; yĵl
g1. We prove that algorithm

CG supplies an approximation of matrix A+ on the linear subspace RS(r1;A) (see also [Hes75]).
Indeed, we have

~x = x1 +
l̂X

i=1

®ipi; (21)

1We remind that according with Theorem 3.1 yji , i = 1; : : : ; l̂, are eigenvectors of matrix A, associated to the
distinct positive eigenvalues on which the initial residual r1 = y has nonzero projection.
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and recalling that rT
i pi = rT

1 pi, after a projection of (21) onto R(A) we obtain2

P rR(A)(~x ¡ x1) = P rR(A)(~x) ¡ PrR(A)(x1) =

2
4

l̂X

i=1

pip
T
i

pT
i Api

3
5r1: (22)

From (20) and (22), observing that z = 0 we obtain for any y 2 RS(r1;A)
2
4A+ ¡

l̂X

i=1

pip
T
i

pT
i Api

3
5y =

h
A+ ¡ (p1 ¢ ¢ ¢p

l̂
)D¡1

l̂
(p1 ¢ ¢ ¢p

l̂
)T

i
y = 0; D

l̂
= diag

1·i·l̂
fpT

i Apig; (23)

which proves that an approximation of the pseudoinverse matrix A+ can be iteratively calculated
by algorithm CG, on subspace RS(r1;A).

Remark 3.1 Observe that RS(r1;A) ´ K
l̂¡1

(r1; A), i.e. (23) provides an approximation of A+

over the Krylov subspace spanned by vectors p1; : : : ; p
l̂
.

As proved above (see (16)), if z 6= 0 the CG in Table 1 does not converge to a solution for the linear
system (1). Nevertheless also in this case we are concerned with investigating the results provided.

Lemma 3.1 Let b 62 R(A) and let the hypothesis of Theorem 3.1 hold. The solution ~x = x1 +Pl̂
i=1 ®ipi provided by CG when solving (1) is not a least square solution of (1).

Proof.
Indeed (see (15) and (16)) from Theorem 3.1 directions p1; : : : ; pl̂ are generated. Then, setting

¹pi = i¡1(A)y, i = 1; : : : ; l̂, we have pi = ¹pi + !i¡1z and recalling that rT
i pi = rT

1 pi,

~x = x1 +
l̂X

i=1

®ipi = x1 +
l̂X

i=1

pip
T
i

pT
i Api

r1

= x1 +
l̂X

i=1

·
¹pi ¹pT

i

¹pT
i A¹pi

r1 + !i¡1
kzk2¹pi + ¹pT

i yz + !i¡1kzk2z

¹pT
i A¹pi

¸

= x1 +
l̂X

i=1

·
¹pi ¹pT

i

¹pT
i A¹pi

r1 + !i¡1
kzk2

¹pT
i A¹pi

¹pi

¸
+

l̂X

i=1

!i¡1

·
¹pT

i y + !i¡1kzk2

¹pT
i A¹pi

¸
z: (24)

Then, since r1 = y + z and y has nonzero orthogonal projection only on eigenvectors yj1; : : : ; yĵl
,

we get from (23) and (24)

PrR(A)(~x) = PrR(A)(x1) +

2
4

l̂X

i=1

¹pi ¹pT
i

¹pT
i A¹pi

3
5y +

2
4

l̂X

i=1

!i¡1
kzk2

¹pT
i A¹pi

¹pi

3
5

= PrR(A)(x1) + A+y +

2
4

l̂X

i=1

!i¡1
kzk2

¹pT
i A¹pi

¹pi

3
5 ; 8y 2 RS(r1;A): (25)

2We remark that for the linear space R(A) the following property holds:

P rR(A)(y1 ¡ y2) = P rR(A)(y1) ¡ PrR(A)(y2); 8y1 ; y2 2 IRn:
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Now, by contradiction let ~x be a least square solution of system (1), then it should be ~x = A+b + ~z
with ~z 2 N(A), hence

PrR(A)(~x) = A+b = A+(r1 + Ax1) = A+y + P rR(A)(x1): (26)

Comparing (25) and (26) we realize that (26) does not hold, because the right most term in (25) is
nonzero in general. Therefore, ~x cannot be a least square solution of system (1). 2

4 Issues on algorithm FLR when matrix A is singular

Here we aim at extending the results in [Hes75, Hes80] and the previous section, when considering
algorithm FLR in Table 3 for solving (1), in the case of inde¯nite and possibly singular matrix
A. When the inde¯nite matrix A is nonsingular and algorithm FLR has not yet stopped, at step
k we have either dk 6= 0 or ¢k 6= 0 [Fas05] (i.e. we are ensured thet either step kA or step kB

can be performed). In this section we are concerned with recasting an analogous result, under the
hypothesis that matrix A is singular. Observe that at step k of algorithm FLR, dk = 0 implies
[Fas05]

¢k = ¡kApkk4:

Hence if dk = 0 and matrix A is singular, then ¢k is nonzero as long as

pk 62 N(A); k < n: (27)

The following theorem yields some results in order to satisfy condition (27).

Theorem 4.1 Consider the linear system (1) and let matrix A be inde¯nite and possibly singular.
Let in algorithm FLR r1 = y + z, with y = PrR(A)(r1) and z = PrN(A)(r1). Suppose y has nonzero

projection on l eigenvectors yj1; : : : ; yjl of A, and only l̂ · l eigenvalues associated to yj1 ; : : : ; yjl

are distinct. Then algorithm FLR generates the sequences:

ri = Pi¡1(A)y + z; i · l̂;

pi = Qi¡1(A)y + mi¡1z; i · l̂;

qi = Ri(A)y + niz; i · l̂;

(28)

where Pj(²), Qj(²) and Rj(²) are real polynomials of degree j; mj, nj 2 IR. Moreover, directions
pi and qi satisfy relations:

pi 62 N(A); i · l̂;

qi 62 N(A); i · l̂ ¡ 1:
(29)

Proof.
By complete induction, when i = 1 then r1 = p1 = y + z, and if step 1B is performed q1 = Ay,
according with (28). Moreover, let

ri¡1 = Pi¡2(A)y + z;
pi¡1 = Qi¡2(A)y + mi¡2z;
qi¡1 = Ri¡1(A)y + ni¡1z;

then the following cases must be considered, depending on whether algorithm FLR performs step
iA or step iB.

9



² Step iA is performed, then

ri = Pi¡2(A)y + z ¡ ai¡1AQi¡2(A)y = Pi¡1(A)y + z;

pi = Pi¡1(A)y + z + bi¡1 [Qi¡2(A)y + mi¡2z] = Qi¡1(A)y + mi¡1z:

² Step iB is performed, then

ri = Pi¡3(A)y + z ¡ ĉi¡2AQi¡3(A)y ¡ d̂i¡2ARi¡2(A)y = Pi¡1(A)y + z;

pi = Pi¡1(A)y + z +
b̂i¡2

¢i¡2
[di¡2 (Ri¡2(A)y + ni¡2z) ¡ ±i¡2 (Qi¡3(A)y + mi¡3z)]

= Qi¡1(A)y + mi¡1z;

and depending on whether the previous step was (i ¡ 1)A or (i ¡ 2)B, we obtain for vector qi at
step iB the relations:

qi = Api + ¯i¡1pi¡1 = AQi¡1(A)y + ¯i¡1 [Qi¡2(A)y + mi¡2z] = Ri(A)y + niz;

qi = Api +
^̄

i¡2

¢i¡2
(di¡2qi¡2 ¡ ±i¡2pi¡2) = A[Qi¡1(A)y + mi¡1z] +

^̄
i¡2

¢i¡2
(di¡2qi¡2 ¡ ±i¡2pi¡2)

= Ri(A)y + niz;

according with (28). As regards (29), the hypotheses ensure that pi 2 N(A) if and only if
Qi¡1(A)y = 0. By Lemma 2.1 the latter equality cannot hold as long as i · l̂. Similarly we
have qi 2 N(A) if and only if Ri(A)y = 0, hence, as long as i < l̂ ¡ 1, qi 62 N (A). 2

Now consider algorithm FLR in Table 3 and let vectors tk, k · n, be de¯ned in the following
way:

if jdkj ¸ ²kkpkk2 then set ®k = ak and tk = pk;

if jdkj < ²kkpkk2 then set

½
®k = ĉk and tk = pk;

®k+1 = d̂k and tk+1 = qk:

(30)

Proposition 4.1 Let matrix A in (1) be inde¯nite and possibly singular, let r1 satisfy (7) and
the hypothesis of Lemma 2.1. Then algorithm FLR generates directions t1; : : : ; t l̂, with ti 62 N(A),

i = 1; : : : ; l̂, and these vectors are linearly independent.

Proof.
The result straightforwardly holds from [Fas05], Theorem 4.1 and Lemma 2.1. 2

4.1 Algorithm FLR and the Moore-Penrose pseudoinverse

In this section we complete the analogy between algorithms CG and FLR, when they are applied for

solving (1) and matrix A is singular. In particular we aim at obtaining for algorithm FLR relations
similar to (23) and (25). Consider Theorem 4.1 and suppose FLR has generated l̂ directions t1; : : : ; tl̂
before stopping. Then, if z = 0 we prove that algorithm FLR can provide an approximation of the
Moore-Penrose pseudoinverse A+ (where A is inde¯nite and possibly singular).
More speci¯cally, we introduce the following linear subspace, dependent on matrix A and vector r1

RP (r1; A) = spanfw1; : : : ; wl̂g; (31)

where w1; : : : ;wl̂ are eigenvectors of matrix A, associated to distinct nonzero eigenvalues, on which
the initial residual r1 has nonzero projection. Now, since r1 = y + z, from relation (28) algorithm

10



FLR can give the solution ~x of (1) provided that z = 0. Moreover, if b 2 R(A) (i.e. z = 0) exactly
l̂ directions will be generated by algorithm FLR before converging to ~x. Indeed, Lemma 2.1 and
Theorem 4.1 ensure that algorithm FLR generates exactly the independent directions t1; : : : ; tl̂,

since the last step performed by FLR is either step (l̂ ¡ 1)A or step (l̂ ¡ 2)B. As a consequence, if
~x is a solution of linear system (1) detected by algorithm FLR, by the de¯nition of Moore-Penrose
pseudoinverse [CM79]

P rR(A)(~x) = A+b = A+(r1 + Ax1) = A+r1 + PrR(A)(x1); (32)

where matrix A is inde¯nite and possibly singular. Moreover, from (30)

~x = x1 +

l̂X

i=1

®iti; (33)

and assuming z = 0, from (28) of Theorem 4.1:

PrR(A)(~x) = P rR(A)(x1) +
l̂X

i=1

®iti: (34)

Finally, combining (32) and (34), and considering again relation z = 0, along with the expression
of coe±cients ®i, i = 1; : : : ; l̂ in (30), we have3:

A+y =
l̂X

i=1

®iti =
X

i2S1

aipi +
X

i2S2

h
ĉipi + d̂iqi

i

=
X

i2S1

pT
i ri

pT
i Api

pi +
X

i2S2

·
(eipi ¡ ±iqi)

Tri

¢i
pi +

(diqi ¡ ±ipi)
T ri

¢i
qi

¸
: (35)

Now, it can be readily proved that pT
i ri = pT

i r1, qT
i ri = qT

i r1 [Fas05]. Thus, recalling that ¢i 6= 0
in (35), Table 3 and (31) yield for any y 2 RP(r1;A)

0 = A+y ¡
X

i2S1

pip
T
i

pT
i Api

r1 ¡
X

i2S2

·
pi(eipi ¡ ±iqi)

T

¢i
+

qi(diqi ¡ ±ipi)
T

¢i

¸
r1

= A+y ¡

2
664

X

i2S1

pipT
i

pT
i Api

+
X

i2S2

(pi qi)

µ
ei ¡±i

¡±i di

¶µ
pT

i

qT
i

¶

¢i

3
775y

=

2
4A+ ¡

X

i2S1

pip
T
i

pT
i Api

¡
X

i2S2

(pi qi)

µ
di ±i

±i ei

¶¡1 µ
pT

i

qT
i

¶3
5y (36)

=
h
A+ ¡ (t1 ¢ ¢ ¢ t l̂)B

¡1

l̂
(t1 ¢ ¢ ¢ t l̂)

T
i

y; Bl̂ = diagi2S1;j2S2

½
di ;

µ
dj ±j

±j ej

¶¾
: (37)

Observe that in (36), whenever the pairs (pi; qi), i 2 S2, are conjugate (i.e. ±i = 0, for any i 2 S2),
then relation (37) reduces exactly to (23).

3In the following relations we have introduced the pair of disjoint sets S1 and S2 such that: S1 is the set of indices
h · l̂ for which algorithm FLR performs step hA , while S2 is the set of indices h · l̂ for which algorithm FLR
performs step hB. Thus, for the cardinality of the sets S1 and S2 relation j S1 j +2 j S2 j = l̂ holds.

11



In addition, let (¸i; vi), i = 1; : : : ;n, be the eigenpairs of the symmetric nonsingular matrix C 2
IRn£n. Then the spectral form of C¡1 is simply [GV89]

C¡1 =
nX

i=1

1

i̧
viv

T
i = (v1 ¢ ¢ ¢vn)¤¡1(v1 ¢ ¢ ¢ vn)

T ; ¤ = diag1·i·n f¸ig ;

which is clearly generalized by (37) in the singular case. Finally, likewise CG we prove the following

Theorem 4.2 Let b 62 R(A) and let the hypothesis of Theorem 4.1 hold. Then the solution ~x =

x1 +
Pl̂

i=1 ®iti, calculated by algorithm FLR when solving (1) is not a least square solution of (1).

Proof.
Consider relation (28) and let b 62 R(A) (i.e. z 6= 0). From Lemma 2.1 algorithm FLR provides
in exact arithmetic rl̂+1 = z, after the generation of directions t1; : : : ; tl̂. Now, by means of the
substitutions ¹pi = Qi¡1(A)y and ¹qi = Ri(A)y in relations (28), we obtain from Table 3

~x = x1 +

l̂X

i=1

®iti = x1 +

2
4X

i2S1

pip
T
i

pT
i Api

+
X

i2S2

(pi qi)

µ
di ±i

±i ei

¶¡1 µ
pT

i

qT
i

¶3
5r1

= x1 +
X

i2S1

[¹pi + mi¡1z] [ ¹pi + mi¡1z]T

¹pT
i A¹pi

r1 +

+
X

i2S2

(¹pi + mi¡1z ¹qi + niz)

µ
di ±i

±i ei

¶¡1 µ
¹pT

i + mi¡1z
T

¹qT
i + niz

T

¶
r1;

and since ¹pT
i z = ¹qT

i z = 0, zT r1 = kzk2, we obtain

~x = x1 +
X

i2S1

·
¹pi ¹pT

i

¹pT
i A¹pi

r1 + kzk2 mi¡1

¹pT
i A¹pi

¹pi

¸
+ ¸1z +

+
X

i2S2

"
(¹pi ¹qi)

µ
di ±i

±i ei

¶¡1 µ
¹pT
i

¹qT
i

¶
r1 + (38)

+ kzk2(¹pi ¹qi)

µ
di ±i

±i ei

¶¡1 µ
mi¡1

ni

¶#
+ ¸2z;

where ¸1;¸2 2 IR summarize the dependency of the solution point ~x from vector z. Now, observe
that ~x can be a least squares solution of (1) if and only if ~x = A+b + ~z, with ~z 2 N (A). Thus,
projecting ~x in (38) onto the subspace R(A), we simply have

P rR(A)(~x) = PrR(A)(x1) +
X

i2S1

·
¹pi ¹p

T
i

¹pT
i A¹pi

y + kzk2 mi¡1

¹pT
i A¹pi

¹pi

¸
+

+
X

i2S2

"
(¹pi ¹qi)

µ
di ±i

±i ei

¶¡1 µ
¹pT
i

¹qT
i

¶
y + (39)

+ kzk2(¹pi ¹qi)

µ
di ±i

±i ei

¶¡1 µ
mi¡1

ni

¶#
: (40)

Finally, recalling (32) and (36), and considering in (39) the terms which contain kzk2, we conclude
that if b 62 R(A), ~x is not a least square solution of the linear system (1). 2
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5 The Lanczos process and algorithm FLR

In this section we describe a twofold result: ¯rst we report some theoretical properties of the
Lanczos process (Table 2) in case matrix A in (1) is singular. This aims at investigating possible
similarities with the results of Section 4, where algorithm FLR is studied in the singular case. Then,
a relevant relationship between the Lanczos vectors fuig and the residuals frig calculated by the
algorithm FLR is accomplished. We prove that the proper choice of parameter "k, at step k of
algorithm FLR, plays a key role for the latter purpose.

Theorem 5.1 Consider the linear system (1) where A is inde¯nite and possibly singular. Consider
the Lanczos process and let u1 = y+z, with y = P rR(A)(u1) and z = PrN(A)(u1). Let y have nonzero

projection on l eigenvectors yj1; : : : ; yjl of A, and only l̂ · l eigenvalues associated to yj1 ; : : : ; yjl

are distinct. Then, the Lanczos process generates the sequence of orthonormal vectors

ui = Ui¡1(A)y + ´i¡1z; 1 · i · l̂; (41)

where Uj(²) is a real polynomial of degree j and ´j 2 IR, with (j ¸ 3)

U0(A) = I
±0

; ´0 = 1
±0

;

U1(A) = 1
±1

(A ¡ °1I)U0(A); ´1 = ¡°1´0
±1

;

Uj¡1(A) = 1
±j¡1

[(A ¡ °j¡1I)Uj¡2(A) ¡ ±j¡2Uj¡3(A)] ; ´j¡1 = ¡°j¡1´j¡2 + ±j¡2´j¡3

±j¡1
:

(42)

Moreover ui 62 N(A), for any i · l̂.

Proof.
From the hypothesis and Lemma 2.1, the Lanczos process performs exactly l̂ iterations before
stopping. Finally, considering the guidelines of Theorem 4.1, complete induction yields (41) and
(42). 2

Theorem 5.2 Let matrix A in (1) be inde¯nite and possibly singular. Suppose the Lanczos process
and algorithm FLR are applied to solve (1), with x1 = 0 in algorithm FLR. Then in exact arithmetic
algorithms Lanczos and FLR perform the same number of iterations.

Proof.
Evidently, if at the step k both the Lanczos process and algorithm FLR have not yet stopped,
they have respectively generated the orthogonal sequences u1; : : : ; uk and t1; : : : ; tk, in the Krylov
subspaces Kk(u1; A) and Kk(r1;A). Since x1 = 0

Kk(u1; A) ´ Kk(r1; A); (43)

so that the statement holds from (28), (41) and Lemma 2.1. 2

Theorem 5.3 The vectors ui, i ¸ 1, and ri=krik, i ¸ 1, generated respectively by the Lanczos
process and algorithm FLR with x1 = 0, in exact arithmetic satisfy relation:

ui = si
ri

krik ; si 2 f+1; ¡1g: (44)

13



Proof.
By complete induction, x1 = 0 yields

u1 =
r1

kr1k =
b

kbk : (45)

Now suppose ui¡1 = si¡1ri¡1=kri¡1k, we prove that ui = siri=krik. On this purpose, let l̂ be
the number of iterations performed by Lanczos process and algorithm FLR, according with The-
orem 5.2. Recall that the Lanczos vectors u1; : : : ;ul̂, satisfy uT

i uj = 0, l̂ ¸ i 6= j ¸ 1 [GV89].
Furthermore, considering at step kB of algorithm FLR the dummy residual [Fas01, BC94]

rk+1 = ¡¹®krk¡(1+¹®k) sgn(dk)Apk; ¹®k = ¡ jdkj
krkk2 + jdkj; sgn(dk) =

½
1 dk ¸ 0

¡1 dk < 0;
(46)

the sequence r1; : : : ; rl̂ satis¯es rT
i rj = 0, where l̂ ¸ i 6= j ¸ 1 [Fas05]. Now observe that

½
ui 2 Ki(u1;A)
ui ? Ki¡1(u1;A) = spanfKi¡2(u1; A); ui¡1g;

½
ri 2 Ki(r1; A)
ri ? Ki¡1(r1; A) = spanfKi¡2(r1; A); ri¡1g;

(47)

and from (45) and the inductive hypothesis Ki¡1(u1; A) = Ki¡1(r1; A). Thus, from (45) and (47)
ui and ri are parallel. Finally, since kuik = 1 relation (44) holds. 2

Theorem 5.4 Consider algorithm FLR in Table 3. Let x1 = 0 and let at step iB the dummy
residual (46) be calculated. If at step i the parameter "i is chosen according with

0 < ¹" · "i; step iA;

0 < ¹" · "i < min

½kApik2krik2

kpik4 ;
kApik4

¸Mkpik2kqik2

¾
; step iB;

(48)

then in exact arithmetic the sequences fuig and fri=krikg generated by algorithms Lanczos and
FLR satisfy

ui = si
ri

krik ; i ¸ 1; (49)

where
s1 = 1;

si = ¡si¡1 sgn(pT
i¡1Api¡1) if step (i ¡ 1)A is performed;

si¡1 = ¡si¡2 sgn(pT
i¡2Api¡2)

si = ¡si¡2

9
=
; if step (i ¡ 2)B is performed:

(50)

Proof.

The hypothesis x1 = 0 trivially yields u1 = r1=kr1k, i.e. s1 = 1. Now, by complete induction we
prove (49) and (50) with i = 2 (step (i ¡ 1)A) and i = 3 (step (i ¡ 2)B). Then, we assume they

14



hold for i ¡ 1 and we prove them for i.
On one hand, in case i = 2 and step 1A was performed, then it is:

uT
2

µ
r2

kr2k

¶
=

µ
v1

kv1k

¶T r2

kr2k =
1

kv1kkr2k [(A ¡ °1I)u1]
T r2

=
1

kv1kkr2k(Au1)
T r2 =

s1

kv1kkr2kkr1k(Ar1)
T (r1 ¡ a1Ar1)

= ¡s1sgn(rT
1 Ar1)

kr1k2kAr1k2 ¡ (rT
1 Ar1)

2

kv1kkr2kkr1kjrT
1 Ar1j

= ¡s1sgn(pT
1 Ap1)

kr1k2kAr1k2 ¡ (rT
1 Ar1)2

kv1kkr2kkr1kjrT
1 Ar1j

;

which implies from Theorem 5.3
s2 = ¡s1sgn(pT

1 Ap1):

On the other hand, in case i = 3 and step 1B was performed, then we have:

uT
2

µ
r2

kr2k
¶

=

µ
v1

kv1k
¶T r2

kr2k =
s1

kv1kkr2k [(A ¡ °1I)u1]
T r2

=
1

kv1kkr2k(Au1)
T r2 =

s1

kv1kkr2kkr1k(Ar1)
T

£¡¹®1r1 ¡ (1 + ¹®1)sgn(pT
1 Ap1)Ar1

¤

=
¡s1

kv1kkr2kkr1k
£
¹®1r

T
1 Ar1 + (1 + ¹®1)sgn(pT

1 Ap1)kAr1k2
¤

=
¡s1sgn(pT

1 Ap1)

kv1kkr2kkr1k
·
¡ (pT

1 Ap1)
2

kr1k2 + jd1j +
kr1k2kAr1k2

kr1k2 + jd1j
¸

;

which again implies from Theorem 5.3

s2 = ¡s1sgn(pT
1 Ap1);

and

uT
3

µ
r3

kr3k

¶
=

[(A ¡ °2I)u2 ¡ ±1u1]
T r3

kv2kkr3k =
(Au2)T r3

kv2kkr3k

=
s2(Ar2)

T r3

kv2kkr3kkr2k =
s2

³
(1+¹®1)sgn(pT

1 Ap1)[r3¡r1+ĉ1Ap1 ]

d̂1
¡ ¹®1Ar1

´T
r3

kv2kkr3kkr2k

=
s2(1 + ¹®1)sgn(pT

1 Ap1)kr3k2

d̂1kv2kkr3kkr2k
;

which implies from Theorem 5.3 (the choice of "1 yields d̂1 > 0)

s3 = s2sgn(pT
1 Ap1) = ¡s1[sgn(pT

1 Ap1)]
2 = ¡s1:

Let us now prove (49) and (50) for index i. On this purpose, from the inductive hypothesis:

uT
i

µ
ri

krik
¶

=

µ
vi¡1

kvi¡1k
¶T ri

krik =
1

kvi¡1kkrik [(A ¡ °i¡1I)ui¡1 ¡ ±i¡2ui¡2]
T ri

=
1

kvi¡1kkrik
(Aui¡1)

T ri =
si¡1

kvi¡1kkrik
µ

A
ri¡1

kri¡1k
¶T

ri: (51)
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Now we analize two subcases. If step (i ¡ 1)A was performed, then (51) becomes

uT
i

µ
ri

krik
¶

=
si¡1

kvi¡1kkrik
µ

Ari¡1

kri¡1k
¶T

ri =
si¡1

kvi¡1kkrik

Ã ri¡1¡ri

ai¡1
¡ bi¡2Api¡2

kri¡1k

!T

ri

=
¡si¡1krik2

kvi¡1kkrikkri¡1kai¡1
= ¡si¡1sgn(pT

i¡1Api¡1)
krikjpT

i¡1Api¡1j
kvi¡1kkri¡1k3

;

which implies from Theorem 5.3

si = ¡si¡1sgn(pT
i¡1Api¡1):

If step (i¡2)B was performed we have two further cases. On one hand, using (30), (46) and relation
(51) it is

uT
i¡1

µ
ri¡1

kri¡1k

¶
=

si¡2

kvi¡2kkri¡1k

0
@

¡ ¹®i¡2ri¡2+ri¡1

(1+¹®i¡2)sgn(pT
i¡2Api¡2)

¡ A!1(ti¡4; ti¡3)

kri¡2k

1
A

T

ri¡1

=
si¡2kri¡1k2

kvi¡2kkri¡1kkri¡2k
¡1

(1 + ¹®i¡2)sgn(pT
i¡2Api¡2)

;

where !1(ti¡4; ti¡3) is a linear combination of vectors ti¡4 and ti¡3. The previous relation and
Theorem 5.3 imply

si¡1 = ¡si¡2sgn(pT
i¡2Api¡2):

Furthermore, considering that

ri = ri¡2 ¡ ĉi¡2Api¡2 ¡ d̂i¡2Aqi¡2;
qi¡2 = Api¡2 + !2(ti¡4; ti¡3);
ri¡1 = ¡¹®i¡2ri¡2 ¡ (1 + ¹®i¡2)sgn(pT

i¡2Api¡2)Api¡2;

where again !2(ti¡4; ti¡3) is a linear combination of vectors ti¡4 and ti¡3, it is

ri = ri¡2 ¡ ĉi¡2Api¡2 ¡ d̂i¡2A

"
¡ ri¡1 + ¹®i¡2ri¡2

(1 + ¹®i¡2)sgn(pT
i¡2Api¡2)

+ !2(ti¡4; ti¡3)

#
;

hence

Ari¡1 =

h
ri ¡ ri¡2 + ĉi¡2Ati¡2 + d̂i¡2A!2(ti¡4; ti¡3)

i

d̂i¡2

(1 + ¹®i¡2)sgn(pT
i¡2Api¡2) + ¹®i¡2Ari¡2:

Therefore relation (51) becomes

uT
i

µ
ri

krik
¶

=
si¡1

kvi¡1kkrik
µ

A
ri¡1

kri¡1k
¶T

ri =
si¡1

kvi¡1kkrikkri¡1k
(1 + ¹®i¡2)sgn(pT

i¡2Api¡2)

d̂i¡2

krik2

=
kriksi¡1

kvi¡1kkri¡1k

kri¡2k2

kri¡2k2+jdi¡2jsgn(tT
i¡2Ati¡2)

d̂i¡2

; (52)

and according with the choice of "i¡2, the coe±cient d̂i¡2 is positive, so that (52) and Theorem 5.3
yield

si = si¡1sgn(pT
i¡2Api¡2) = ¡si¡2[sgn(pT

i¡2Api¡2)]2 = ¡si¡2. 2
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Remark 5.1 Observe that condition (48) on "i is slightly less restrictive in respect to condition
(12) proposed in [Fas05], since it does not require the knowledge of ¸m. As regards the apparently
cumbersome computation of qi in (48), refer to the considerations in [Fas05].
We also highlight that the approximation of the Moore-Penrose pseudoinverse A+, provided in (37)
by algorithm FLR, is not inexpensively available from the Lanczos process. In particular, the set of
directions t1; : : : ; t l̂ should be ad hoc generated by the Lanczos process.

Note that relations (49) and (50) are also a generalization of the results reported in [CGT00], by
replacing CG with algorithm FLR. In particular, in matrix terms the Lanczos process gives at step
k [CGT00]

T
(L)
k = UT

k AUk; (53)

where

T(L)
k =

0
BBBB@

±0 °1

°1 ±1 ¢
¢ ¢ ¢

¢ ±k¡1 °k

°k ±k

1
CCCCA

; Uk = (u1 ¢ ¢ ¢ uk);

and relations (49)-(50) can be restated as

Uk = RkSk; (54)

where

Rk =

µ
r1

kr1k ¢ ¢ ¢ rk

krkk

¶
; Sk = diag1·i·kfsig:

From (53) and (54) we obtain

T(L)
k = ST

k (RT
k ARk)Sk = SkT (F LR)

k Sk; (55)

where the tridiagonal matrix T
(F LR)
k is available at step k of algorithm FLR. The explicit expression

of T (F LR)
k , in terms of the coe±cients of algorithm FLR, is given in [Fas01].

Proposition 5.1 In the hypothesis of Theorem 5.4 and in exact arithmetic, the tridiagonal matrix

T (L)
k by the Lanczos process is a straightforward by-product of algorithm FLR, as indicated in (55).

Furthermore, in the hypothesis of Theorems 5.1 and 5.4, the solution ~x of (1) provided by the

Lanczos process, may be given in terms of algorithm FLR quantities. Indeed, ~x = Ul̂[T
(L)

l̂
]¡1kbke1

[S03] and from (55)

~x = Ul̂Sl̂

h
T

(F LR)

l̂

i¡1
Sl̂kbke1 = Rl̂

h
T

(FLR)

l̂

i¡1
Sl̂kbke1 = Rl̂

h
T

(F LR)

l̂

i¡1
kbke1;

where the last equality follows from relation eT
1 = (1 0 ¢ ¢ ¢ 0)T and (50).

6 Conclusions and Perspectives

This paper describes several properties of the planar-CG algorithm FLR proposed in [Fas05], for
solving inde¯nite linear systems. We have proved that the sequence of orthogonal residuals frig by
algorithm FLR, yields the sequence of orthogonal vectors fuig from the Lanczos process, provided
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that parameter "i at step i of FLR is chosen according with Theorem 5.4. Since algorithm FLR is a
cheap CG-type method, this result encourages to consider a numerical comparison of these methods
within nonconvex optimization frameworks, where e±cient tools for the solution of inde¯nite linear
systems are claimed.
On the other hand we have studied the solution of linear system Ax = b, A 2 IRn£n inde¯nite and
possibly singular, by means of the algorithm FLR: this extended the results provided by the CG
in the positive semide¯nite case [Hes75].

We conclude that algorithm FLR proved to be a general tool for the solution of symmetric linear
systems, i.e. for the search of stationary points of quadratic forms, in unconstrained optimization
frameworks. In addition, the approximation of the Moore-Penrose pseudoinverse A+ provided by
algorithm FLR, may be a fruitful instrument for the construction of preconditioners [K02]. Finally
as Section 1 reported, the Newton method for the computation of real eigenvectors, could gain
advantage from considering algorithm FLR.
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