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ABSTRACT

1 INTRODUCTION

Design optimization formulations and techniques are in-
tended for supporting the designer in the decision making
process, relying on a rigorous mathematical framework,
able to give the “best” solution to the design problem
at hand. Over the years, optimization has been play-
ing an increasingly important role in engineering. Ad-
vanced modeling and algorithms in optimization consti-
tute now an essential part in the design and in the op-
erations of complex aerospace (Hicks and Henne, 1978;
Sobieszczanski-Sobieski and Haftka, 1997; Alexandrov
and Lewis, 2002; Willcox and Wakayama, 2003; Morino
et. al., 2006; Iemma and Diez, 2006) and automotive
(Baumal et. al., 1998; Kodiyalam and Sobieszczanski-
Sobieski, 2001) applications, when, for example, it is by
all means important to reduce costs and shorten time of
development. In the design of large and complex sys-
tems, the use of efficient optimization tools leads to bet-
ter product quality and improved functionality (Moham-
madi et. al., 2001). The success of design optimiza-
tion has attracted the naval community, so that the recent
years have seen progress in optimization for ships too
(Ray et. al., 1995; Peri and Campana, 2003; Parsons and
Scott, 2004; Pinto et al., 2004; Peri and Campana, 2005;
Campana et al., 2007, 2009; Papanikolaou, 2009).

Generally speaking, the task of designing a ship (as
well as an aerial or ground vehicle) possibly requires
that the engineering team considers a host of multidisci-
plinary design goals and requirements. Multidisciplinary
Design Optimization (MDO) classically refers to the quest
for the best solution with respect to optimality criteria
and constraints, whose definition involves a number of
disciplines mutually coupled. Therefore, MDO encom-
passes the interaction of different discipline-systems, for-
mally joined together and inter-connected in a multidis-
ciplinary framework, which leads to a multidisciplinary
equilibrium.

In this context, design engineers increasingly rely

on computer simulations to develop new designs and to
assess their models. However, even if most simulation
codes are deterministic, in practice systems’ design should
be permeated with uncertainty. On this guideline, the
most straightforward example in the naval hydrodynam-
ics context is offered by any existing ship, that must per-
form under a variety of operating conditions (e.g. differ-
ent, stochastic environmental conditions). The general
question is now: “how can the results of computer simu-
lations be properly exploited in the framework of design
optimization, when the overall context is affected by un-
certainty ?” Moreover “how can deterministic analysis
be integrated in an ad hoc formulation that includes un-
certainty ? How can it be used to get designs that are
relatively insensible to stochastic variations of the ex-
ternal inputs and of the variables?”. The latter ques-
tions stress one of the major issues arising in the opti-
mization of a (ship) design: the perspective from which
the optimization task has to be formulated and per-
formed. Indeed, one may argue that a “tight” determin-
istic optimization leads to specialized solutions that are
often inadequate to face the “real-life” world, which is
instead characterized by a high level of uncertainty. In
other words, specialized optimization procedures which
include only deterministic parameters are often unable to
model the overall problem and, consequently, are unable
to provide adequate solutions to it. In this respect Mar-
czyk (2000) states that, in a deterministic engineering
context, optimization is the synonymous of specializa-
tion and, consequently, the opposite of robustness. The
perspective we try to give in the present work has the aim
of broadening the standard-optimization-problem fram-
ing, leading to a formulation in which optimality is re-
defined in terms of robustness, rather than specializa-
tion. To the aim of clarifying the latter perspective, it
may be useful to summarize the following statements:

- Design optimization is always about answering a ques-
tion, i.e. assisting the designer in the decision making
process.

- As a consequence and necessarily, before going through



the optimization procedure, special attention has to be
paid to the formulation of the problem. In the context
of design optimization, incomplete or coarse models
very often yield inadequate answers.

- In this work we try to re-formulate the optimization
perspective by looking at the design problem from a
broader standpoint. Moreover, we bring the uncer-
tainty related to ship design, manufacturing and op-
erations, into the decision problem.

- The formulation of the question (we try to answer to,
using optimization) relies on optimal statistical deci-
sion theory and, specifically, on Bayes criteria, defin-
ing a rigorous mathematical framework in which the
“robust” decision making process is embedded.

In general, in any engineering system, the uncer-
tainty is due to variations of design, operating or environ-
mental conditions. The uncertainty is also related to the
evaluation of the relevant functions, due to inaccuracy in
modeling or computing. Using ideas from statistical de-
cision theory, and specifically Bayes criteria (De Groot,
1970), the problem of robust decision making in design
can be formulated as an optimization problem (Robust
Design Optimization, RDO). In the framework of Bayes
theory, we assume that the original “deterministic” de-
sign goal is the minimization of a general loss function
(e.g., the performance). The expectation of this loss, with
respect to the uncertainty involved in the process, is de-
fined as the risk associated to the stochastic scenario as-
sumed. In this context, the final goal is that of minimiz-
ing the risk, looking for the so-called Bayesian solution
to the problem. In other words, once a probabilistic sce-
nario is assumed, the optimization task reduces to the
minimization of a related loss expectation.

The difficulty with exploiting this framework is both
theoretical and computational. The latter is due to the
fact that the evaluation of the loss expectation involves
the numerical integration of expensive simulation out-
puts, with respect to uncertain quantities. The former can
also be easily understood: in a more standard MDO for-
mulation (as well as in standard deterministic numerical
optimization), all the relevant variables, parameters and
functions are defined from a deterministic viewpoint and,
apparently, the optimization process does not involve any
kind of stochastic variation. The resulting optimal solu-
tions are therefore likely specialized for the specific sce-
nario assumed. Nevertheless, the performances of the
final design may significantly drop in off-design condi-
tions, when the deterministic assumptions used no longer
hold. In this context, we look for a robust solution to the
MDO problem, i.e., a solution able to represent a good
performance on average, in the whole range of varia-
tions of the probabilistic scenario. The effects of prop-
erly considering the uncertainty, mainly consist in a loss

in specialization of the system and a gain in robustness.
The MDO problem, re-formulated to take into account
uncertainty, becomes a Multidisciplinary Robust Design
Optimization (MRDO) problem. The aim of the present
work is to analyze the combined effects of considering
several disciplines and uncertainty in ship design prob-
lems, developing a MRDO procedure that utilizes effi-
cient methods for uncertainty analysis and encompasses
the features of the MDO framework. Theory and ap-
plications of MDO subject to uncertainty may be found
in, e.g., Agarwal et al. (2004); Du and Chen (2000a,b,
2002); Giassi et al. (2004); Mavris et al. (1999); Smith
and Mahadevan (2005), and Sues et al. (1995).

It may be noted that, in naval applications (Diez and
Peri, 2009, 2010a,b), as well as in aeronautical problems
(Padula et al., 2006), the usage and environmental con-
ditions may be considered as “intrinsic” stochastic func-
tions, whose expected values and standard deviations can
neither be influenced by the designer nor by the manu-
facturer. Conversely, uncertainties related to design vari-
ables and functions’ evaluation reflect the current state
of and technology, and theoretically may be reduced by
improving modeling, computing and manufacturing pro-
cesses. Thus, in this work, the MRDO problem is for-
mulated taking into account the stochastic variation of
the operating conditions. The (joint) probability density
function of the operating scenario are taken as a design
requirement and the expectation of the relevant merit fac-
tors is assessed during the optimization task. For solving
the minimization problem, a Particle Swarm Optimiza-
tion (PSO) algorithm, in the form proposed by Campana
et al. (2009), is used.

The application studied in this work consists in the
optimization of a keel fin of a sailing yacht. The keel
fin provides the side force able to contrast the wind, al-
lowing the yacht to travel along directions not aligned
with the wind itself. The keel sustains an heavy ballast
bulb, and the bending moment generated by this config-
uration, as well as by the hydrodynamic loads, gener-
ate an elastic displacement, which cannot be ignored in
the computation of the hydrodynamic performances. As
a consequence, a fully coupled hydroelastic problem is
considered. The solution of the deterministic configura-
tion has been illustrated in Campana et. al (2006). In
this paper, a MRDO problem will be defined and solved,
considering a probabilistic sailing scenario, in terms of
cruise speed, heel and yaw angles.

The paper is organized as follows. The next section
presents the general context of optimization problems af-
fected by uncertainty. Then, in Section 3, Bayes theory
is exploited to formulate the present problem for RDO.
The general framework of MDO is presented in Section
4, whereas the “robust” extension of MDO to MRDO is
given in Section 5. Finally, the numerical results are pre-
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sented in Section 6 and the concluding remarks are given
in Section 7.

2 DESIGN OPTIMIZATION SUBJECT TO UNCER-
TAINTY

In this Section, an overview of an optimization models
for a problem affected by uncertainty is presented. In
this context, the designer concern is that of finding an op-
timal configuration able to keep a good performance in
a wide range of variation of some uncertain parameters.
In order to achieve such an optimal solution, an optimal-
ity criterion, based on robustness of the final design, has
to be defined. We remark that here, the term “robust”
is always associated with the uncertainty of parameters.
Therefore, attention to robustness always involves care
to handle some kind of uncertainty. A number of authors
in the literature give different meanings to robustness de-
pending on the application, and different kind of uncer-
tainties are addressed. The interested reader is referred
to Beyer and Sendhoff (2007); Park et al. (2006); Zang
et al. (2005).

In order to define the context of the present work,
the following standard-deterministic optimization prob-
lem is considered:

minimize
x∈X

f(x,y), given y = ŷ ∈ Y

subject to gn(x, ŷ) ≤ 0, n = 1, ..., N (1)

ℎm(x, ŷ) = 0, m = 1, ...,M

where x ∈ X ⊆ ℝk is the design variables vector (which
represents the designer choice), ŷ ∈ Y is the design
parameters vector (which collects those parameters in-
dependent of the designer choice, e.g., environmen-
tal or usage conditions defining the operating point), and
f, gn, ℎm : ℝk → ℝ, are respectively the optimization
objective and the inequality and equality constraint func-
tions. While handling the above problem, the following
uncertainties may occur – the interested reader is also re-
ferred to Diez and Peri (2010a).

a) Uncertain design variable vector. When trans-
lating the designer choice into the “real-life” world, the
design variables may be affected by uncertainties due to
manufacturing tolerances or actuator precision. Assume
a specific designer choice x∗ and define as u ∈ U the
error or tolerance related to this choice.1 We may as-
sume u as a stochastic process with probability density
function p(u); by definition it is

∫
U
p(u) du = 1. The

1The symbol ∗ is used in the present formulation to denote a spe-
cific designer choice. While x represents all the possible choices in X ,
x∗ defines a specific one.

expected value of x∗ is, therefore,

x∗ := �(x∗ + u) =

∫
U

(x∗ + u) p(u) du. (2)

It is clear that, if the stochastic process u has zero expec-
tation, i.e.

u := �(u) =

∫
U

u p(u) du = 0 (3)

we obtain x∗ = x∗. It may be noted however that, in
general, the probability density function p(u) depends
on the specific designer choice x∗.

b) Uncertain environmental and usage conditions.
In “real-life” applications, environmental and operational
parameters may differ from the design conditions ŷ (see
Problem (1)). The design parameters vector may be as-
sumed as a stochastic process with probability density
function p(y) and expected value or mean

y := �(y) =

∫
Y

y p(y) dy. (4)

Note that, in this formulation, the uncertainty on the us-
age conditions is not related to the definition of a spe-
cific design point. Environmental and operating condi-
tions are treated as “intrinsic” stochastic processes in the
whole domain of variation Y , and the designer is not re-
quested to pick a specific design point in the usage pa-
rameters space. For this reason, we do not define an “er-
ror” in the definition of the usage conditions, preferring
the present approach which identifies the environmental
and operational parameters in terms of their probabilistic
distributions in the whole domain of variation.

c) Uncertain evaluation of the functions of interest.
The evaluation of the functions of interest (objective and
constraints) may by affected by uncertainty due to inac-
curacy in modeling or computing. Collect objective and
constraints in a vector f := [f, g1, ..., gN , ℎ1, ..., ℎM ]T ,
and assume that the assessment of f for a specific “de-
terministic” design point, f∗ := f(x∗, ŷ), is affected by
a stochastic error w ∈ W . Accordingly, the expected
value of f∗ is

f∗ := �(f∗ + w) =

∫
W

(f∗ + w) p(w) dw. (5)

Note that, in general, the probability density function of
w, i.e. p(w), depends on f∗ and, therefore, on the design
point (x∗, ŷ).

3



Combining the above uncertainties, we may define
the expected value of f as

f := �(f) =

∫
U

∫
Y

∫
W

[
f(x∗ + u,y) + w

]
p(u,y,w) du dy dw (6)

where p(u,y,w) is the joint probability density function
associated to u, y, w. It is clear that f = f(x∗); in
other words, the expectation of f is a function of the only
designer choice. Moreover, the variance of f with respect
to the variation of u,y,w is

V (f) := �2(f) =

∫
U

∫
Y

∫
W

{[
f(x∗ + u,y) + w

]
−

f(x∗)
}2
p(u,y,w) du dy dw (7)

resulting, again, in a function of the designer choice vari-
ables. The evaluation of the integrals in Equations (6)
and (7) is often referred as Uncertainty Quantification
(UQ).

With respect to the uncertainties outlined above, dif-
ferent approaches may be followed for the re-definition
of the optimization problem. Specifically, the optimiza-
tion task may be defined in terms of:

- minimization of the variance, or of the standard devia-
tion, � :=

√
V , of f : this leads to a robust design in a

strict sense – e.g., Taguchi methods (Taguchi, 1986);

- minimization of the expectation of f : if f represents
a general loss in the performance, then the expected
value of f can be seen as a risk – Bayesian approach as
in statistical decision theory (De Groot, 1970; Trosset
et al., 2003) – see next section;

- minimization of f in the worst possible case; this is
the most conservative approach – “minmax” approach,
see again Trosset et al. (2003);

- assessing probabilistic constraints in the minimization
of the objective function (Tu et al., 1999; Sues et. al,
2001; Du and Chen, 2000b; Agarwal, 2004; Agarwal
and Renaud, 2004).

With respect to the previous approaches, different
definitions may be found in the literature – the interested
reader is referred, again, to Beyer and Sendhoff (2007):

- Robust design (RD): process of defining the robust
design in the strict sense (e.g., Taguchi methods). The
attention in this case is mainly on variance or standard
deviation.

- Robust optimization or Robust design optimiza-
tion (RDO): optimization process considering uncer-
tainties in the evaluation of the objective function; ex-
pected value, variance, worst case, etc. may be taken
into account.

- Reliability-based design optimization (RBDO): the
attention is focused on the statistical feasibility of the
design (i.e., on the constraints). The constraints are
treated as probabilistic inequalities and give a statisti-
cal feasible region.

While RD and RDO are mainly focused on expecta-
tion and variance of a cost function (Zang et al., 2005),
the RBDO concentrates on the handling the uncertainty
of the constraints (Tu et al., 1999; Sues et. al, 2001; Du
and Chen, 2000b; Agarwal, 2004; Agarwal and Renaud,
2004). The latter are treated as probabilistic inequalities
(Nocedal and Wright, 1999) and the n-th deterministic
constraint of the type gn(x,y) ≤ 0 is treated using the
general probabilistic statement

PS := P
[
gn(x,y) ≤ 0

]
≥ P0 (8)

where PS is the probability of success, P [A] denotes the
probability of the event A and P0 is a given target prob-
ability. Note that the probability of failure, PF , equals
(1 − PS). In the following, the constraints of the opti-
mization problem will be defined in the worst possible
case, choosing a conservative approach (P0 = 1). The
issues connected to the probabilistic handling of the con-
straints are beyond the scope of the present work, and
will be not further addressed here.

3 DECISION MAKING UNDER UNCERTAIN OP-
ERATING CONDITIONS: ROBUST DESIGN OP-
TIMIZATION THROUGH BAYES THEORY

In this section, specific attention is paid to the uncertainty
related to the environmental and operating conditions.
As mentioned, in the context of naval applications, en-
vironmental and operating conditions may be considered
as “intrinsic” stochastic functions, whose expected val-
ues and standard deviations can neither be influenced by
the designer nor by the manufacturer. For this reason,
assessing probabilistic operating conditions, may be in-
terpreted as a relevant step towards a more comprehen-
sive design optimization, bringing into focus “real-life”
applications.

In the following, the formulation for robust design
optimization subject to uncertain environmental and op-
erating conditions is presented. To this aim, assume that
the optimization objective in Problem 1 is associated to a
general loss (like, for instance, the performance loss with
respect to a given target). Under the hypothesis of un-
certain environmental and operating conditions, we may
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refer to f(x,y) as the loss associated to the designer
choice x, when the condition y occurs. Therefore, the
expectation of the loss f , evaluated through the integral
of Equation (6) (limited to uncertain parameters y, thus
referring to uncertainty of type b only), may be defined
as the risk associated to the decision x under the distribu-
tion p(y) (De Groot, 1970). It follows that the designer
should choose, if possible, a decision x which minimizes
the risk (expected loss). Specifically, if we consider the
Bayes risk, i.e. the lower bound of the expected loss for
all the possible choices in X ,

� := inf
x∈X

f̄ = inf
x∈X

�(f) (9)

we look for the Bayes decision of the problem, consider-
ing the distribution p(y), i.e. the decision for which the
risk equals the Bayes risk �. Therefore, the optimal de-
signer choice is that which minimizes the expected loss
of the system performances with respect to the stochastic
variation of the environmental and operating conditions
collected in y. It may be noted that in the present con-
text, the design specifications are no longer given in
terms of a single operating design point, but in terms
of probability density function of the operating sce-
nario.

It may be noted that the Bayesian approach to the
decision problem may be enriched by considering, as a
second objective function, the standard deviation of f .
The latter extension improves the robustness of the final
design to the operating conditions variation.

The Bayesian approach to the designer decision prob-
lem (eventually enriched by considering the standard de-
viation of f ) may be formulated as follows:

minimize
x∈X

f1(x) := �
[
f(x,y)

]
and f2(x) := �

[
f(x,y)

]
(10)

subject to sup
y∈Y

{
gn(x,y)

}
≤ 0, n = 1, ..., N

�
[
ℎm(x,y)

]
= 0, m = 1, ...,M

where, �(f) and �(f) are given, by definition, through
the UQ:

�
[
f(x,y)

]
:=

∫
Y

f(x,y)p(y)dy = f̄(x) (11)

�2
[
f(x,y)

]
:=

∫
Y

[f(x,y)− f̄ ]2p(y)dy = �2(x). (12)

4 MULTIDISCIPLINARY DESIGN OPTIMIZATION

The basic elements of the MDO problem can be easily
summarized. We assume that each discipline is based on
a disciplinary analysis (from simple algebraic formulas

to complex PDEs) that may be schematically depicted
as an input-output relation: In the context of design op-

Figure 1: Discipline analysis Δi of the i-th disci-
pline.

timization subject to uncertain operating conditions, the
input of each discipline is a set of deterministic design
variables, x := {xT

i ,x
T
S}T , uncertain operating param-

eters, y := {yT
i ,y

T
S }T , and a set of parameters supplied

by other disciplines, {aj}j ∕=i := {aT1 , . . . , aTi−1, aTi+1,
. . . , aTn}; the analysis produces a set of outputs, ai. The
system-level design variables, xS and the system level
operating parameters yS , are those shared by all the dis-
ciplines. The disciplinary design variables, xi are as-
sumed local to Δi as well as the disciplinary operating
parameters yi.

The disciplinary analysis has the functional form ai =
Ai(xi,yi,xS ,yS ,a1, ...,ai−1,ai+1, ...,an), whereAi is
assumed to be independent of Aj ,∀j ∕= i. In the con-
text of the MDO problem, the coupled Multidisciplinary
Analysis (MDA) system reflects the physical requirement
that a solution simultaneously satisfies all the disciplinary
analyses. The multidisciplinary analysis system, in the
explicit form, is therefore given by the simultaneous sys-
tem of equations:⎧⎨⎩

a1 = A1(xS ,yS ,x1,y1,a2, . . . ,an)
a2 = A2(xS ,yS ,x2,y2,a1,a3, . . . ,an)
...
an = An(xS ,yS ,xn,yn,a1, . . . ,an−1)

(13)

Solving the fully coupled system Equation (13) leads to
a full multidisciplinary analysis. The solution is in this
case a consistent solution that satisfies all the disciplines.

Up to now we have just looked for a multidisciplinary
equilibrium among the disciplines. The most natural MDO
problem formulation is to impose an optimizer over the
MDA Equation (13) and find the optimal solution with
respect to the deterministic designer choice x. Figure
2 presents, at a glance, a deterministic two-disciplines
MDO procedure, where no uncertainties are considered
during the optimization.

Figure 2: MDO procedure.
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5 MULTIDISCIPLINARY ROBUST DESIGN OP-
TIMIZATION

The extension of the above procedure, to take into ac-
count the application of Bayes principle to an uncertain
operating scenario, involves the integration of the objec-
tive f over the uncertain parameters domain. It may be
noted that the uncertainties propagate in the MDA frame-
work. With respect to each discipline involved, the un-
certainty related to the definition of the input variables
and parameters may be referred as external, whereas the
source of uncertainty related to the analysis tool itself
(e.g., inaccuracy in computing) is addressed as internal
(Du and Chen, 2002). As a result, the final multidisci-
plinary equilibrium is affected by uncertainty.

As clearly appears, the solution of the Multidisci-
plinary Robust Design Optimization problem represents
an expensive task, due to the fact that the integrals of
Equations (11) and (12) apply to a function supplied by
the multidisciplinary equilibrium of Equation (13), for
every value of the uncertain parameters y. It is worth
noting that the standard deterministic MDO scheme in-
volves coupling an optimization algorithm (optimizer,
see Figure 2) with the MDA framework. Taking into ac-
count the uncertainty in that context (thus formulating
the MRDO problem) requires the insertion between the
optimization algorithm and the MDA, of an UQ scheme
(as summarized in Figure 3).

Figure 3: MRDO procedure.

6 NUMERICAL RESULTS

6.1 Uncertainty Quantification (UQ)

6.2 Multidisciplinary Robust Design Optimization
(MRDO)

7 CONCLUDING REMARKS
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