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Abstract

After briefly recalling some relevant approaches for preconditioning large symmetric linear sys-
tems, we describe a novel class of preconditioners. Our proposal is tailored for large indefinite
linear systems, which arise very frequently in many different contexts of numerical analysis and
nonlinear optimization. Our preconditioners are built as by–product of the Krylov subspace
method used to solve the system. We describe theoretical properties of the class of the precon-
ditioners we propose, namely their capability of both shifting some eigenvalues of the systems
matrix to controlled values, and reducing the modulus of the other ones. The results of a
numerical experimentation give evidence of the performance of our proposal.

Keywords: Preconditioners, large indefinite linear systems, large scale optimization, Krylov sub-
space methods.

1 Introduction

The efficient solution of large linear systems (or a sequence of slowly varying linear systems) is of fun-
damental importance in many contexts of numerical analysis and nonlinear optimization. In this pa-
per we first recall a few relevant approaches for preconditioning large indefinite linear systems. Ob-
serve that in many contexts of numerical analysis (see e.g. http://math.nist.gov/MatrixMarket)
and nonlinear optimization, the iterative efficient solution of linear systems and sequences of lin-
ear systems is sought. Truncated Newton methods in unconstrained optimization, KKT systems
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arising in constrained optimization, interior point methods, and PDE constrained optimization are
just some examples from optimization.

We first show that using information from quasi-Newton updates may often provide effective
preconditioners. The latter are sometimes endowed with theoretical properties related to the spec-
trum and the condition number of the preconditioned matrix. Then, we describe a novel class of
preconditioners for the solution of large indefinite linear systems, without assuming any sparsity
pattern of the system matrix.

In particular, the class of preconditioners we propose uses information collected from Krylov
subspace methods, in order to assess the structural properties of the system matrix. We iteratively
construct our preconditioners either indirectly using (but not performing) a factorization of the
system matrix (see, e.g. [7, 14, 30]), obtained as by product of Krylov subspace methods, or per-
forming a Jordan canonical form on a very small size matrix. We address our preconditioners using
a general Krylov subspace method; then, we prove theoretical properties for such preconditioners,
and describe results which indicate how to possibly select the parameters which characterize the
definition of the preconditioners.

The basic idea of our approach is to apply a Krylov subspace method to generate a positive
definite approximation of the inverse of the system matrix. The latter is then used to build our
preconditioners, needing to store just a few vectors, without requiring any product of matrices. We
assume that the entries of the system matrix are not known and the information necessary to build
the preconditioner is gained by using a routine, which computes the product of the system matrix
times a vector.

In the paper [10] we experiment with our preconditioners both numerical analysis and nonconvex
optimization frameworks. In particular, we test our proposal on significant linear systems from the
literature. Then, we focus on the so called Newton–Krylov methods, also known as Truncated
Newton methods (see [24] for a survey). In these contexts, both positive definite and indefinite
linear systems are considered.

We recall that in case the optimization problem in hand is nonconvex, i.e. the Hessian matrix
of the objective function is possibly indefinite and at least one eigenvalue is negative, the solution
of Newton’s equations within Truncated Newton schemes may require some care. Indeed, the
Krylov subspace method used to solve Newton’s equation, should be suitably applied considering
that optimization frameworks require the computation of descent directions, which have to satisfy
additional properties [5, 25]. In this regard our proposal provides a tool, in order to preserve the
latter properties.

The paper is organized as follows. In Section 2 we briefly recall relevant approaches from the
literature. Then, in Section 3 we describe our class of preconditioners for large indefinite linear
systems, by using a general Krylov subspace method. We detail some theoretical properties of our
proposal, along with some hints on its calculation. Finally, a section of conclusions and future work
completes the paper.

As regards the notations, for a n × n real matrix M we denote with Λ[M ] the spectrum of
M ; Ik is the identity matrix of order k and we use the capital letter T to indicate a tridiagonal
matrix. Finally, with C ≻ 0 we indicate that the matrix C is positive definite, and ∥ ⋅ ∥ denotes
the Euclidean norm.

2 Some approaches for preconditioning large symmetric systems

Let us consider the following linear system

Ax = b, A ∈ IRn×n, b ∈ IRn, (2.1)
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where A is symmetric and nonsingular, and n is large. We assume that the structure of the matrix
A is unknown as well as its sparsity pattern. We recall that in case of special structures of matrix
A, suitable preconditioners may be built for solving (2.1) (see [18]).
As is well-known, the main rationale behind the idea of using a preconditioner to solve the linear
system (2.1), consists in introducing the nonsingular matrix M , such that solving

MAx = Mb (2.2)

is possibly simpler in some sense than solving (2.1). Of course, to the latter purpose the extreme
choices for M are M = I and M = A−1 (the latter being the ideal choice). In most of the cases
(always when n is large) there is no chance to compute A−1 (or computing A−1 is no cheaper than
solving (2.1)). Notwithstanding this difficulty, the preconditioner M can be chosen according with
the following alternative guidelines:

∙ the linear system (2.2) should be of easy solution thanks to the structure of matrix M
(e.g. preconditioners for linear systems from PDEs discretization have often a suitable block-
structure which is suggested by the problem in hand);

∙ the condition number �(MA) should be relatively small. The latter fact may be helpful when
attempting to solve the preconditioned system (2.2), with a technique sensitive to �(MA)
(e.g. the Krylov subspace methods);

∙ the eigenvalues in the spectrum Λ[MA] should be as clustered as possible (see e.g. [25]).
The latter fact may again be helpful whenever Krylov subspace methods are adopted to solve
(2.2).

Since we want to deal with the large scale case, without any assumption on the sparsity pattern
of A, the main approaches in the literature for building and applying a preconditioner to (2.1)
often gain information on the system matrix by computing the matrix-vector product A× v, with
v ∈ IRn, or rely on numerical differentiation. In particular, among the approaches proposed we
have the following:

∙ Approximate Inverse Preconditioners based on using the BFGS update method (see also
[23, 4] and therein references). Here, the main idea adopted is that a BFGS update may be
suitably used to compute the approximate inverse A♯ of matrix A. Then, the matrix A♯ is
applied as a preconditioner.

∙ Preconditioners based on the L-BFGS method (see also [22, 21] and the class of precondi-
tioners Limited Memory Preconditioners (LMPs) by [13]), which pursue an idea similar to
Approximate Inverse Preconditioners in the previous item.

∙ Approximate Inverse Preconditioners based on the use of Krylov subspace methods (see also
[29, 8]), where a Krylov subspace method is used to determine the solution of (2.1) and to
provide information in order to build a preconditioner for (2.1).

∙ Band Preconditioners based on matrix scaling/balancing (see also [27]).

∙ Preconditioners based on numerical differentiation (see e.g. [18]).

∙ Band Preconditioners based on the BFGS method (see e.g. [20]), where a BFGS update is
partially modified, so that suitable band preconditioners are defined for linear systems. This
approach was mainly tested within truncated-Newton frameworks.
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For each of the preconditioning strategies mentioned above we have both a theoretical analysis and
a numerical experience, for validation. In this paper we want to follow and generalize the approach
proposed in [8], where at any step, an iterative Krylov subspace method is used to compute the
approximate inverse A♯, over an increasing dimensional subspace.
Note that as detailed in Section 3, our approach also encompasses diagonal and block-diagonal
preconditioners.

3 Our class of preconditioners

In this section we first introduce some preliminaries, then we propose our class of preconditioners.
Consider the indefinite linear system

Ax = b, (3.1)

where A ∈ IRn×n is symmetric, n is large and b ∈ IRn. Suppose any Krylov subspace method is
used for the solution of (3.1), e.g. the Lanczos process or the CG method [14] (but MINRES [28]
or Planar-CG methods [17, 6] may be also alternative choices). They are equivalent as long as
A ≻ 0, whereas the CG, though cheaper, in principle may not cope with the indefinite case. In the
next Assumption 3.1 we suppose that a finite number of steps, say ℎ ≪ n, of the Krylov subspace
method adopted are performed.

Assumption 3.1 Let us consider any Krylov subspace method to solve the symmetric linear system
(3.1). Suppose at step ℎ of the Krylov subspace method, with ℎ ≤ n− 1, the matrices Rℎ ∈ IRn×ℎ,
Tℎ ∈ IRℎ×ℎ and the vector uℎ+1 ∈ IRn are generated, such that

ARℎ = RℎTℎ + �ℎ+1uℎ+1e
T
ℎ , �ℎ+1 ∈ IR, (3.2)

Tℎ =

⎧



⎨



⎩

VℎBℎV
T
ℎ , if Tℎ is indefinite

LℎDℎL
T
ℎ , if Tℎ is positive definite

(3.3)

where

Rℎ = (u1 ⋅ ⋅ ⋅ uℎ), uTi uj = 0, ∥ui∥ = 1, 1 ≤ i ∕= j ≤ ℎ,

uTℎ+1ui = 0, ∥uℎ+1∥ = 1, 1 ≤ i ≤ ℎ,

Tℎ is irreducible and nonsingular, with eigenvalues �1, . . . , �ℎ not all coincident,

Bℎ = diag1≤i≤ℎ{�i}, Vℎ = (v1 ⋅ ⋅ ⋅ vℎ) ∈ IRℎ×ℎ orthogonal, (�i, vi) is an eigenpair of Tℎ,

Dℎ ≻ 0 is diagonal, Lℎ is unit lower bidiagonal.

Remark 3.1 Note that most of the common Krylov subspace methods for the solution of sym-
metric linear systems at iteration ℎ may easily satisfy Assumption 3.1 [28, 30]. In particular, also
observe that from (3.2) we have Tℎ = RT

ℎARℎ, so that whenever A ≻ 0 then Tℎ ≻ 0. Since the
Jordan form of Tℎ in (3.3) is required only when Tℎ is indefinite, it is important to check whenever
Tℎ ≻ 0, without computing the eigenpairs of Tℎ if unnecessary. For this purpose, note that the
Krylov subspace method adopted always provides relation Tℎ = LℎDℎL

T
ℎ , with Lℎ nonsingular and

Dℎ block diagonal (blocks can be 1 × 1 or 2 × 2 at most), even when Tℎ is indefinite [28, 30, 7].
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Thus, checking the entries of Dℎ will suggest if the Jordan form Tℎ = VℎBℎV
T
ℎ is really needed for

Tℎ, i.e. if Tℎ is indefinite.
Furthermore, the matrix Tℎ captures much information on the eigenvalues of A, corresponding

to eigenvectors in span{u1, . . . , uℎ}. Indeed, let v ∈ IRn, then Rℎv belongs to the Krylov subspace
span{u1, . . . , uℎ}. Now, considering that RT

ℎARℎ = Tℎ from (3.2), and recalling that RT
ℎRℎ = Iℎ,

relation
m̄∥v∥2 ≤ vTTℎv ≤ M̄∥v∥2

implies
m̄∥Rℎv∥

2 = m̄∥v∥2 ≤ (Rℎv)
TA(Rℎv) ≤ M̄∥v∥2 = M̄∥Rℎv∥

2.

Thus, m̄ and M̄ are respectively a lower bound and an upper bound of eigenvalues of A, corre-
sponding to eigenvectors in span{u1, . . . , uℎ}.
Observe also that from Assumption 3.1 the parameter �ℎ+1 may be possibly nonzero, i.e. the sub-
space span{u1, . . . , uℎ} is possibly not an invariant subspace under the transformation performed
by matrix A (thus, in this paper we consider a more general case with respect to [3]).

Remark 3.2 The Krylov subspace method adopted may in general perform m ≥ ℎ iterations,
generating the orthonormal vectors u1, . . . , um. Then, we can set Rℎ = (uℓ1 , . . . , uℓℎ), with
{ℓ1, . . . , ℓℎ} ⊆ {1, . . . ,m}, and change relations (3.2)-(3.3) accordingly; i.e. Assumption 3.1 may
hold selecting any ℎ out of the m vectors (among u1, . . . , um) computed by the Krylov subspace
method.

Remark 3.3 For relatively small values of the parameter ℎ in Assumption 3.1 (say ℎ ≤ 20, as
often suffices in the applications), the computation of the eigenpairs (�i, vi), i = 1, . . . , ℎ, of Tℎ

when Tℎ is indefinite may be extremely fast, with standard codes. E.g. if the CG is the Krylov
subspace method used in Assumption 3.1 to solve (3.1), then the Matlab [1] (general) function
eigs() requires as low as ≈ 10−4 seconds to fully compute all the eigenpairs of Tℎ, for ℎ = 20,
on a commercial laptop. In the case where the CG is the Krylov-subspace method of choice, the
matrix Tℎ is tridiagonal. Nonetheless, in the separate paper [8] we consider a special case where the
request (3.3) on Tℎ may be considerably weakened under mild assumptions. Moreover, in the paper
[10] we also prove that for a special choice of the parameter ‘a’ used in our class of preconditioners
(see below), strong theoretical properties may be stated.

On the basis of the latter assumption, we can now define our preconditioners and show their
properties. To this aim, considering for the matrix Tℎ the expression (3.3), we define (see also [12])

∣Tℎ∣
def
=

⎧



⎨



⎩

Vℎ∣Bℎ∣V
T
ℎ , ∣Bℎ∣ = diag1≤i≤ℎ{∣�i∣}, if Tℎ is indefinite,

Tℎ, if Tℎ is positive definite.

As a consequence, when Tℎ is indefinite we have Tℎ∣Tℎ∣
−1 = ∣Tℎ∣

−1Tℎ = VℎÎℎV
T
ℎ , where the ℎ

nonzero diagonal entries of the matrix Îℎ are in the set {−1,+1}. Furthermore, it is easily seen
that ∣Tℎ∣ is positive definite, for any ℎ, and the matrix ∣Tℎ∣

−1T 2
ℎ ∣Tℎ∣

−1 = Iℎ is the identity matrix.
Now let us introduce the following n× n matrix, which depends on the real parameter ‘a’:

Mℎ
def
= (I −RℎR

T
ℎ ) +Rℎ∣Tℎ∣R

T
ℎ + a

(

uℎ+1u
T
ℎ + uℎu

T
ℎ+1

)

, ℎ ≤ n− 1,

= [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1]

⎡

⎢

⎣

(

∣Tℎ∣ aeℎ
aeTℎ 1

)

0

0 In−(ℎ+1)

⎤

⎥

⎦

⎡

⎢

⎣

RT
ℎ

uTℎ+1

RT
n,ℎ+1

⎤

⎥

⎦
(3.4)
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Mn
def
= (I −RnR

T
n ) +Rn∣Tn∣R

T
n = Rn∣Tn∣R

T
n , (3.5)

where Rℎ and Tℎ satisfy relations (3.2)-(3.3), a ∈ IR, the matrix Rn,ℎ+1 ∈ IRn×[n−(ℎ+1)] is such
that RT

n,ℎ+1Rn,ℎ+1 = In−(ℎ+1) and [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal. Observe that of course the
matrix Rn,ℎ+1 in (3.4) always exists, with

Rn,ℎ+1R
T
n,ℎ+1 = In − (Rℎ∣uℎ+1)(Rℎ∣uℎ+1)

T .

Using the parameter dependent matrix Mℎ in (3.4)-(3.5) we are now ready to introduce our class
of preconditioners

M ♯
ℎ(a, �,D) = D

[

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T
]

DT

+ (Rℎ ∣ Duℎ+1)

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

(Rℎ ∣ Duℎ+1)
T (3.6)

M ♯
n(a, �,D) = Rn∣Tn∣

−1RT
n . (3.7)

Theorem 3.1 Consider any Krylov subspace method to solve the symmetric linear system (3.1).
Suppose that Assumption 3.1 holds and the Krylov method performs ℎ ≤ n iterations. Let a ∈ IR,
� ∕= 0, and let the matrix D ∈ IRn×n be such that [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1] is nonsingular, where

Rn,ℎ+1R
T
n,ℎ+1 = In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)

T . Then, we have the following properties:

a) the matrix M ♯
ℎ(a, �,D) is symmetric. Furthermore

– when ℎ ≤ n− 1, for any a ∈ IR− {±�(eTℎ ∣Tℎ∣
−1eℎ)

−1/2}, M ♯
ℎ(a, �,D) is nonsingular;

– when ℎ = n the matrix M ♯
ℎ(a, �,D) is nonsingular;

b) the matrix M ♯
ℎ(a, �,D) coincides with M−1

ℎ as long as either D = In and � = 1, or ℎ = n;

c) for ∣a∣ < ∣�∣(eTℎ ∣Tℎ∣
−1eℎ)

−1/2 the matrix M ♯
ℎ(a, �,D) is positive definite. Moreover, if D = In

the spectrum Λ[M ♯
ℎ(a, �, In)] is given by

Λ[M ♯
ℎ(a, �, In)] = Λ

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1
⎤

⎦ ∪ Λ
[

In−(ℎ+1)

]

;

d) when ℎ ≤ n− 1:

– if D is nonsingular then M ♯
ℎ(a, �,D)A has at least (ℎ−3) singular values equal to +1/�2;

– if D is nonsingular and a = 0 then the matrix M ♯
ℎ(a, �,D)A has at least (ℎ− 2) singular

values equal to +1/�2;

e) when ℎ = n, then M ♯
n(a, �,D) = M−1

n , Λ[Mn] = Λ[∣Tn∣] and Λ[M−1
n A] = Λ[AM−1

n ] ⊆

{−1,+1}, i.e. the n eigenvalues of the preconditioned matrix M ♯
ℎ(a, �,D)A are either +1 or

−1.
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Proof: See [9] for the proof.

The Corollary which follows considers the important particular case obtained by setting a = 0,
� = 1 and D = In, in the definition of the preconditioner M ♯

ℎ(a, �,D).

Corollary 3.2 Consider any Krylov subspace method to solve the symmetric linear system (3.1).
Suppose that Assumption 3.1 holds and the Krylov subspace method performs ℎ ≤ n iterations.
Then, the preconditioner

M ♯
ℎ(0, 1, In) =

[

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T
]

+ (Rℎ ∣ uℎ+1)

(

∣Tℎ∣ 0

0 1

)−1

(Rℎ ∣ uℎ+1)
T (3.8)

M ♯
n(0, 1, In) = Rn∣Tn∣

−1RT
n , (3.9)

is such that

a) the matrix M ♯
ℎ(0, 1, In) is symmetric and nonsingular for any ℎ ≤ n;

b) the matrix M ♯
ℎ(0, 1, In) coincides with M−1

ℎ , for any ℎ ≤ n;

c) the matrix M ♯
ℎ(0, 1, In) is positive definite. Moreover, its spectrum Λ[M ♯

ℎ(0, 1, In)] is given by

Λ[M ♯
ℎ(0, 1, In)] = Λ

[

∣Tℎ∣
−1
]

∪ Λ [In−ℎ] ;

d) when ℎ ≤ n − 1, then the matrix M ♯
ℎ(0, 1, In)A has at least (ℎ − 2) singular values equal to

+1;

e) when ℎ = n, then Λ[Mn] = Λ[∣Tn∣] and Λ[M ♯
n(0, 1, In)A] = Λ[M−1

n A] = Λ[AM−1
n ] ⊆

{−1,+1}, i.e. the n eigenvalues of M ♯
ℎ(0, 1, In)A are either +1 or −1.

Proof: The result is directly obtained from (3.4)-(3.5) and Theorem 3.1, with a = 0, � = 1 and
D = In.

Remark 3.4 As stated in the comments to relation (3.4), the matrix Rn,ℎ+1 in the statement of
Theorem 3.1 always exists, such that [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal. However, Rn,ℎ+1 is neither
built nor used in (3.6)-(3.7), and it is introduced only for theoretical purposes. Furthermore, it is
easy to see that since [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal, any nonsingular diagonal matrix D may
be used in order to satisfy the hypotheses of Theorem 3.1.

Remark 3.5 Observe that the case ℎ ≈ n in Theorem 3.1 is of scarce interest for large scale
problems. Indeed, in the literature of preconditioners the values of ‘ℎ’ typically do not exceed
10− 20 [22, 16]. Moreover, for small values of ℎ in (3.6) the computation of the inverse matrix

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

(3.10)

in order to provide M ♯
ℎ(a, �, In) or M

♯
ℎ(a, �,D), may be cheaply performed when Tℎ is either indef-

inite or positive definite. Indeed, after a brief computation we have

[

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1

=

(

1
�2
∣Tℎ∣

−1 − a
�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1 !
�2
∣Tℎ∣

−1eℎ
!
�2 e

T
ℎ ∣Tℎ∣

−1 −!
a

)

, (3.11)
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with
! = −

a

1− a2

�2 e
T
ℎ ∣Tℎ∣−1eℎ

. (3.12)

Thus, when Tℎ is indefinite, Remark 3.3 and relation (3.11) will provide the result. On the other
hand, in case Tℎ ≻ 0, it suffices to use (3.11). Finally, the proper setting of the parameter ‘a’ allows
to easily control the condition number of matrix (3.10).

4 Preliminary numerical results

In order to preliminarily test our proposal on a general framework, without any assumption on
the sparsity pattern of the matrix A, we used our parameter dependent class of preconditioners
M ♯

ℎ(a, �,D), setting � = 1 and D = In.
We anticipate that in our numerical experience we obtain very interesting results as concerns

the correspondence between theoretical and numerical results. Indeed, all the results stated in The-
orem 3.1 for the singular values of the (possibly) unsymmetric matrix M ♯

ℎ(a, �,D)A, seem to hold in

practice also for the eigenvalues of M ♯
ℎ(a, �,D)A (it is worth to recall that sinceM ♯

ℎ(a, �,D) ≻ 0 then

Λ[M ♯
ℎ(a, �,D)A] ≡ Λ[M ♯

ℎ(a, �,D)1/2AM ♯
ℎ(a, �,D)1/2]), so that M ♯

ℎ(a, �,D)A has only real eigenval-
ues. As regards the numerical investigation, we used 3 different sets of test problems.

First, we considered a set of symmetric linear systems as in (3.1), where the number of unknowns
n is set as n = 1000, and the matrix A has also a moderate condition number. We simply wanted
to experience how our class of preconditioners affects the condition number of A. In particular (see
also [11]), a possible choice for the latter class of matrices is given by

A = {ai,j}, aij ∈ U [−10, 10], i, j = 1, . . . , n, (4.1)

where ai,j = aj,i are random entries in the uniform distribution U [−10, 10], between −10 and
+10. Then, also the vector b in (3.1) is computed randomly with entries in the set U [−10, 10]. We
computed the preconditioners (3.6)-(3.7) by using the Conjugate Gradient (CG) method [28], which
is one of the most popular Krylov subspace iterative methods to solve (3.1) [14]. We remark that
the CG is often used also in case the matrix A is indefinite, though it can prematurely stop. As
an alternative choice, in order to satisfy Assumption 3.1 with A indefinite, we can use the Lanczos
process [19], MINRES methods [26] or Planar-CG methods [6]. In (3.6) we set the parameter ℎ in
the range

ℎ ∈ { 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 },

and we preliminarily chose a = 0 (though other choices of the parameter ‘a’ yield similar results),
which satisfied items a) and c) of Theorem 3.1. We have generated several systems like (4.1),
obtaining very similar results. In particular, given one instance of A as in (4.1), we plotted in Figure

4.1 the condition number �(A) ofA (Cond(A)), along with the condition number �(M ♯
ℎ(0, 1, In)A) of

M ♯
ℎ(0, 1, In)A (Cond(M−1A)): in both cases the condition number � is calculated by preliminarily

computing the eigenvalues �1, . . . , �n (using Matlab [1] routine eigs()) of A and M ♯
ℎ(0, 1, In)A

respectively, then obtaining the ratio

� =
maxi ∣�i∣

mini ∣�i∣
.

Evidently, numerical results confirm that the order of the condition number of A is pretty similar
to that of the condition number of M ♯

ℎ(0, 1, In)A. This indicates that if the preconditioners (3.6)
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Cond(A)

Cond(M−1A)

Figure 4.1: The condition number of matrix A (i.e. Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, In)A (i.e. Cond(M−1A)), when ℎ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}, and A is

randomly chosen with entries in the uniform distribution U [−10, 10].

are used as a tool to solve (3.1), then most preconditioned iterative methods which are sensitive to
the condition number (e.g. the Krylov subspace methods), on average are not expected to perform
worse with respect to the unpreconditioned case. However, it is important to remark that the
spectrum Λ[M ♯

ℎ(0, 1, In)A] tends to be shifted with respect to Λ[A], inasmuch as the eigenvalues

in Λ[A] whose absolute value is larger than +1 tend to be scaled in Λ[M ♯
ℎ(0, 1, In)A] (see Figure

4.2). The latter property is an appealing result as described in Section 1, since the eigenvalues of

M ♯
ℎ(0, 1, In)A will be ‘more clustered’. The latter phenomenon was better investigated by intro-

ducing other sets of test problems, described hereafter.

In a second experiment we generated the set of matrices A such that

A = HDH, (4.2)

where H ∈ IRn×n, n = 500, is an Householder transformation given by H = I − 2vvT , with v ∈ IRn

a unit vector, randomly chosen. The matrix D ∈ IRn×n is diagonal (so that its non-zero entries
are also eigenvalues of A, while each column of H is also an eigenvector of A). The matrix D is
such that its perc ⋅ n eigenvalues are larger (about one order of magnitude) than the remaining
(1 − perc) ⋅ n eigenvalues (we set perc = 0.3). Finally, again we computed the preconditioners
(3.6)-(3.7) by using the CG, setting the starting point x0 so that the initial residual b−Ax0 was a
linear combination (with coefficients −1 and +1 randomly chosen) of all the n eigenvectors of A.
We strongly highlight that the latter choice of x0 is expected to be not favorable when applying
the CG, in order to build our preconditioners. In the latter case the CG method is indeed expected
to perform exactly n iterations before stopping (see also [25, 28]), so that the matrices (4.2) may
be significant to test the effectiveness of our preconditioners, in case of small values of ℎ (broadly
speaking, ℎ small implies that the preconditioner contains correspondingly a little information on
the inverse matrix A−1). We compared the spectra Λ[A] and Λ[M ♯

ℎ(0, 1, In)A], in order to verify
again how the preconditioners (3.6) are able to cluster the eigenvalues of A. Following the guidelines
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Figure 4.2: Comparison between the full/detailed spectra (left/right figures) Λ[A] (Unprecond) and

Λ[M ♯
ℎ(0, 1, In)A] (Precond), with A randomly chosen (eigenvalues are sorted for simplicity); without

loss of generality we show the results for the values ℎ = ℎ5 = 20 and ℎ = ℎ6 = 30. The intermediate
eigenvalues in the spectrum Λ[M ♯

ℎ(0, 1, In)A], whose absolute value is larger than 1, are in general

smaller than the corresponding eigenvalues in Λ[A]. The eigenvalues in Λ[M ♯
ℎ(0, 1, In)A] are more

clustered near +1 or −1 than those in Λ[A].
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Set x0 ∈ IRn

Set �k ∈ [0, 1) for any k, with {�k} → 0 as k → ∞
OUTER ITERATIONS

for k = 0, 1, . . .
Compute ∇f(xk); if ∥∇f(xk)∥ is small then STOP

INNER ITERATIONS

Compute dk which approximately solves ∇2f(xk)d = −∇f(xk)
and satisfies the truncation rule

∥∇2f(xk)dk +∇f(xk)∥ ≤ �k∥∇f(xk)∥
Compute the steplength �k by an Armijo-type linesearch scheme
Update xk+1 = xk + �kdk

endfor

Table 4.1: The linesearch-based truncated Newton method we adopted.

in [22], in order to test our proposal also on a different range of values for the parameter ℎ, we set

ℎ ∈ { 4 , 8 , 12 , 16 , 20 }.

The results are given in Figure 4.3 (full comparisons) which includes all the 500 eigenvalues, and
Figure 4.4 (details) which includes only the eigenvalues from the 410-th to the 450-th. Observe
that our preconditioners are able to shift the largest absolute eigenvalues of A towards −1 or +1,
so that the clustering of the eigenvalues is enhanced when the parameter ℎ increases. For each
value of ℎ the matrix A is (randomly) recomputed from scratch, according to relation (4.2). This
explains why in the five plots of Figures 4.3-4.4 the spectrum of A changes. Again, a behavior very
similar to Figures 4.3-4.4 is obtained also using different values for the parameter ‘a’.

To complete our preliminary experience we tested our class of preconditioners in optimization
frameworks. In particular, we considered a standard linesearch-based truncated Newton method
in Table 4, where for any k ≥ 0 the solution of the symmetric linear system (Newton’s equation)
∇2f(xk)d = −∇f(xk) is required. We considered several unconstrained optimization problems from
CUTEr [15] collection, and for each problem we applied the truncated Newton method in Table 4.

At the outer iteration k we computed the preconditioner M ♯
ℎ(0, 1, In), with ℎ ∈ {4, 8, 12, 16, 20},

by using the CG to solve the equation ∇2f(xk)d = −∇f(xk). Then, we adopted M ♯
ℎ(0, 1, In) as a

preconditioner for the solution of Newton’s equation at the subsequent iteration

∇2f(xk+1)d = −∇f(xk+1).

The iteration index ‘k’ was the first index such that both relations
∥

∥

∥

∥

xk+1 − xk
�k

∥

∥

∥

∥

≤ 10−3∥xk∥ and �k ≥ 0.95 (4.3)

hold (the first relation implies that xk+1 ≈ xk, while the second holds when the search direction
(xk+1−xk)/�k approaches Newton’s step). Thus, the index k was chosen in order to have ∥xk+1−
xk∥ small, i.e. the entries of the Hessian matrices ∇2f(xk) and ∇2f(xk+1) are not expected to
differ significantly. For simplicity we just report the results on two test problems, using n = 1000,
in the set of all the optimization problems experienced. Very similar results were obtained for
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Figure 4.3: Comparison between the full spectra Λ[A] (Unprecond) and Λ[M ♯
ℎ(0, 1, In)A] (Precond),

with A nonsingular and given by (4.2) (eigenvalues are sorted for simplicity); we used different
values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20), setting n = 500. The large eigenvalues

in the spectrum Λ[M ♯
ℎ(0, 1, In)A] are in general smaller (in modulus) than the corresponding large

eigenvalues in Λ[A]. A ‘flatter’ piecewise-line of the eigenvalues in Λ[M ♯
ℎ(0, 1, In)A] indicates that

the eigenvalues tend to cluster around −1 and +1, according with the theory.
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Figure 4.4: Comparison between a detail of the spectra Λ[A] (Unprecond) and Λ[M ♯
ℎ(0, 1, In)A]

(Precond), with A nonsingular and given by (4.2) (eigenvalues are sorted for simplicity); we used
different values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20), setting n = 500. The large eigen-

values in the spectrum Λ[M ♯
ℎ(0, 1, In)A] are in general smaller (in modulus) than the corresponding

large eigenvalues in Λ[A]. A ‘flatter’ piecewise-line of the eigenvalues in Λ[M ♯
ℎ(0, 1, In)A] indicates

that the eigenvalues tend to cluster around −1 and +1, according with the theory.
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Figure 4.5: The condition number of matrix ∇2f(xk+1) (Cond(A)) along with the condition num-

ber of matrix M ♯
ℎ(0, 1, In)∇

2f(xk+1) (Cond(M−1A)), for the optimization problem NONCVXUN,
when 1 ≤ ℎ ≤ 17. The condition number of ∇2f(xk+1) is nearby the condition number of

M ♯
ℎ(0, 1, In)∇

2f(xk+1), for any value of the parameter ℎ. The value k = 175 was chosen as in
(4.3) and it was ∥x176 − x175∥ ≈ 0.083.

almost all the test problems. In Figures 4.5-4.6 we consider the problem NONCVXUN. For the sake
of brevity we only show the numerical results using ℎ = 16 in (3.6). Observe that since xk+1 is
close to xk (i.e. we are eventually converging to a local minimum) the Hessian matrix ∇2f(xk+1)
is positive semidefinite. Furthermore, again the eigenvalues larger than +1 in Λ[∇2f(xk+1)] are

scaled in Λ[M ♯
ℎ(0, 1, In)∇

2f(xk+1)]. Similarly we show in Figures 4.7-4.8 the results for the test
function NONDQUAR in CUTEr collection. The test problems in this optimization framework, where
the preconditioner M ♯

ℎ(0, 1, In) is computed at the outer iteration k and used at the outer iteration

k + 1, confirm that the properties of Theorem 3.1 may hold also when M ♯
ℎ(0, 1, In) is used on a

sequence of linear systems Akx = bk, when Ak changes slightly with k.

5 Conclusions

We have given theoretical and numerical results for a class of preconditioners, which are parameter
dependent. The preconditioners in our proposal can be built by using any Krylov method for the
symmetric linear system (3.1), provided that it is able to satisfy the general conditions (3.2)-(3.3)
in Assumption 3.1. The latter property may be appealing in several real problems, where a few
iterations of the Krylov subspace method adopted may suffice to compute an effective precondi-
tioner.
Our proposal seems tailored also for those cases where a sequence of linear systems of the form

Akx = bk, k = 1, 2, . . .

requires a solution (e.g., see [22] for details), where Ak slightly changes with the index k. In the

latter case, the preconditioner M ♯
ℎ(a, �,D) in (3.6)-(3.7) can be computed applying the Krylov
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Figure 4.6: Comparison between the full spectra/detailed spectra (left figure/right figure) of

∇2f(xk+1) (Unprecond) and M ♯
ℎ(0, 1, In)∇

2f(xk+1) (Precond), for the optimization problem NON-

CVXUN, with ℎ = ℎ4 = 16. The eigenvalues in Λ[M ♯
ℎ(0, 1, In)∇

2f(xk+1)] larger than +1 are

evidently scaled, so that Λ[M ♯
ℎ(0, 1, In)∇

2f(xk+1)] is more clustered.
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Figure 4.7: The condition number of matrix ∇2f(xk+1) (Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, In)∇

2f(xk+1) (Cond(M−1A)), for the optimization problem NONDQUAR, when
1 ≤ ℎ ≤ 17. The condition number of ∇2f(xk+1) is now slightly larger than the condition number

of M ♯
ℎ(0, 1, In)∇

2f(xk+1) (though they are both ≈ 1010). The value k = 40 was chosen as in (4.3)
and it was ∥x41 − x40∥ ≈ 0.203.
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Figure 4.8: Comparison between the full spectra/detailed spectra (upper figure/lower figures)

Λ[∇2f(xk+1)] (Unprecond) and Λ[M ♯
ℎ(0, 1, In)∇

2f(xk+1)] (Precond), for the optimization problem
NONDQUAR, with ℎ = ℎ4 = 16. Some nearly-zero eigenvalues in the spectrum Λ[∇2f(xk+1)] are

shifted to non-zero values in Λ[M ♯
ℎ(0, 1, In)∇

2f(xk+1)]. Since many eigenvalues in Λ[∇2f(xk+1)]

are zero or nearly-zero, the preconditioner M ♯
ℎ(0, 1, In) may be of scarce effect, unless large values

of the parameter ℎ are considered.
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subspace method to the first linear system A1x = b1. Then, M ♯
ℎ(a, �,D) can be used to efficiently

solve Akx = bk, with k = 2, 3, . . .. On this guideline, in a future work we are going to experience
our proposal with other preconditioners described in Section 2. In particular, we think that a
comparison with the proposals in [16, 21] could be noteworthy.

Finally, the class of preconditioners in this paper seems an interesting tool also for the solution
of linear systems in financial frameworks. In particular, in future works we want to focus on
symmetric linear systems arising when we impose KKT conditions in portfolio selection problems,
with a large number of titles in the portfolio, along with linear equality constraints (see also [2]).

Acknowledgements The first author wishes to thank the Italian Ship Model Basin - INSEAN,
CNR institute, for the support.
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