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Abstract— This paper focuses on a solution technique for global direction. Indeed, the margin for design improvements is
optimization problems, where the objective function value is continuously narrowing for the design engineers are producing
possibly computed by the numerical solution of a PDE system. naar gptimal configurations in many industrial fields, and the

The nature of these optimization problems is that of a ‘black- s
box' type, where expensive simulations provide information probability that performances breakthrough could come from

to the optimizer, and each function evaluation could require l0cal optimization methods is likely small. These issues are
several CPU-hours. The paper considers the evolutionary Particle motivating our interest in the development of GO algorithms

Swarm Optimization (PSO) algorithm, for the minimization of  with reduced computational effort in terms of function evalu-
a nonlinear function in the global optimization frameworks ations

described. We reformulate the standard iteration of PSO [10], - . . .

[3] into a linear dynamic system. Then, the latter is investigated _ 11iS Paper is concerned with the use of the PSO algorithm
in order to provide indications for the assessment of the initial for the solution of the global optimization problem

particles position. We carry out our analysis on a generalized

PSO iteration, which includes the standard one proposed in the min f(z), LCRY, Q)
literature. Therefore, our results perfectly apply to standard PSO zeL

too, without any modifications. In our scheme the path of any LN : : : :
particle is possibly affected by the trajectories of all the other wheref : IR" — IR is acontinuous functiopand’ is aclosed

particles in the swarm. Our preliminary numerical experience, andboundedset. In particular, we aim at detecting a global
over a set of 35 standard test problems from the literature, minimum z* of (1), such thatf(z*) < f(z) for anyz € L,

confirms the theoretical analysis. and the function is computationally costly. A specific aspect of
the paper is that we assume that, given the computational cost
. INTRODUCTION of the objective function, we can only afford a small number

Many applications of optimization in engineering and scief particles in the swarm.
ence have to deal with extremely large computational requirss well known, unlike local optimization frameworks, there
ments and often the cost of computing the objective functi@e not optimality conditions which can characterize the point
values or derivatives is so large that standard optimizatiari. Indeed, no stopping criterion both theoretical and practical,
methods cannot produce results in reasonable time or at resy be adopted in order to detect the global minima of
sonable cost. Engineering design is among the primary exapieblem (1). Anyway, several approaches have been proposed
ples of this kind of application. Real-world shape optimizatioim the literature for the solution of (1) (see [14] and therein
problems have to face complex geometry and typically involveferences), either adopting deterministic [7] and/or stochastic
a large number of variables, requiring hundreds or thousari@i$ techniques.
of function evaluations to converge to an optimal design. The use of the latter techniques often requires the exploration
high-fidelity analysi$ is required, both derivative-free andover a possibly dense subset&fthus, the increasing compu-
gradient-based optimization methods become more and mtational burden would be definitely unaffordable for the shape
expensive. design problems described above.

Albeit the use of Global Optimization (GO) algorithms In the last decades both deterministic and stochastic meth-
inevitably leads to a further increase of the computationatls for problem (1) have included many contributions, whose
effort, design engineers of marine, aeronautical, automotikeionale is often suggested by biological systems and/or social
transport systems, are very much tempted by taking tthehavioural interpretations.

. _ _ _ ~In this paper we consider the PSO algorithm [10], an
E.g. numerical codes for the solution of the Navier-Stokes PDE, governifigrative method for global optimization, in the class of evolu-
the flow around cars, airplanes or ships. In this case the CPU time for one . .. .
function evaluation may be of the order of ten hours on current platfor onary algorithms. The latter scheme was originally conceived
depending on the geometry details. in '95 as a model to describe the behaviour of a flock of



birds. Then, it has been recently improved (see also [3], [13};oblems. Unfortunately, it seems that the qualitative and
[17], [19], [2]) and is widely adopted within specific globalquantitative impact of a proper choice of the initial particles’
optimization applications [1], [5], [15], [18]. position has not yet been deeply investigated.

The growing interest for PSO algorithm, to solve distinctive A preliminary numerical experience on our generalized
global optimization problems (e.g. ship design), is encouragedrsion of PSO algorithm confirms the hints of the theory.
by the following appealing features:

« balancebetween the computation involved and the pre- In this paperC represents the set of complex numbers. With

cision of the solution detected:; ‘rk(A)’ we indicate the rank of matrixd and ‘det(A)’ is its
« constantcomputational cosand memory engagemeat determinant. Finally we denote with the identity matrix of
each iteration; suitable dimension.
« availability of acurrent approximate solutign In Section Il we describe our generalized PSO iteration by
« derivativesof the objective function not required; means of a dynamic linear system, whose properties are par-

« easyimplementatiorand parallelization of the method. tially analyzed in Sections IIl and Ill-A. Section IV is devoted

We recall that PSO iteration is neither able to guarantee tifeinvestigate promising starting points for the particles.
convergence to a global minimum nor to a local minimum.
Indeed, PSO is a heuristic method, and its reformulations in 1. A GENERALIZED PSOMODEL

the literature are heuristics as well. The general PSO iteration . . . . .
can be described at stdp> 0 by Consider the following (generalized) iteration of PSO algo-

rithm in (2)-(3), which is reported by using a common notation

oit =2k 4 ab, j=1,...,P, (2) adopted in the PSO literaturé & 0,1, ...):
Wher_exf € L is the cu_rrent position of thg’-j[h individual v;?“ =¥ [wkvj’? + cjrj(p;? _ xf) + cgrg(p’; _ x?)] ,
(particle) of the population gwarn), d.’; € R" is the search 4)

direction (d’ usually stands for ‘direction’ in optimization — h+1 — gk 4 k+1

frameworks) andz®™ is the new position at step + 1. ! T

Observe thatdf may not be a descent direction for thewherej = 1, ..., P indicates thej-th particle, P is finite, v¥
objective function f(x) at xf In particular, directiondé? and m’; are thespeedand theposition of particle j at stepk,
depends on both the search directidfii ' and the paths of pj-‘ andp’gg respectively satisfy
the particles. The original version of PSO in [10] considers at

stepk the direction py = argmin ¢ {f(25)},
®)
k k—1 k(,.bes k k(,.bes k
dj :dj + « (i'j t _J,‘j)"’ﬁ (l’ t _:I,‘j)a (3) p]; :argminlgkl’ j=1,..P {f(xé)}7

wherea®, 3% are suitable random scalars and . .
P andx, w”, ¢j,r;, cq, 1, are suitable bounded coefficients. Ob-

z}?est = ar Hiin {f(a:?)}, j=1,...,P serve that the generalized relations (4) include both the cases
O=hsk in which only theinertia w* or the constrictioncoefficienty
best . h are usedWe assume that; andr, are uniformly distributed
v a oghag ,?li?,...,p{f(%)}' random parametersvith 0 <r; <1 and0 <r, < 1.

In this paper we figure out a partial analysis of the pa;r_hen, we can further generalize (4) by assuming that possibly

f 1 ko
ticles trajectories, on a very general reformulation of PSEI SPeed;” " depends onkall thiterkr‘rﬁ e h=1,...,P,
iteration. Our approach is not completely new in the literatuf'd not only on vectorgj — x, p; — xj. In words this

(similar issues are partially considered and investigated §RT€SPonds to allow a more genesacial contribution in
[12], [3], [10], [13]). In particular, we reformulate our psothe PSO iteration. The new iteration is therefate<(0, 1, ...)

generalized iteration into a dynamic linear system, where P
i i i k k .k k k
fee(_jbagk is not mcl_uded. The lack of a fee(_jback block is vj+1 =xF [whok + Zch,jrh,j(ph — a2k,
a simplification, motivated by a couple of basic reasons. On el (6)
one hand, though preferable, a complete stability analysis
of a closed-loop system would be far from our purposes. 2t = gk bt

Furthermore, some practical results on the assessment of the

initial particles position may be obtained, by only focusing owherecf;’j andr’,;j depend on the steg), the current particle
the free response of the open-loop system. We highlight tHg} and the other particles:).

in our knowledge, the PSO literature has already providétlithout loss of generality at present we focus on thth
indications about several practical aspects of PSO. Indegdyticle and omit the subscript in the recurrence (6). Moreover,
researchers and practitioners have been most concerned withresent time we assume in 6@ =X CZJ =cp, rfm. =17,
issues like the choice of PSO's coefficients or how PSénd wf = w, for any k£ > 0. This is a common hypothesis in
compares with other evolutionary methods over optimizatiaghe PSO literature, which will be removed in Section V. With



the latter position the iteration (6) is equivalent to thaamic i I
hThPp

discrete, linearand stationary (time-invariant) system

- Ur) = =t (12)
xwl — Z xcnrrl Z XChThD},
X(k+1) = h=1 X(k) + "
vl 1 R Observe thatX,(k) in (9) does not depend on the vector
Xw = > Xenr pl, but uniquely on the initial pointX (0). On the contrary,
P h=1 X £ (k) in (9) depends on the vectef and is independent of
Z % X (0). The latter practical observation allows us to compute
XChThPp -
— separately the two terms. In order to carry out our conclusions,
P ) (") " in the next two sections we compubé, (k) by investigating
Z XChThpY the eigenpairs of matri¥® (k) in (10).
h=1
H [1l. COMPUTATION OF THE FREE RESPONSK (k)
where . . .
ok As we addressed in Section Il, the computation of the
X (k) = c R2" E>0. trajectory { X (k)} in (8) strongly depends on the sequences
=k ’ - {pF}, h=1,..., P. Furthermore we know by definition that

asymptotically
The authors are aware that (7) may be inappropriate for a . )
full analysis of stability, since the vectgf; is substantially a Jim X(k) = lim Xg(k),
feedback term of the system (indegfl depends on the se- i ) .
quencegz¥ }). However, as described in the sequel, modellin'g;' the free respons& (k) is effective only for finite values

the feedback of system (7) (i.e. modelling the expression k. Nevertheless, i_n the Introduction we reported some
L@sses of shape design problems, where the latter feature is

pﬁ) is more or less equivalent to resort to a deep knowledg i X
of the objective functionf(x). Unfortunately, the latter is elevant, since the computational resources only allow modest
values of k. In this section we focus on the properties of

only known at pointsﬁl. Nonetheless, instead of studying hat i I , h .
the ambitious issue of the stability, for a closed-loop modéﬁ(k)’ so that it can be used to properly define the starting

of system (7), we aim at considering the more tractable fr@gInt of eac_h particle. ) .

response of (7) (see also [3]). Then, the latter is used to obtkfit US consider the following position in (10) and (11)

some partial indications on the assessment of the starting p

positions of the particles in PSO. a=xw, ~w=» XCuTh, (13)
The sequencd X (k)} identifies a trajectory in the state h=1

spacelR?", and since (7) is a linear and stationary system, wg) that for any\ € C

may consider théree response( . (k) and theforced response

Xz(k) of the trajectory{X(k)}. Then, considering (7) we (@ =M1 —wl
explicitly obtain at step: > 0 [16] (1) = Al = )
al 1l-w=MNTI
X (k) = Xe (k) + X(k), ®) whose Schur complement is given fy-w—A+-aw/(a—\))I.
where We aim at computing th@n eigenvalues\(!), ... A2 of
- ®(1); thus, assuming for a whila® #£a,1=1,...,2n, we
obtain after few calculation involving the Schur complement
Xe(k) =®(k)X(0),  Xp(k) = Y Hk-U(7), (9) J P
=0 det (®(1) —A) = [N —(1-w+a)r+a]". (14)
and (after few calculation) Therefore,®(1) has at most two distinct eigenvalues, each
P k with algebraic multiplicityn, i.e. \() = ... = X" = \; and
ywl 3" xenral AHD — = A2 = ), with
o(k) = e , (10) . l-wta—[(1-w+a)?—4d"?
le (1 - Z Xchrh> 1 1 2
h=1 (15)
P k=r—1 \ _1—w+a—|—[(l—w—|—a)2—4a]1/2
xwl — Z XChThI 2 = 9 .
Hk-71) = h=3 (11) Observe that eitheh; = a or A\, = a if and only ifa = 0
ywl <1 _ ZXCM%) I or w = 0. However,a # 0 andw # 0 is a very common
h=1

assumption in PSO literature [3], [10]. Thus, without loss of



generality\; # a and A2 # a, and in accordance with the A. Computing the eigenvectors ®f1)

literature we may consider the following.

Assumption 3.1: We assume in (13) # 0 andw > 0.
Moreover,pg(A) = (A — A1) (A — Ag) is the minimal polyno-
mial of matrix ®(1) and det[®(1)] = a™, so that forn =1

we obtaindet[®(1)] = A\ A2 = a. By considering the quantity
A = (1—w+a)?—4ain (15), the following cases are analyzed:

e a < 0 which yields A > 0, thus A\, Ao arereal and
distinct (one is positive and the other is negative);

e a > 0 which yields conditionA > 0 as long as (see

Assumption 3.1)

0<w<(1-+a)? or w > (14++a)?, (16)

which generates the following subcases:

1) 0<w< (1-+a? = X\ and)\, are real,
distinct and both positive;

(@) w=(1—va)? orw=(1+va)*

17
Alzxzz%“:iﬁ;

(B) w> (1++a)? = \; and )\, are real, distinct
and both negative.

To summarize the previous considerations in terms of dyna
analysis [16] we have:

e if a>0and(1-+a)?<w< (1++/a)?then); and

=

According with the last considerations of Section Rl
eigenvectors of matrixp(1) exist and without loss of gener-
ality they have the form

1
)7 via
)

Then, to compute the eigenvectorsigfl ) we impose relations

[@(1) = ADT] v,
I 0 o} \
S [ [

so that from Assumption 3.1 we explicitly obtain the matvix
of the2n eigenvectord’ = [v; - - VU1 - - - Up] € RZX™,
with

v?eR", i=1,...,2n.

O:

(a = AXNT  —wI

0 0

I I

V= a—)\1 CL—/\2

1 1

w

These eigenvectors are linearly independent, provided that
# )Xo the latter condition is not restrictive for our purposes,
therefore from (16) we consider the following.
Assumption 3.2: We assume in (13 # (1 — y/a)? and
w # (1 + +/a)? for anya > 0, so that the2n eigenvectors of

w

Az are complex conjugate, so that they generate natupahtrix (1) are linearly independent.
pseudoperiodic modes (this generalizes the results in [ herefore we havé’~1®(1)V = A, with

If a >0and0 < w < (1 —+/a)? then we have exactly

2n natural aperiodic modes. Finally if > 0 andw >
(1 + y/a)? then we have exactlgn natural alternating
modes;

« if a < 0 we have exactly» natural aperiodic modes and

n natural alternating modes.
According with (9) [16],

Xc(K) = B(K)X(0) = B(1)*X(0)
al —wl F (17)
: ) o
al (1-w)I

and from Assumption 3.2\, # «a, ¢ = 1,2, then

rk [B(1) — A ] =
I 0 ( (@ =) —wI )
rk a =n,
I I
P, 0 0

which implies that thelgebraic multiplicityand thegeometric
multiplicity of eigenvalues\; and )\, coincide withn, i.e. the
unsymmetric matrixp(1) is diagonalizableand a basis ogn
real eigenvectors ob(1) exists.

sy
A= c IR27L><27L
Aol

and after few calculation

- 1
Al _)\2 —(a—)\l)I

The previous results yield from (17)

(a— X)) —wl

V*l

wl

X, (k) = VA*V=1X(0)

) |

1
Al — Ao ; X7 (@ = Ao)es —wens) v: =

MX(0)T ((a— M)es — wenti) Vpti

3 (o= A X0 — X O —

=1

A5 ((a = A1) X(0); = wX (0)nti) Vnga]

wheree; € IR?" is the unit vector withl in position ¢, and
X (0); is thei-th entry of X(0), i.e.



TABLE |

THE COEFFICIENTS i (k)i = 1, ... 4IN (18). space. The latter issue is noteworthy and plays a key role

within global optimization frameworks, in order to ensure the
convergence to any global minimum [14].

)\]f(a—kj)—)\g(a—kﬂ AL As real
k) = AL — A2
Y1(k) wprsinkd osin(k—1)0 Awda complex, IV. HINTS FOR THE STARTING POINT OF EACH PARTICLE
sin 6 sin 6
WOk = \k) According with Remark 3.1, in this section we give some
) = N T A Az real theoretical indications about the choice of the initial point
T wpk—1 5 k0 AL s complex, X(O_) of each particle_, which i_s a crucial issue in PSO. In
sin 6 particular, let the set in (1) satisfyL = {x € R" : ||z|o <
(M — AE) (@ = A1)(a — Aa) L, L>0, a>0}andletus indicatex (k)\7) the trajectory
M — o o A1, A2 real of the j-th particle. Observe that the latter assumptionlois
v3(k) = wsinkl (p? —2pcos 41 A As complex, VETY cOmmon in real applications. From (&)(k)() linearly
sin 0 w depends on the contribution of the free respalig€k)), i.e.
o ) k(e it depends on the initial poink (0)().
i@ ;) — )\2 (a = J2) A1, A2 real In this section we assume that exactlyparticles compose
va(k) = pk+1sink91 B :sin(k-i-l)@ A As complex. the swarm, though with a similar reasoning our results may

sin 0 sin 0 be extended to smaller/larger sets of particles. We aim at
assessing the initial pointX (0)¢), j = 1,...,n, of the
particles, in such a way that the state spit&" is explored
Furthermore, fori = 1, ....n as widely as possible by the trajectorig® (k)()}. This is a
general and intriguing issue for global optimization algorithms,
which often resort to randomly generated sequences. Here we
propose a set of starting poin{sy (0)\)} such that for any
€ntis fixed index k, the sequencd X, (k)9)} is scatteredin the
state spacdR”". Our numerical experience confirms that the
then latter result may be often fruitfully used.
" To the latter purpose we consider in (13) for any particle
Xe(k) =D (k) X(0)ie; = 72(k) X(0)nsieit 1,...,n the parameters;, w; in place ofa, w. Accordingly,
=1 coefficientsvy; (k), ...,v4(k) in (19) are given for thej-th
13 (R) X (0)ien+i = 7a(k) X (0)ntienta], (18)  particle bw?(é)?j)’__j:i()k)(j),( ) ? N

v; = e; +

Unti = €; +

where coefficientsy;(k), i = 1,...,4 are given in Ta- Consider the scalais’’), 3U) € IR, with || +|3)| 5 0,
ble I. Observe that the first value of each coefficier@nd the vector; € R", j =1,...,n, such that
v1(k),...,v4(k) refers to real eigenvalues, and X\, while
the second value holds in case and )\, are conjugate (i.e. o= vn
A = pe % Xy = ped®, with a = p?). In the end, from (18) tj=-- Zei -5 (20)
we obtain i=1
Xe(k) = 3 (k)X (0); = 12(k) X 0y s + Then, let the vectoX (0)() be given by
=1
Y3(k)X(0); — v4(k) X (0)nril €nyi-  (19) , alit;
_ _ X(0)W) = ., j=1,...,n. (21
Remark 3.1: Relation (19) suggests the following remark- s
J

able conclusions:

« the free responseX,(k) in (8) has the same formal Proposition 4.1: Consider the set of initial points

expression for each particle, and is uniquely dependem,(o)(j)} defined in (21). Consider in (13) for any particle

on the initial pointX (0) of the particle; j the parameters;, w; in place of parameters, w, and let

« by simply imposingX (0); = X(0)+i = 0 in (19), the 3, Assumption 3.2 hold. Then for arly> 0 the following
free response of a particle has zero entries on-theand relations hold

(n + i)-th axis. Thus, according with the free response

in (19), each particle’s trajectory has nonzero projection T

on any subspace dR>", provided that the initial point {Xﬁ(k)(j)} Xp(k)" =0,  forany 1<j#h<n.

X (0) is suitably chosen. (22)
From (19) a suitable choice of the starting pai{0) of any Proof
particle may guarantee an improved exploration of the stdfeom Assumption 3.2 relation (19) is defined. Thus, by simple



substitution from (20) and (21), we obtain e ———_ 1_5‘/__‘\‘&; _ |‘ -
1 AParticle#1_| ] article 1
(6D (k)9 — By (k) D] t; T ——SRadesz || T« parices2|
X (k)@ = - | /ﬁ ,
[a(J)fyg(k>(J) — 5(3)74(]@)(1)} t; §O'si [ o oo i
;: ol e | | b 3 Z‘S}ﬁ{gg Minimum |
[a(h)%(k)(h) - ﬁ(h)w(k)(h)] th = * ] .
Xg(k‘)(h) — , 0.5 _ L 0. - L
| starting |
[ g (k)®) — By, (k) W] ¢, RO | B b ]
05 0 0.5 15 05 | o5 1 1
and since’t;, = 0, for 1 < j # h < n, relations (22) hold. [X (K] ooy T,

We remark that the choice (20)-(21) generates at #teprig. 1. Random choice of initial point& (0)7, j = 1,2, with n = 2 (‘Six-

vectors Xg(k)(l), L 7XL(k)(n), which form an orthogonal humps camel-backiunction [4]). Particle # 1 and Particle # 2 substantially

basis in the state subspace of the positions. In Figs 1-8 Q/§ap: the global minimum is not detected.

show examples witm = 2 (i.e. X, (k)U) € R*, j = 1,2, ———

k > 0) and two particles. Particles # 1 and # 2 are sketched "= poicer1 | | F & s panicert

in the two dimensional subspace of positions with empty , ——— 2 = Paricle#2_| 0—e Particle #2 |

triangles and filled circles respectively (we &gt=a; =0.9 | « | Setng | e starting

andw; = wy = 0.4 in (13) for both particles). Examples|—, °*] i 057

are given for four different well-known test problems [4]: the= ol s W

‘Six-humps camel-back’, the ‘Cosine mixture’, the ‘Treccani X I | cboh

and the ‘Shubert penalized 2. On the left sides of the figures -os - 054 Minimum

only the free responseX (k) and X (k)(® are drawn, i 1 \@

while on the right sides the full trajectoriex (k)(*) and Tds T 6 ok T 1 s s T 6 o5 1 s

X(k)® are reported. Moreover, in the top figures (Figs. (X (] [X ] s

1,3,5,7) the initial pointsX (0)™") and X (0)(?) are randomly

chosen, while in bottom figures (Fig. 2,4,6,8Y,(0)() and Fig.2. Choice (21) of initial points( (0)7, j = 1,2, withn = 2 (‘Six-humps

X(O)(2) are chosgn as suggested in (21) (this explains t&?&tﬁ?ﬁﬂﬂﬁ?@dl&igg particles generate independent trajectories:

perfect orthogonality of the free responses). Observe that with

the random choice the algorithm fails to converge, because

the trajectories substantially move along the segment joinigggt replacing the sequende;} in (20) with any orthogonal

X(0)™") and X(0)®. On the contrary, in all the other casesequence ofi nonzero vectors, the result of Proposition 4.1

(Fig. 2,4,6 and 8) the orthogonality of the free responses|| holds.

of the two particles (left side) determines the convergence

(Particle #2 is attracted by Particle #1 but from (22) they do V. CONCLUSIONS

not overlap). With the aim of using PSO in GO problems where expensive
The latter result may be substantially interpreted as followgnalysis is involved, we explore the case in which a small

At least for small values of parameterthe choice (21) tends number of particles are used (i.e. the number of particles is

to preserve orthogonality among the trajectories. This helpgual to the number of variables). A generalized version of

the particles to be ‘distributed’ in the state space, inasmuchpsrticle Swarm Optimization (PSO) algorithm is considered.

for any k the set of positiongz¥, ..., 2%} (see (6)) is likely In particular, using an open-loop model for a dynamic linear

an independent set. reformulation of PSO iteration, we assess the starting points of
In order to provide further numerical evidence of thishe swarm particles. A complete numerical experience is still

finding, we selected a set of 35 well-known test problems (sggcessary in order to evaluate the convenience of formula (20),

[11]), with dimensions ranging from = 2 throughn = 30.  with respect to other formulae aiming at yieldin§t, = 0,

Table Il reports the problem name, dimension, and the valugere1 < j # h < n. However, preliminary results on a

found by following the two different initialization strategies ofset of 35 algebraic test function, with a number of variables

the global minima pointsf (*)independent according to 21) from n = 2 to n = 30 look promising. Further numerical

and f(z*)random for the random choice, respectively. Withexperience is still necessary in order to evaluate the optimum

the new strategy, the minimum found is improved in 31 outumber of particles which must be used in the optimization

of 35 cases. Interestingly, the improvement does not seempt@cess.

depend on the number of variableslt is worthwhile to notice

that in all the cases we set the number of Particles in the ACKNOWLEDGMENT

swarm equal ton. This is motivated by the fact that we are This work has been partially supported by thEnistero

interested in swarm of small dimension, assuming that tkelle Infrastrutture e dei Trasportn the framework of the re-

objective function is expensive. Finally, we can readily provgearch plan “Programma di Ricerca sulla Sicurezza”, Decreto
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Fig. 3. Random choice of initial point& (0)7, j = 1,2, with » = 2 Fig. 5. Random choice of initial point& (0)7, j = 1,2, with n = 2
(‘Cosine mixture’function [4]). Particle # 1 and Particle # 2 substantially(‘Treccani’ function [4]). Particle # 1 and Particle # 2 substantially overlap:
overlap: the global minimum is not detected. the global minimum is not detected.
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Fig. 4. Choice (21) of initial points¥ (0)7, j = 1,2, with n = 2 (‘Cosine ~ Fig. 6. Choice (21) of initial points (0)7, j = 1, 2, with n = 2 (‘Treccan
mixture function [4]). The two particles generate independent trajectories: tiignction [4]). The two particles generate independent trajectories: the global
global minimum is detected. minimum is detected.
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TABLE I
TEST PROBLEMS In only 4 out of 35 cases, the random choice of the initial
particles’ position for PSO is preferable, with respect to our proposal.
Anyway, in these cases the difference is not dramatic as for many of the 31
remaining test functions.

Fig. 7.

Random choice of initial pointX (0)7, j = 1,2, with n = 2
(‘Shubert penalized Zunction [4]). Particle # 1 and Particle # 2 substantially

overlap: the global minimum is not detected.
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Fig. 8. Choice (21) of initial pointsX (0)7, j = 1,2, with n = 2 (‘Shubert

l Problem [ n [ f(x*)independent [ f(x*)’random l
Six humps camel back 2 -1.0316 * -0.8118
Treccani 2 1.2125E-06 * 0.5983
Quartic 2 -0.1526 * 4.8516
Shubert 2 -49.2691 * -37.5954
Shubert pen.1 2 -23.9748 -30.6048 *
Shubert pen.2 2 -23.2320 * -18.8594
Shekel5 4 -3.36416 * -0.4085
Shekel7 4 -3.39414 * -0.5047
Shekell0 4 -1.30725 * -0.9192
Exponential 2 -0.9999 * -1.1805E-02

4 -0.9999 * -4.7240E-07
Cosine mixture 2 -0.2000 * -4.6458E-02
Cosine mixture 4 -0.1042 * 9.1806E-02
hartman3 3 -3.6570 * -0.9769
hartman6 6 -3.0208 -3.2795 *
5™ loc. minima 2 6.6128E-03 * 9.3625

5 3.6934-02 * 5.1373E-02

10 0.1103 * 1.1255

20 0.2525 * 1.0001

30 0.1453 * 0.7282
10™ loc. minima 2 2.81867E-02 * 45.9406

5 1.2651 * 5.005

10 2.3363 * 34.3466

20 4.3714 * 20.5893

30 3.3331 * 20.4258
15™ loc. minima 2 2.23199E-02 * 0.8580

5 0.2709 3.9033E-02*

10 0.8420 * 1.5038

20 1.5152 * 5.4427

30 2.6402 2.5683 *
Griewank 2 8.1694E-07 * 0.9505

5 3.7250E-05 * 1.96844E-03

10 3.8645E-05 * 0.5813

20 1.8684E-05 * 0.6602

30 8.5806E-05 * 0.5974

penalized 2function [4]). The two particles generate independent trajectories:
the global minimum is detected.




