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Abstract. In this paper, we present a new conjugate gradient (CG)
based algorithm in the class of planar conjugate gradient methods.
These methods aim at solving systems of linear equations whose
coefficient matrix is indefinite and nonsingular. This is the case where
the application of the standard CG algorithm by Hestenes and Stiefel
(Ref. 1) may fail, due to a possible division by zero. We give a com-
plete proof of global convergence for a new planar method endowed
with a general structure; furthermore, we describe some important
features of our planar algorithm, which will be used within the opti-
mization framework of the companion paper (Part 2, Ref. 2). Here,
preliminary numerical results are reported.

Key Words. Large-scale unconstrained optimization, iterative meth-
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1. Introduction

In this paper, we describe a new iterative algorithm for solving sym-
metric linear systems with the following general form:

Ax =b, (1)
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where the matrix A ∈ R
n×n may be indefinite and nonsingular the vector

b ∈R
n, and n is large. Several iterative algorithms were proposed in liter-

ature for the solution of (1); for n large, specific attention was devoted to
iterative schemes, since their practical implementation requires often much
less than O(n3) floating point operations. This has led to the development
of many iterative schemes (see Refs. 3–9 for tutorials) aiming at guaran-
teeing efficiency and effectiveness in the computation.

In the last decades, a larger number of real-life industrial applications
have taken advantage of the use of iterative methods for the solution of
large-scale indefinite linear systems. The sparsity of the problems encour-
ages usually the use of specific iterative methods (see e.g. Refs. 9 and 5).

The versatility of iterative algorithms solving the large-scale prob-
lem (1) suggests their natural embedding within optimization schemes. In
fact, consider the problem of minimizing the nonlinear function f (x),
where f : R

n → R is twice continuously differentiable. We adopt the iter-
ative scheme

xk+1 =xk +dk,

where the sequence {xk} approaches the solution x∗ and dk is a suitable
direction. We can use the Newton method (Ref. 10) for calculating effi-
ciently the direction dk which solves the Newton equation (see Ref. 11)

∇2f (xk)d +∇f (xk)=0, d ∈R
n, (2)

where ∇2f (xk) and ∇f (xk) are respectively the Hessian matrix and the gra-
dient of the nonconvex function f (x) calculated at the current point xk. The
convergence of the optimization method is affected strongly by the accuracy
in solving (2); however, the adoption of truncated schemes, when n is large,
often does not require high precision in calculating an approximate solution
dk. In particular, whenever the current point xk is far from x∗, the calcula-
tion of the exact solution of (2) turns out to be worthlessly expensive. Thus,
a reliable but simple iterative algorithm, coping with the case where ∇2f (xk)

is indefinite, would be highly desirable as a solver for the linear system (2).
Unfortunately, the solution of (2) might be a saddle point or a maximum
point of f (x); therefore, the globalization scheme should properly take into
account the local information on f (x), contained in the direction dk, in
order to avoid at least convergence to a maximum point. In a line search
approach, the latter result may be achieved by means of proper applica-
tion of the iterative method solving the large-scale system (2). One option is
using an iterative method providing a pair of directions, say dk and sk, with
the following purposes:
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(i) dk solves approximately the system (2) and ensures the conver-
gence in a neighborhood of the solution point x∗;

(ii) sk is a negative curvature direction of the function f (x), i.e.
sT
k ∇2f (xk)sk ≤0, and is calculated in such a way that (Ref. 12)

sT
k ∇2f (xk)sk →0 implies min

{
0, λm

[
∇2f (xk)

]}
→0,‖sk‖→0,

where λm[∇2f (xk)] is the smallest eigenvalues of ∇2f (xk). The
direction sk has the specific purpose of forcing the convergence
of the optimization method toward the point x∗ which satisfies
the second-order necessary optimality conditions; i.e.,

∇f (x∗)=0 and sT ∇2f (x∗)s ≥0, ∀s ∈R
n.

Under the mild assumptions (Ref. 13), it can be proved that, replacing the
scheme

xk+1 =xk +dk

with the scheme

xk+1 =xk +αkdk +βksk,

with suitable αk, βk ∈ R, is efficient and effective for convergence toward
a solution point x∗ that satisfies the second-order necessary conditions of
optimality (Ref. 12). We remark that, in this case, the choice of the itera-
tive method is crucial for the calculation of vectors dk and sk.

Another way for avoiding the convergence of the Newton method
toward a maximum point is by means of a so called modified Newton
method (Ref. 14), which is globally convergent modification of the Newton
method, in the case where the Hessian matrix ∇2f (xk) is not positive defi-
nite.

Here, the iterative method adopted for approximately solving equa-
tion (2) has to rearrange the information on ∇2f (xk) provided by the
Newton direction dk. In particular, the iterative method should suitably
separate the information contained in dk, which is related to both the con-
vexity and concavity regions of f (x) near xk. In a related paper (Ref. 2),
we shall consider a modified Newton method, which uses the planar CG
algorithm proposed in this paper, within a line search framework. We shall
give evidence of its goodness by solving several problems of the CUTE
collection (Ref. 15).

The method that we propose here is an extension of the CG method,
which is an example of a simple and appealing iterative method that can
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be used as long as ∇2f (xk) is positive definite. The CG method was
proposed originally by Hestenes and Stiefel (Ref. 1) and is usually quite
effective for approximately solving the symmetric linear system (1). There
are several iterative variants of CG (see for instance Refs. 16–17), essen-
tially aiming at a generalization of some properties of stability and accu-
racy. However, when the matrix A is indefinite and we try to apply the
CG, the basic algorithm can stop beforehand and therefore cannot be the
method of choice.

Some attempts for overcoming the above shortcoming are provided by
the introduction of suitable iterative methods (see Refs. 18–20, 9). Essen-
tially, like the CG, they generate at step k, k ≤ n, an increasing basis
of independent vectors {b,Ab, . . . ,Ak−1b}, the Krylov subspace Kk(A, b);
then, they approximate the solution of (1) on this subspace. We can clas-
sify these algorithms into the following two classes (Ref. 21):

(i) Ritz-Galerkin Class. This includes those methods which provide at
step k the new residual rk =b−Axk, in such a way that

rk ⊥ Kk(A, b).

(ii) Minimal Residual Class. At step k, the solution xk satisfies

xk =argminx∈x1+Kk(A,b) ‖Ax −b‖2
2.

In this paper we focus on an iterative algorithm in Ritz-Galerkin
class, which retains the low overall computational cost of CG vis-a-vis
the Lanczos, MINRES, GMRES algorithms and maintains a satisfactory
exactness when applied to solving problem (1). More precisely, we consider
the category of planar methods (see Refs. 22–24 and 25–28); the rationale
behind these methods may be roughly summarized as follows. Let A be
indefinite and nonsingular, and suppose that we apply the CG for solv-
ing (1). Let pk be the conjugate direction at step k, such that pT

k Apk =0;
then, a pivot breakdown occurs and the CG stops prematurely.

On the other hand, planar CG methods generate a second direction
qk; instead of performing the search of the stationary point on the line
xk + αpk, α ∈ R (namely, the kAth CG-step), they perform the search on
the 2-dimensional linear manifold (namely, the kB th planar step)

xk + span{pk, qk}. (3)

The planar methods generate the direction qk such that the set
{p1, . . . , pk, qk} is independent. Moreover, they calculate the subsequent
direction pk+2 according to the relations

pT
i Apk+2 =qT

i Apk+2 =0, i ≤k;
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i.e., pk+2 recovers the conjugacy with all the previous directions
p1, . . . , pk, qk.

The algorithm in Ref. 22 (Algorithm Hes) generates the vector qk as
follows: at step k, the pair {pk, qk} is calculated, where the expression of
qk is such that

qT
k Api =qT

k Aqj =0, with i, j ≤k −1.

If pk and qk form a sufficiently wide angle, then the kB th planar step (3)
is performed; otherwise, the standard CG iteration is calculated. On the
other hand, the algorithms in Ref. 23 (Algorithm Lue) and Ref. 24 (Algo-
rithm Fas), provide the second direction qk if and only if relation

pT
k Apk =0 (4)

holds. Consequently, in case 0< |pT
k Apk|<εk, k <n, and εk is a small num-

ber, Algorithms Lue and Fas perform a standard CG step, even though it
might be numerically unstable. Thus, further accuracy in the practical imple-
mentation of these methods must be used, otherwise they might work out
inaccurate solutions. Algorithm Hes does not suffer for the latter drawback
and in our experience it provides usually more precise solutions with respect
to the others. On the other hand, Algorithms Lue and Fas are computation-
ally cheaper. Moreover, by setting condition (4) in the Hestenes method, we
can obtain the coefficients of Algorithms Lue and Fas. Therefore, the latter
algorithm can be interpreted as simplification of the former. On this stream,
the present paper is concerned with introducing and developing an iterative
algorithm solving problem (1), which recovers both the general structure of
Algorithm Hes and the low computational cost of Algorithms Lue and Fas.

In the following sections, we use the symbol ‖·‖ to denote the Euclid-
ean norm of either a real n-dimensional vector or a real n × n matrix.
Moreover, we use the notation xT y or < x,y > for the inner product
between the vectors x, y. The angle between the vectors x and y is indi-
cated with x̂, y, the field of complex numbers by is denoted C, and x ⊥ y

means that xT y =0. The symbols λM and λm denote the largest and small-
est absolute value of the eigenvalues of the Hessian matrix ∇2f (xk) (often
addressed as matrix A); the symbol � stands for “equal by definition”.
The subscript k denotes quantity calculated at step k.

Section 2 introduces the new proposed algorithm where we suppose
that the matrix A is indefinite and nonsingular; the convergence properties
are pointed out in Section 2.1, where an analysis of global convergence is
carried out. Section 2.2 deals with particular features of the directions gen-
erated by our algorithm. Section 3 contains conclusions and perspectives.
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2. New Planar Algorithm

As observed already in Section 1, at step k the planar methods con-
tain a test for switching between the CG step kA in the manifold xk +
αpk,α ∈R, and the planar step kB in the manifold (3). This test can affect
seriously the behavior of the algorithms. For Algorithms Lue and Fas,
the test simply attempts to verify whether pT

k Apk =0. Thus, when pT
k Apk

is small, but not exactly zero, the application of these algorithms may
involve numerical approximations. This shortcoming turns out to be less
relevant for Algorithm Hes, since at step k the test on the quantity

�k =
(
pT

k Apk

)(
qT
k Aqk

)
−

(
pT

k Aqk

)2

i.e.,

|�k|≤ εk

(
pT

k Aqk

)2
, εk =1/2,

is an inequality test (see also Section 2.2). However, the test on the quan-
tity �k is more expensive, since it requires, at each step, the computa-
tion of the vectors Apk,Aqk. Hence, for the planar algorithms investigated,
there is the following tradeoff: if the internal test is computationally cum-
bersome (e.g. Algorithm Hes with respect to Algorithms Lue and Fas),
the algorithm is less sensitive to numerical approximations. Of course,
this property holds within each iteration; thus, no final conclusion can be
argued a priori on the overall behavior of the algorithms.

A question deserving further investigation is the possibility of devel-
oping a new planar algorithm from Algorithm Hes, with the following fea-
tures:

(a) it must avoid the troublesome check of the relation pT
k Apk =0 and

replace it with an inequality test;
(b) it must preserve the low computational cost of Algorithms Lue

and Fas in order to be computationally cheaper than Algorithm
Hes.

In the following sections, we propose Algorithm FLR, which matches
the latter requirements and recovers partially the features of the algorithm
in Ref. 22.

2.1. Convergence Results. The following results can be established
for Algorithm FLR described below. We introduce the following conven-
tion, which will be used in the proofs, in order to simplify the treatment



JOTA: VOL. 125, NO. 3, JUNE 2005 529

(i ≤n):

if
∣∣pT

i Api

∣∣≥ εi‖pi‖2, then set αi =ai and ti =pi,

if
∣∣pT

i Api

∣∣≥ εi‖pi‖2, then set

{
αi = ĉi and ti =pi,

αi+1 = d̂i and ti+1 =qi.

Lemma 2.1. If residual rk+1[rk+2], calculated at step kA[kB ] of Algo-
rithm FLR, is not the null vector, then the directions ti , i =1, . . . , k+1[k+
2], do not coincide with the null vector.

Proof. The statement follows directly from the definition of rk+1 at
Step kA and rk+2 at Step kB .

Lemma 2.2. If rk 
=0, then dk =0 implies �k 
=0.

Algorithm FLR. This algorithm solves the linear system (1).

Step 1. Set k =1, x1 ∈R
n, r1 =b−Ax1.

If r1 =0, then stop. Else, set p1 = r1.
Step k. Compute dk =pT

k Apk; set εk >0.

If |dk|≥ εk‖pk‖2, go to Step kA.
If |dk|<εk‖pk‖2, go to Step kB .

Step kA. Set ak = rT
k pk/dk, xk+1 =xk +akpk, rk+1 = rk −akApk.

If rk+1 =0, then stop. Else, set bk =−pT
k Ark+1/dk and

pk+1 = rk+1 +bkpk. Set k =k +1 and go to Step k.
Step kB . If k =1, then set qk =Apk.

If k >1 and the previous step is (k −1)A, then set
βk−1 =−(Apk−1)

T Apk/dk−1 and qk =Apk +βk−1pk−1.
If k >1 and the previous step is (k −2)B , then set
β̂k−2 =−(Aqk−2)

T Apk and
qk =Apk + β̂k−2(dk−2qk−2 − δk−2pk−2)/�k−2.
Computeck=rT

k pk, δk=pT
k Aqk, ek =qT

k Aqk,�k =dkek − δ2
k .

Compute ĉk = (ckek − δkq
T
k rk)/�k, d̂k = (dkq

T
k rk − δkck)/�k.

Set xk+2 =xk + ĉkpk + d̂kqk, rk+2 = rk − ĉkApk − d̂kAqk.
If rk+2 =0, then stop. Else, compute b̂k =−qT

k Ark+2 and
set pk+2 = rk+2 + b̂k(dkqk − δkpk)/�k. Set k =k +2 and go
to Step k.

Proof. See Ref. 29.

The previous lemma reveals that, if matrix A is indefinite and non-
singular, Algorithm FLR can perform always either Step kA or Step kB ;
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hence it is well defined and cannot stick. In other words, provided that the
solution of (1) is not yet detected, from a theoretical viewpoint the algo-
rithm will not stop.

Theorem 2.1. If the residual rk+1 or rk+2, calculated at Step kA or
Step kB of Algorithm FLR, is not the null vector, then we have

Atk ∈ span{t1, . . . , tk+1}, (5)

and the following properties hold:

(A1) pT
k+1Ati =0, i ≤k

[
(A2) pT

k+2Ati =0, i ≤k +1
]
,

[
(B2) qT

k Ati =0, i ≤k −1
] ;

(C1) rT
k+1ti =0, i ≤k

[
(C2) rT

k+2ti =0, i ≤k +1
] ;

(D1) rT
k+1ri =0, i ≤k

[
(D2) rT

k+2ri =0, i ≤k
] ;

(E1) rT
i pk+1 = rT

1 pk+1, i ≤k +1
[
(E2) rT

i pk+2 = rT
1 pk+2, i ≤k +2

]
.

Moreover, item (B2) holds if rk+2 =0 too.

Proof. See Ref. 29.

Theorem 2.2. Suppose that the matrix A is indefinite and nonsin-
gular and that Algorithm FLR generates the directions t1, . . . , tk. Then,
t1, . . . , tk are linearly independent.

Proof. See Ref. 29.

The next theorem summarizes the convergence features of the pro-
posed algorithm.

Theorem 2.3. Suppose that the symmetric matrix A in (1) is indefi-
nite and nonsingular. Then, Algorithm FLR solves the linear system (1)
in at most n steps.

Proof. At Step k, Algorithm FLR has generated already k linearly
independent directions t1, . . . , tk; thus k ≤n. In addition, suppose that the
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algorithm stops at step m. Then, the point

x∗ =x1 +
m∑

i=1

αiti , m≤n, (6)

is the solution of problem (1); i.e.,

r1 =
m∑

i=1

αiAt.

Indeed, this follows from Theorem 2.1, after the multiplication of the
relation (6) by means of either the vector Api (Step iA) or the vectors
Api,Aqi (Step iB ). Thus, we obtain the expressions of αi (Step iA) and
αi, αi+1 (Step iB ) in Algorithm FLR.

We remark that, like in the CG, in this planar scheme for each step
we attempt to determine the solution of the system (1) on a linear mani-
fold, whose dimension is increased step by step.

A final numerical consideration should be pointed out with regard to
the quantity �k. In fact, we can interpret the statement of Lemma 2.2 in
the following weaker form: although the quantities dk and �k cannot be
both zero, whenever dk is near zero, then �k may be near zero too. Of
course, this situation may occur in practice and Algorithm FLR stops pre-
maturely: this motivates a further investigation on the properties of the
quantity �k in the next section.

2.2. Direction Angles Generated by Algorithm FLR. In this section,
we point out an interesting feature of the vectors ti , i ≥1 (see Section 2.1)
generated by Algorithm FLR. In particular, we prove that the test per-
formed at Step k by the latter algorithm affects the angles between the
directions that it generates.

2.2.1. Direction Angle in a Planar Step. Let us consider the test at
Step k of Algorithm FLR; we are concerned with proving the following
proposition.

Proposition 2.1. At Step kB of Algorithm FLR, the relation �k = 0
holds if and only if the vectors pk and qk are linearly dependent.

Proof. After a short calculation, we can verify the relation

�k =det(Ã),
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where

Ã=
(

pk qk

pk qk

)T (
A/2 0

0 A/2

)(
pk qk

pk qk

)
∈R

2×2; (7)

hence, �k = 0 if and only if the matrix Ã has not full rank (Sylvester’s
inequality), that is, if and only if the vectors pk and qk are parallel.

This result ensures that, if �k 
=0 at Step kB , then the vectors pk and
qk identify a plane. Now, we prove that, by a proper choice of the param-
eter εk, we have (see also Ref. 22):

−δ2
k ≤�k ≤−δ2

k/2, (8)

where

�k =dkek − δ2
k ,

with

dk =pT
k Apk, ek =qT

k Aqk, δk =pT
k Aqk =‖Apk‖2.

On this purpose, let ε̄ > 0 and suppose that pk and qk are both available
at Step k. Then, set εk >0 according to the expression

ε̄ ≤ εk ≤min
{
λ2

M‖pk‖/‖qk‖, λ4
m‖pk‖2/(2λM‖qk‖2)

}
. (9)

Proposition 2.2. Suppose that at Step k of Algorithm FLR, the test

|dk|≤ εk‖pk‖2 (10)

holds, where εk is chosen according to (9). Then, at Step kB of Algorithm
FLR, the following relation holds:

−δ2
k ≤�k ≤−δ2

k/2, (11)

where

δk =pT
k Aqk =‖Apk‖2.

Proof. See Ref. 29.
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Now, suppose that the relation (11) holds. Then, from Proposition 2.1
and the relation ‖pk‖ ≥ ‖rk‖ > 0, the vectors pk and qk are not parallel.
Moreover, Proposition 2.2 ensures that there exists a negative constant σk

such that

�k =σkδ
2
k , −1≤σk ≤−1/2. (12)

We shall prove now that the relation (12) implies a condition on the angle
ϕk between the vectors pk and qk. On this purpose, we rearrange the rela-
tion (12) as

�k −σkδ
2
k =0.

Then, similarly to (7), we find the matrix Bk ∈R
2×2 such that

�k −σkδ
2
k =det(Bk).

Finally, we point out suitable conditions on the coefficients of Bk, by
imposing �k −σkδ

2
k =0 [i.e., the relation (12)]: the latter conditions will be

used for investigating the angle ϕk. To this end, we want to determine a
pair of complex coefficients a and b (and the corresponding complex con-
jugate ā and b̄), which verify the relation:

0=�k −σkδ
2
k

=
(
pT

k Apk

)(
qT
k Aqk

)
− (1−σk)δ

2
k =det(Bk)

=det

[(
apk qk

pk bqk

)T (
A/2 ∅
∅ A/2

)(
āpk qk

pk b̄qk

)]

=det
[

(1/2)(aā +1)pT
k Apk (1/2)(a + b̄)pT

k Aqk

(1/2)(ā +b)qT
k Apk (1/2)(bb̄+1)qT

k Aqk

]
. (13)

Thus, if we indicate with |a| and |b| the moduli of a and b, from the cal-
culation of the last determinant we can deduce the conditions:

(
|a|2 +1

)(
|b|2 +1

)
/4=1, (14a)

|a + b̄|2/4=1−σk, (14b)

which will be used later on. Now, observe that
∣∣∣∣<

(
āpk

pk

)
,

(
qk

b̄qk

)
>

∣∣∣∣=
∣∣∣∣<

(
apk

pk

)
,

(
qk

bqk

)
>

∣∣∣∣=
∣∣∣(a + b̄)pT

k qk

∣∣∣ . (15)

Considering again the relation (13), we have

det(Bk)=0
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if and only if the complex vectors

(
apk

pk

)
,

(
qk

bqk

)

are linearly dependent, with a and b defined by (14). Thus, the relations
(15) and (13) imply

∣∣a + b̄
∣∣ ·

∣∣∣pT
k qk

∣∣∣=
∣∣∣∣<

(
apk

pk

)
,

(
qk

bqk

)
>

∣∣∣∣=
∥∥∥∥
(

apk

pk

)∥∥∥∥ ·
∥∥∥∥
(

qk

bqk

)∥∥∥∥

and performing the calculation we obtain

∣∣∣pT
k qk

∣∣∣= (aā +1)1/2 ‖pk‖
(
bb̄+1

)1/2 ‖qk‖/
∣∣a + b̄

∣∣ .

If we denote with ϕk the angle between vectors pk and qk, we obtain

|cosϕk|�
∣∣∣pT

k qk

∣∣∣ /‖pk‖‖qk‖
= [

(aā +1)
(
bb̄+1

)]1/2
/
∣∣a + b̄

∣∣

=
[(

|a|2 +1
)(

|b|2 +1
)]1/2

/
∣∣a + b̄

∣∣ ,

and from (14),

| cosϕk|=1/
√

1−σk, −1≤σk ≤−1/2.

Finally, by considering all the feasible values for cosϕk, we have that

either cosϕk =+1/
√

1−σk, −1≤σk ≤−1/2,

or cosϕk =−1/
√

1−σk, −1≤σk ≤−1/2.

Therefore, we summarize the latter result with the following proposition.

Proposition 2.3. Let ϕk be the angle between vectors pk and qk at
Step kB of algorithm FLR. Suppose that the test on dk is performed with
εk according to (9); then, the angle ϕk verifies one of the following bounds:
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√
2/3 ≥ cosϕk ≥ 1/

√
2, (16a)

−1
√

2 ≥ cosϕk ≥ −
√

2/3. (16b)

This implies that, as long as εk is chosen according to (9), at the
kB th planar step, the directions pk and qk are linearly independent.
Furthermore, observe that, when at Step k we perform the test (9), the
direction qk is not available. However, the computation of qk is a straight-
forward combination of the vector Apk with either pk−1 [if the previous
step was step (k − 1)A] or pk−2, qk−2 [if the previous step was step (k −
2)B ]. These vectors are all available at Step k; therefore, no further calcu-
lation is required in performing the test (9) for the vector qk.

2.2.2. Angles among the Directions Belonging to Different Steps.
Here, we prove that the directions t1, . . . , tk generated by Algorithm FLR
up to Step kA or (k − 1)B, k ≤ n, are uniformly linearly independent. In
particular, we accomplish the result evaluating an estimate for the angles
formed by the directions t1, . . . , tk. Suppose that the set of directions
{t1, . . . , tk}, k≤n, was generated by Algorithm FLR and that at Step i < k,
the parameter εi is chosen according to the relation (9). Three possible
cases may be considered:

(C1) The directions ti ≡pi and tj , i 
=j ≤k, are respectively used inside
Step iA and either Step jA or jB of Algorithm FLR4. Thus, from Theo-
rem 2.1,

pT
i Atj =0. (17)

Now, consider that, at Step iA of Algorithm FLR,

either pT
i Api > εi‖pi‖2, (18)

or pT
i Api <−εi‖pi‖2. (19)

From (18), we derive the following result:

cos(Âpi,pi)� (Api)
T pi/‖Api‖‖pi‖

>εi‖pi‖2/λM‖pi‖2

= εi/λM,

4We remark that if the direction tj is used inside Step jB , then the results that we obtain
in this item hold for the direction tj+1 too.
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and a similar conclusion holds for relation (19) too. Thus, from the rela-
tions (17) and (18), we get

π/2−arccos(εi/λM)≤|p̂i , tj |≤π/2+arccos (εi/λM), (20)

while from the relations (17) and (19), we obtain likewise

π/2−arccos(εi/λM)≤|p̂i , tj |≤π/2+arccos(εi/λM). (21)

(C2) The directions ti ≡pi and tj , j < i ≤ k (the same results hold for
tj+1 too), are used respectively inside Step iB and Step jB of Algorithm
FLR; thus, pT

i Atj =0. From Theorem 2.1, we have

rT
i pi =‖ri‖2 = cos(ri, pi)‖ri‖‖pi‖;

thus,

cos(ri, pi)=‖ri‖/‖pi‖. (22)

Since we performed the iB th planar step, we have that

either ti =pi = ri + b̂i−2
(
di−2qi−2 − δi−2pi−2

)
/�i−2,

with b̂i−2 =−qT
i−2Ari,

or pi = ri +bi−1pi−1, with bi−1 =−pT
i−1Ari/p

T
i−1Api−1.

In the first case, it is seen that

b̂i−2 =−qT
i−2Ari = (Api−2)

T Ari .

Furthermore, if we consider for εi−2 the relation (9) and for �i−2 the rela-
tion (11), we have

‖pi‖≤‖ri‖+
∥∥∥b̂i−2(di−2qi−2 − δi−2pi−2)/�i−2

∥∥∥
≤‖ri‖+

∣∣∣b̂i−2/�i−2

∣∣∣
∥∥∥di−2qi−2 −‖Api−2‖2pi−2

∥∥∥

≤‖ri‖+
∣∣(Api−2)

T Ari
∣∣ [|di−2|‖qi−2‖+λ2

M‖pi−2‖3
]

∣∣(pT
i−2Api−2

) (
qT
i−2Aqi−2

)−‖Api−2‖4
∣∣

≤‖ri‖
[

1+ λ2
M‖pi−2‖

[
εi−2‖pi−2‖2‖qi−2‖+λ2

M‖pi−2‖3
]

∣∣‖Api−2‖4 − (
pT

i−2Api−2
) (

qT
i−2Aqi−2

)∣∣
]

≤‖ri‖
[

1+ λ2
M‖pi−2‖

[
λ2

M‖pi−2‖3 +λ2
M‖pi−2‖3

]

1/2λ4
m‖pi−2‖4

]

≤‖ri‖
[
1+4(λM/λm)4

]
.
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Hence, the choice (9), the previous relation, and relation (22) yield

cos(ri, pi)≥λ4
m/

(
λ4

m +4λ4
M

)
.

Finally, since rT
i tj =0 and rT

i tj+1 =0, we simply have the final relation

π/2−arccos
[
λ4

m/
(
λ4

m +4λ4
M

)]
≤|p̂i , tj |
≤π/2+arccos

[
λ4

m/
(
λ4

m +4λ4
M

)]
. (23)

In the second case, with a similar reasoning, we obtain

‖ri‖/‖pi‖≥ εi−1/(εi−1 +λM) �⇒ cos(ri, pi)≥ εi−1/(εi−1 +λM),

and a relation similar to (23) holds.
(C3) The directions ti+1 ≡qi and tj or tj+1 are used respectively inside

Steps iB and jB of Algorithm FLR. We know already that qT
i Atj =0 and,

in order to estimate the angle q̂i , tj , we consider the relation

qT
i Api = cos(qi,Api)‖qi‖‖Api‖.

From the expression of qi in Algorithm FLR and Theorem 2.1, we have

qT
i Api =‖Api‖2;

thus,

cos(qi,Api)=‖Api‖/‖qi‖≥λm‖pi‖/‖qi‖.

Finally, from (9), we retrieve the expression of ‖pi‖/‖qi‖ and we obtain

cos(qi,Api)≥min
{
ε̄/λ2

M,
√

2ε̄λM/λ2
m

}
; (24)

hence, since (Api)
T tj =0 and (Api)

T tj+1 =0, we simply have the final rela-
tion

π/2−arccos
[
min

{
ε̄/λ2

M,
√

2ε̄λM/λ2
m

}]

≤|q̂i , tj |≤π/2+arccos
[
min

{
ε̄/λ2

M,
√

2ε̄λM/λ2
m

}]
. (25)

Taking into account the relations (16), (20), (21), (23), (25), we have the
following result summarizing the contents of the last two sections.
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Proposition 2.4. Let {t1, . . . , th}, h ≤ n, be the vectors (defined in
Section 2.1) generated by Algorithm FLR. Suppose that at Step k of
Algorithm FLR, the test on dk is performed with εk according to (9).
Then, the directions {t1, . . . , th} are uniformly linearly independent.

We complete this section by observing that the test (10) is inexpensive
inasmuch as all the quantities it contains are already calculated at the gen-
eral kth step. In addition, consider that ‖pk‖> ‖rk‖; thus, the bounds (9)
on εk may become unreliable only in the case of large ill-conditioning of
the matrix A.

In order to appreciate the conclusion of Proposition 2.4, observe that
in the case where exactly n directions ti , i =1, . . . , n are generated by Algo-
rithm FLR, for the matrix A the following factorization holds:

A=P T BP, P = [t1, . . . , tn],

where the matrix B has the expression

B =diagi≤n{Bi},

with

Bi =pT
i Api, if Step i is Step iA,

Bi =



pT
i Api pT

i Aqi

qT
i Api qT

i Aqi


 , if Step i is Step iB .

Thus, whenever the directions {t1, . . . , tn} are uniformly linearly indepen-
dent, Algorithm FLR has explored the Krylov subspace Kn(r1,A) ≡ R

n

and the condition number κ(P )=‖P ‖‖P −1‖ of the matrix P can be suit-
ably bounded.

3. Conclusions and Perspectives

In this paper, we have proposed a new CG-type method for the
iterative solution of large-scale indefinite linear systems. One feature of
the scheme is the capability of exploiting the negative eigenspaces of the
indefinite matrix A in (1). This avoids the well-known premature stopping
of a CG algorithm in the indefinite case.

A comparison between the planar CG methods and the other Krylov
algorithms for indefinite linear systems will be done in future works.
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Although Algorithm FLR was conceived as being embedded in an
optimization framework, we tested it also as a solver of symmetric indefi-
nite linear systems. In particular, we considered the solution of the lin-
ear system (1) with n=500, where we assigned both the condition number
(cond) and the clustering of the eigenvalues of the matrix A. The results
are reported in Ref. 29.

The versatility of iterative methods in investigating the solution of
indefinite problems induces us to conjecture that the application of the
proposed new algorithm might be specifically fruitful when used within
optimization frameworks. In particular, this holds whenever we consider
either highly nonlinear and/or nonconvex problems, where the overall opti-
mization method requires often the use of negative curvatures (see Refs.
28, 11, 13, 31, 32, 12) and the CG is definitely ineffective.

To this end, preliminary numerical experience in applying Algorithm
FLR is provided in Part 2. Further results will be provided in forthcom-
ing papers, where the case of a singular matrix A will be considered too.
Finally, it seems still necessary to give full evidence that our approach may
be competitive with other algorithms in the literature; indeed, the identifi-
cation of those problems where the planar methods might be preferable is
under investigation.
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