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Abstract— This paper focuses on a solution technique for global
optimization problems, where the objective function value is
possibly computed by the numerical solution of a PDE system.
The nature of these optimization problems is that of a ‘black-
box’ type, where expensive simulations provide information
to the optimizer, and each function evaluation could require
several CPU-hours. The paper considers the evolutionary Particle
Swarm Optimization (PSO) algorithm, for the minimization of
a nonlinear function in the global optimization frameworks
described. We reformulate the standard iteration of PSO [10],
[3] into a linear dynamic system. Then, the latter is investigated
in order to provide indications for the assessment of the initial
particles position. We carry out our analysis on a generalized
PSO iteration, which includes the standard one proposed in the
literature. Therefore, our results perfectly apply to standard PSO
too, without any modifications. In our scheme the path of any
particle is possibly affected by the trajectories of all the other
particles in the swarm. Our preliminary numerical experience,
over a set of 35 standard test problems from the literature,
confirms the theoretical analysis.

I. I NTRODUCTION

Many applications of optimization in engineering and sci-
ence have to deal with extremely large computational require-
ments and often the cost of computing the objective function
values or derivatives is so large that standard optimization
methods cannot produce results in reasonable time or at rea-
sonable cost. Engineering design is among the primary exam-
ples of this kind of application. Real-world shape optimization
problems have to face complex geometry and typically involve
a large number of variables, requiring hundreds or thousands
of function evaluations to converge to an optimal design. If
high-fidelity analysis1 is required, both derivative-free and
gradient-based optimization methods become more and more
expensive.

Albeit the use of Global Optimization (GO) algorithms
inevitably leads to a further increase of the computational
effort, design engineers of marine, aeronautical, automotive
transport systems, are very much tempted by taking this

1E.g. numerical codes for the solution of the Navier-Stokes PDE, governing
the flow around cars, airplanes or ships. In this case the CPU time for one
function evaluation may be of the order of ten hours on current platforms,
depending on the geometry details.

direction. Indeed, the margin for design improvements is
continuously narrowing for the design engineers are producing
near optimal configurations in many industrial fields, and the
probability that performances breakthrough could come from
local optimization methods is likely small. These issues are
motivating our interest in the development of GO algorithms
with reduced computational effort in terms of function evalu-
ations.

This paper is concerned with the use of the PSO algorithm
for the solution of the global optimization problem

min
x∈L

f(x), L ⊂ IRn, (1)

wheref : IRn → IR is acontinuous function, andL is aclosed
and boundedset. In particular, we aim at detecting a global
minimum x∗ of (1), such thatf(x∗) ≤ f(x) for any x ∈ L,
and the function is computationally costly. A specific aspect of
the paper is that we assume that, given the computational cost
of the objective function, we can only afford a small number
of particles in the swarm.
As well known, unlike local optimization frameworks, there
are not optimality conditions which can characterize the point
x∗. Indeed, no stopping criterion both theoretical and practical,
may be adopted in order to detect the global minima of
problem (1). Anyway, several approaches have been proposed
in the literature for the solution of (1) (see [14] and therein
references), either adopting deterministic [7] and/or stochastic
[6] techniques.
The use of the latter techniques often requires the exploration
over a possibly dense subset ofL; thus, the increasing compu-
tational burden would be definitely unaffordable for the shape
design problems described above.

In the last decades both deterministic and stochastic meth-
ods for problem (1) have included many contributions, whose
rationale is often suggested by biological systems and/or social
behavioural interpretations.

In this paper we consider the PSO algorithm [10], an
iterative method for global optimization, in the class of evolu-
tionary algorithms. The latter scheme was originally conceived
in ’95 as a model to describe the behaviour of a flock of



birds. Then, it has been recently improved (see also [3], [13],
[17], [19], [2]) and is widely adopted within specific global
optimization applications [1], [5], [15], [18].
The growing interest for PSO algorithm, to solve distinctive
global optimization problems (e.g. ship design), is encouraged
by the following appealing features:

• balancebetween the computation involved and the pre-
cision of the solution detected;

• constantcomputational costand memory engagementat
each iteration;

• availability of acurrent approximate solution;
• derivativesof the objective function not required;
• easyimplementationandparallelizationof the method.

We recall that PSO iteration is neither able to guarantee the
convergence to a global minimum nor to a local minimum.
Indeed, PSO is a heuristic method, and its reformulations in
the literature are heuristics as well. The general PSO iteration
can be described at stepk ≥ 0 by

xk+1
j = xk

j + dk
j , j = 1, . . . , P, (2)

wherexk
j ∈ L is the current position of thej-th individual

(particle) of the population (swarm), dk
j ∈ IRn is the search

direction (‘d’ usually stands for ‘direction’ in optimization
frameworks) andxk+1

j is the new position at stepk + 1.
Observe thatdk

j may not be a descent direction for the
objective function f(x) at xk

j . In particular, directiondk
j

depends on both the search directiondk−1
j and the paths of

the particles. The original version of PSO in [10] considers at
stepk the direction

dk
j = dk−1

j + αk(xbest
j − xk

j ) + βk(xbest − xk
j ), (3)

whereαk, βk are suitable random scalars and

xbest
j = argmin

0≤h≤k
{f(xh

j )}, j = 1, . . . , P

xbest = arg min
0≤h≤k, j=1,...,P

{f(xh
j )}.

In this paper we figure out a partial analysis of the par-
ticles trajectories, on a very general reformulation of PSO
iteration. Our approach is not completely new in the literature
(similar issues are partially considered and investigated in
[12], [3], [10], [13]). In particular, we reformulate our PSO
generalized iteration into a dynamic linear system, where
feedback is not included. The lack of a feedback block is
a simplification, motivated by a couple of basic reasons. On
one hand, though preferable, a complete stability analysis
of a closed-loop system would be far from our purposes.
Furthermore, some practical results on the assessment of the
initial particles position may be obtained, by only focusing on
the free response of the open-loop system. We highlight that
in our knowledge, the PSO literature has already provided
indications about several practical aspects of PSO. Indeed,
researchers and practitioners have been most concerned with
issues like the choice of PSO’s coefficients or how PSO
compares with other evolutionary methods over optimization

problems. Unfortunately, it seems that the qualitative and
quantitative impact of a proper choice of the initial particles’
position has not yet been deeply investigated.

A preliminary numerical experience on our generalized
version of PSO algorithm confirms the hints of the theory.

In this paperC represents the set of complex numbers. With
‘rk(A)’ we indicate the rank of matrixA and ‘det(A)’ is its
determinant. Finally we denote withI the identity matrix of
suitable dimension.

In Section II we describe our generalized PSO iteration by
means of a dynamic linear system, whose properties are par-
tially analyzed in Sections III and III-A. Section IV is devoted
to investigate promising starting points for the particles.

II. A GENERALIZED PSOMODEL

Consider the following (generalized) iteration of PSO algo-
rithm in (2)-(3), which is reported by using a common notation
adopted in the PSO literature (k = 0, 1, ...):

vk+1
j = χ

[
wkvk

j + cjrj(pk
j − xk

j ) + cgrg(pk
g − xk

j )
]
,

xk+1
j = xk

j + vk+1
j ,

(4)

wherej = 1, ..., P indicates thej-th particle,P is finite, vk
j

andxk
j are thespeedand thepositionof particle j at stepk,

pk
j andpk

g respectively satisfy

pk
j = argminl≤k

{
f(xl

j)
}

,

pk
g = argminl≤k, j=1,...P

{
f(xl

j)
}

,
(5)

andχ,wk, cj , rj , cg, rg are suitable bounded coefficients. Ob-
serve that the generalized relations (4) include both the cases
in which only theinertia wk or theconstrictioncoefficientχ
are used.We assume thatrj andrg are uniformly distributed
random parameterswith 0 ≤ rj ≤ 1 and0 ≤ rg ≤ 1.
Then, we can further generalize (4) by assuming that possibly
the speedvk+1

j depends on all the termspk
h−xk

j , h = 1, . . . , P ,
and not only on vectorspk

j − xk
j , pk

g − xk
j . In words this

corresponds to allow a more generalsocial contribution in
the PSO iteration. The new iteration is therefore (k = 0, 1, ...)

vk+1
j = χk

j

[
wk

j vk
j +

P∑

h=1

ck
h,jr

k
h,j(p

k
h − xk

j )

]
,

xk+1
j = xk

j + vk+1
j ,

(6)

whereck
h,j andrk

h,j depend on the step (k), the current particle
(j) and the other particles (h).
Without loss of generality at present we focus on thej-th
particle and omit the subscript in the recurrence (6). Moreover,
at present time we assume in (6)χk

j = χ, ck
h,j = ch, rk

h,j = rh

andwk
j = w, for any k ≥ 0. This is a common hypothesis in

the PSO literature, which will be removed in Section IV. With



the latter position the iteration (6) is equivalent to thedynamic
discrete, linearandstationary (time-invariant) system

X(k + 1) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




X(k) +




P∑

h=1

χchrhpk
h

P∑

h=1

χchrhpk
h




, (7)

where

X(k) =




vk

xk


 ∈ IR2n, k ≥ 0.

The authors are aware that (7) may be inappropriate for a
full analysis of stability, since the vectorpk

h is substantially a
feedback term of the system (indeedpk

h depends on the se-
quences{xk

h}). However, as described in the sequel, modelling
the feedback of system (7) (i.e. modelling the expression of
pk

h) is more or less equivalent to resort to a deep knowledge
of the objective functionf(x). Unfortunately, the latter is
only known at pointsxk

h. Nonetheless, instead of studying
the ambitious issue of the stability, for a closed-loop model
of system (7), we aim at considering the more tractable free
response of (7) (see also [3]). Then, the latter is used to obtain
some partial indications on the assessment of the starting
positions of the particles in PSO.

The sequence{X(k)} identifies a trajectory in the state
spaceIR2n, and since (7) is a linear and stationary system, we
may consider thefree responseXL(k) and theforced response
XF (k) of the trajectory{X(k)}. Then, considering (7) we
explicitly obtain at stepk ≥ 0 [16]

X(k) = XL(k) + XF (k), (8)

where

XL(k) = Φ(k)X(0), XF (k) =
k−1∑
τ=0

H(k−τ)U(τ), (9)

and (after few calculation)

Φ(k) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k

, (10)

H(k − τ) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k−τ−1

,(11)

U(τ) =




P∑

h=1

χchrhpτ
h

P∑

h=1

χchrhpτ
h




. (12)

Observe thatXL(k) in (9) does not depend on the vector
pk

h, but uniquely on the initial pointX(0). On the contrary,
XF (k) in (9) depends on the vectorpk

h and is independent of
X(0). The latter practical observation allows us to compute
separately the two terms. In order to carry out our conclusions,
in the next two sections we computeXL(k) by investigating
the eigenpairs of matrixΦ(k) in (10).

III. C OMPUTATION OF THE FREE RESPONSEXL(k)

As we addressed in Section II, the computation of the
trajectory{X(k)} in (8) strongly depends on the sequences
{pk

h}, h = 1, . . . , P . Furthermore we know by definition that
asymptotically

lim
k→∞

X(k) = lim
k→∞

XF (k),

i.e. the free responseXL(k) is effective only for finite values
of k. Nevertheless, in the Introduction we reported some
classes of shape design problems, where the latter feature is
relevant, since the computational resources only allow modest
values of k. In this section we focus on the properties of
XL(k), so that it can be used to properly define the starting
point of each particle.
Let us consider the following position in (10) and (11)

a = χw, ω =
P∑

h=1

χchrh, (13)

so that for anyλ ∈ C

Φ(1)− λI =




(a− λ)I −ωI

aI (1− ω − λ) I


 ,

whose Schur complement is given by(1−ω−λ+aω/(a−λ))I.
We aim at computing the2n eigenvaluesλ(1), . . . , λ(2n) of
Φ(1); thus, assuming for a whileλ(l) 6= a, l = 1, . . . , 2n, we
obtain after few calculation involving the Schur complement

det (Φ(1)− λI) =
[
λ2 − (1− ω + a)λ + a

]n
. (14)

Therefore,Φ(1) has at most two distinct eigenvalues, each
with algebraic multiplicityn, i.e. λ(1) = · · · = λ(n) = λ1 and
λ(n+1) = · · · = λ(2n) = λ2 with

λ1 =
1− ω + a− [

(1− ω + a)2 − 4a
]1/2

2

λ2 =
1− ω + a +

[
(1− ω + a)2 − 4a

]1/2

2
.

(15)

Observe that eitherλ1 = a or λ2 = a if and only if a = 0
or ω = 0. However,a 6= 0 and ω 6= 0 is a very common
assumption in PSO literature [3], [10]. Thus, without loss of



generalityλ1 6= a and λ2 6= a, and in accordance with the
literature we may consider the following.

Assumption 3.1: We assume in (13)a 6= 0 andω > 0.
Moreover,pΦ(λ) = (λ− λ1)(λ− λ2) is the minimal polyno-
mial of matrix Φ(1) and det[Φ(1)] = an, so that forn = 1
we obtaindet[Φ(1)] = λ1λ2 = a. By considering the quantity
∆ = (1−ω+a)2−4a in (15), the following cases are analyzed:

• a < 0 which yields ∆ > 0, thus λ1, λ2 are real and
distinct (one is positive and the other is negative);

• a > 0 which yields condition∆ ≥ 0 as long as (see
Assumption 3.1)

0 < ω ≤ (1−√a)2 or ω ≥ (1 +
√

a)2, (16)

which generates the following subcases:

(1) 0 < ω < (1 − √
a)2 =⇒ λ1 and λ2 are real,

distinct and both positive;

(2) ω = (1−√a)2 or ω = (1 +
√

a)2 =⇒
λ1 = λ2 =

1− ω + a

2
= ±√a;

(3) ω > (1 +
√

a)2 =⇒ λ1 andλ2 are real, distinct
and both negative.

To summarize the previous considerations in terms of dynamic
analysis [16] we have:

• if a > 0 and (1 − √a)2 < ω < (1 +
√

a)2 thenλ1 and
λ2 are complex conjugate, so that they generate natural
pseudoperiodic modes (this generalizes the results in [9]).
If a > 0 and 0 < ω < (1 − √a)2 then we have exactly
2n natural aperiodic modes. Finally ifa > 0 and ω >
(1 +

√
a)2 then we have exactly2n natural alternating

modes;
• if a < 0 we have exactlyn natural aperiodic modes and

n natural alternating modes.

According with (9) [16],

XL(k) = Φ(k)X(0) = Φ(1)kX(0)

=




aI −ωI

aI (1− ω) I




k

X(0),
(17)

and from Assumption 3.1λq 6= a, q = 1, 2, then

rk [Φ(1)− λqI] =

rk







I 0

a

a− λq
I I







(a− λq)I −ωI

0 0





 = n,

which implies that thealgebraic multiplicityand thegeometric
multiplicity of eigenvaluesλ1 andλ2 coincide withn, i.e. the
unsymmetric matrixΦ(1) is diagonalizableand a basis of2n
real eigenvectors ofΦ(1) exists.

A. Computing the eigenvectors ofΦ(1)

According with the last considerations of Section III,2n
eigenvectors of matrixΦ(1) exist and without loss of gener-
ality they have the form

vi =




v1
i

v2
i


 , v1

i , v2
i ∈ IRn, i = 1, . . . , 2n.

Then, to compute the eigenvectors ofΦ(1) we impose relations

0 =
[
Φ(1)− λ(i)I

]
vi =




I 0

a
a−λ(i) I I







(a− λ(i))I −ωI

0 0







v1
i

v2
i




,

so that from Assumption 3.1 we explicitly obtain the matrixV
of the2n eigenvectorsV = [v1 · · · vnvn+1 · · · v2n] ∈ IR2n×2n,
with

V =




I I

a− λ1

ω
I

a− λ2

ω
I


 .

These eigenvectors are linearly independent, provided that
λ1 6= λ2; the latter condition is not restrictive for our purposes,
therefore from (16) we consider the following.

Assumption 3.2: We assume in (13)ω 6= (1 − √a)2 and
ω 6= (1 +

√
a)2 for any a > 0, so that the2n eigenvectors of

matrix Φ(1) are linearly independent.
Therefore we haveV −1Φ(1)V = Λ, with

Λ =




λ1I

λ2I


 ∈ IR2n×2n

and after few calculation

V −1 =
1

λ1 − λ2




(a− λ2)I −ωI

−(a− λ1)I ωI


 .

The previous results yield from (17)

XL(k) = V ΛkV −1X(0)

=
1

λ1 − λ2

n∑

i=1

[
λk

1X(0)T ((a− λ2)ei − ωen+i) vi −

λk
2X(0)T ((a− λ1)ei − ωen+i) vn+i

]

=
1

λ1 − λ2

n∑

i=1

[
λk

1 ((a− λ2)X(0)i − ωX(0)n+i) vi −

λk
2 ((a− λ1)X(0)i − ωX(0)n+i) vn+i

]
,

whereei ∈ IR2n is the unit vector with1 in position i, and
X(0)i is the i-th entry ofX(0), i.e.

X(0) =




X(0)1
...

X(0)2n


 .



TABLE I

THE COEFFICIENTSγi(k), i = 1, . . . , 4 IN (18).

γ1(k) =





λk
1(a− λ2)− λk

2(a− λ1)

λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k − 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex,

γ2(k) =





ω(λk
1 − λk

2)

λ1 − λ2

ωρk−1 sin kθ

sin θ

λ1, λ2 real

λ1, λ2 complex,

γ3(k) =





(λk
1 − λk

2)

λ1 − λ2

(a− λ1)(a− λ2)

ω

ρk sin kθ

sin θ

(
ρ2 − 2ρ cos θ + 1

ω

) λ1, λ2 real

λ1, λ2 complex,

γ4(k) =





λk
1(a− λ1)− λk

2(a− λ2)

λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k + 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex.

Furthermore, fori = 1, . . . , n




vi = ei +
a− λ1

ω
en+i

vn+i = ei +
a− λ2

ω
en+i,

then

XL(k) =
n∑

i=1

[γ1(k)X(0)iei − γ2(k)X(0)n+iei+

γ3(k)X(0)ien+i − γ4(k)X(0)n+ien+i] , (18)

where coefficientsγi(k), i = 1, . . . , 4 are given in Ta-
ble I. Observe that the first value of each coefficient
γ1(k), . . . , γ4(k) refers to real eigenvaluesλ1 and λ2, while
the second value holds in caseλ1 and λ2 are conjugate (i.e.
λ1 = ρe−jθ, λ2 = ρejθ, with a = ρ2). In the end, from (18)
we obtain

XL(k) =
n∑

i=1

[γ1(k)X(0)i − γ2(k)X(0)n+i] ei +

[γ3(k)X(0)i − γ4(k)X(0)n+i] en+i. (19)

Remark 3.1: Relation (19) suggests the following remark-
able conclusions:

• the free responseXL(k) in (8) has the same formal
expression for each particle, and is uniquely dependent
on the initial pointX(0) of the particle;

• by simply imposingX(0)i = X(0)n+i = 0 in (19), the
free response of a particle has zero entries on thei-th and
(n + i)-th axis. Thus, according with the free response
in (19), each particle’s trajectory has nonzero projection
on any subspace ofIR2n, provided that the initial point
X(0) is suitably chosen.

From (19) a suitable choice of the starting pointX(0) of any
particle may guarantee an improved exploration of the state

space. The latter issue is noteworthy and plays a key role
within global optimization frameworks, in order to ensure the
convergence to any global minimum [14].

IV. H INTS FOR THE STARTING POINT OF EACH PARTICLE

According with Remark 3.1, in this section we give some
theoretical indications about the choice of the initial point
X(0) of each particle, which is a crucial issue in PSO. In
particular, let the setL in (1) satisfyL = {x ∈ IRn : ‖x‖α ≤
L, L > 0, α > 0} and let us indicateX(k)(j) the trajectory
of the j-th particle. Observe that the latter assumption onL is
very common in real applications. From (8)X(k)(j) linearly
depends on the contribution of the free responseXL(k)(j), i.e.
it depends on the initial pointX(0)(j).

In this section we assume that exactlyn particles compose
the swarm, though with a similar reasoning our results may
be extended to smaller/larger sets of particles. We aim at
assessing the initial pointsX(0)(j), j = 1, . . . , n, of the
particles, in such a way that the state spaceIR2n is explored
as widely as possible by the trajectories{X(k)(j)}. This is a
general and intriguing issue for global optimization algorithms,
which often resort to randomly generated sequences. Here we
propose a set of starting points{X(0)(j)} such that for any
fixed index k, the sequence{XL(k)(j)} is scatteredin the
state spaceIR2n. Our numerical experience confirms that the
latter result may be often fruitfully used.
To the latter purpose we consider in (13) for any particlej =
1, . . . , n the parametersaj , wj in place ofa, w. Accordingly,
coefficientsγ1(k), . . . , γ4(k) in (19) are given for thej-th
particle byγ1(k)(j), . . . , γ4(k)(j).

Consider the scalarsα(j), β(j) ∈ IR, with |α(j)|+|β(j)| 6= 0,
and the vectortj ∈ IRn, j = 1, . . . , n, such that

tj =
√

n

n

n∑

i=1

ei −
√

n

2
ej . (20)

Then, let the vectorX(0)(j) be given by

X(0)(j) =




α(j)tj

β(j)tj


 , j = 1, . . . , n. (21)

Proposition 4.1: Consider the set of initial points
{X(0)(j)} defined in (21). Consider in (13) for any particle
j the parametersaj , wj in place of parametersa, w, and let
the Assumption 3.2 hold. Then for anyk ≥ 0 the following
relations hold

[
XL(k)(j)

]T

XL(k)(h) = 0, for any 1 ≤ j 6= h ≤ n.

(22)
Proof
From Assumption 3.2 relation (19) is defined. Thus, by simple



substitution from (20) and (21), we obtain

XL(k)(j) =




[
α(j)γ1(k)(j) − β(j)γ2(k)(j)

]
tj

[
α(j)γ3(k)(j) − β(j)γ4(k)(j)

]
tj




XL(k)(h) =




[
α(h)γ1(k)(h) − β(h)γ2(k)(h)

]
th

[
α(h)γ3(k)(h) − β(h)γ4(k)(h)

]
th


 ,

and sincetTj th = 0, for 1 ≤ j 6= h ≤ n, relations (22) hold.

We remark that the choice (20)-(21) generates at stepk
vectorsXL(k)(1), . . . , XL(k)(n), which form an orthogonal
basis in the state subspace of the positions. In Figs 1-8 we
show examples withn = 2 (i.e. XL(k)(j) ∈ IR4, j = 1, 2,
k ≥ 0) and two particles. Particles # 1 and # 2 are sketched
in the two dimensional subspace of positions with empty
triangles and filled circles respectively (we seta1 = a2 = 0.9
and ω1 = ω2 = 0.4 in (13) for both particles). Examples
are given for four different well-known test problems [4]: the
‘Six-humps camel-back’, the ‘Cosine mixture’, the ‘Treccani’
and the ‘Shubert penalized 2’. On the left sides of the figures
only the free responsesXL(k)(1) and XL(k)(2) are drawn,
while on the right sides the full trajectoriesX(k)(1) and
X(k)(2) are reported. Moreover, in the top figures (Figs.
1,3,5,7) the initial pointsX(0)(1) and X(0)(2) are randomly
chosen, while in bottom figures (Fig. 2,4,6,8),X(0)(1) and
X(0)(2) are chosen as suggested in (21) (this explains the
perfect orthogonality of the free responses). Observe that with
the random choice the algorithm fails to converge, because
the trajectories substantially move along the segment joining
X(0)(1) and X(0)(2). On the contrary, in all the other cases
(Fig. 2,4,6 and 8) the orthogonality of the free responses
of the two particles (left side) determines the convergence
(Particle #2 is attracted by Particle #1 but from (22) they do
not overlap).

The latter result may be substantially interpreted as follows.
At least for small values of parameterk, the choice (21) tends
to preserve orthogonality among the trajectories. This helps
the particles to be ‘distributed’ in the state space, inasmuch as
for any k the set of positions{xk

1 , . . . , xk
P } (see (6)) is likely

an independent set.
In order to provide further numerical evidence of this

finding, we selected a set of 35 well-known test problems (see
[11]), with dimensions ranging fromn = 2 throughn = 30.
Table II reports the problem name, dimension, and the value
found by following the two different initialization strategies of
the global minima points:f(x∗)independent according to 21)
and f(x∗)random for the random choice, respectively. With
the new strategy, the minimum found is improved in 31 out
of 35 cases. Interestingly, the improvement does not seem to
depend on the number of variablesn. It is worthwhile to notice
that in all the cases we set the number of Particles in the
swarm equal ton. This is motivated by the fact that we are
interested in swarm of small dimension, assuming that the
objective function is expensive. Finally, we can readily prove
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Fig. 1. Random choice of initial pointsX(0)j , j = 1, 2, with n = 2 (‘Six-
humps camel-back’function [4]). Particle # 1 and Particle # 2 substantially
overlap: the global minimum is not detected.
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Fig. 2. Choice (21) of initial pointsX(0)j , j = 1, 2, with n = 2 (‘Six-humps
camel-back’ function [4]). The two particles generate independent trajectories:
the global minimum is detected.

that replacing the sequence{tj} in (20) with any orthogonal
sequence ofn nonzero vectors, the result of Proposition 4.1
still holds.

V. CONCLUSIONS

With the aim of using PSO in GO problems where expensive
analysis is involved, we explore the case in which a small
number of particles are used (i.e. the number of particles is
equal to the number of variables). A generalized version of
Particle Swarm Optimization (PSO) algorithm is considered.
In particular, using an open-loop model for a dynamic linear
reformulation of PSO iteration, we assess the starting points of
the swarm particles. A complete numerical experience is still
necessary in order to evaluate the convenience of formula (20),
with respect to other formulae aiming at yieldingtTj th = 0,
where 1 ≤ j 6= h ≤ n. However, preliminary results on a
set of 35 algebraic test function, with a number of variables
from n = 2 to n = 30 look promising. Further numerical
experience is still necessary in order to evaluate the optimum
number of particles which must be used in the optimization
process.
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Fig. 3. Random choice of initial pointsX(0)j , j = 1, 2, with n = 2
(‘Cosine mixture’ function [4]). Particle # 1 and Particle # 2 substantially
overlap: the global minimum is not detected.
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Fig. 7. Random choice of initial pointsX(0)j , j = 1, 2, with n = 2
(‘Shubert penalized 2’function [4]). Particle # 1 and Particle # 2 substantially
overlap: the global minimum is not detected.

[XL (k)] n+1

[X
L

(k
)]

n+
2

-2.5-2-1.5-1-0.500.511.522.533.544.555.566.5
-5

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Particle # 1
Particle # 2

∆

[X (k)] n+1

[X
(k

)]
n+

2

-4.5-4-3.5-3-2.5-2-1.5-1-0.500.511.522.533.544.55
-5

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Particle # 1
Particle # 2

∆

Fig. 8. Choice (21) of initial pointsX(0)j , j = 1, 2, with n = 2 (‘Shubert
penalized 2’ function [4]). The two particles generate independent trajectories:
the global minimum is detected.

TABLE II

TEST PROBLEMS: In only 4 out of 35 cases, the random choice of the initial

particles’ position for PSO is preferable, with respect to our proposal.

Anyway, in these cases the difference is not dramatic as for many of the 31

remaining test functions.

Problem n f(x∗)independent f(x∗)random

Six humps camel back 2 -1.0316 * -0.8118
Treccani 2 1.2125E-06 * 0.5983
Quartic 2 -0.1526 * 4.8516
Shubert 2 -49.2691 * -37.5954
Shubert pen.1 2 -23.9748 -30.6048 *
Shubert pen.2 2 -23.2320 * -18.8594
Shekel5 4 -3.36416 * -0.4085
Shekel7 4 -3.39414 * -0.5047
Shekel10 4 -1.30725 * -0.9192
Exponential 2 -0.9999 * -1.1805E-02

4 -0.9999 * -4.7240E-07
Cosine mixture 2 -0.2000 * -4.6458E-02
Cosine mixture 4 -0.1042 * 9.1806E-02
hartman3 3 -3.6570 * -0.9769
hartman6 6 -3.0208 -3.2795 *
5n loc. minima 2 6.6128E-03 * 9.3625

5 3.6934-02 * 5.1373E-02
10 0.1103 * 1.1255
20 0.2525 * 1.0001
30 0.1453 * 0.7282

10n loc. minima 2 2.81867E-02 * 45.9406
5 1.2651 * 5.005
10 2.3363 * 34.3466
20 4.3714 * 20.5893
30 3.3331 * 20.4258

15n loc. minima 2 2.23199E-02 * 0.8580
5 0.2709 3.9033E-02*
10 0.8420 * 1.5038
20 1.5152 * 5.4427
30 2.6402 2.5683 *

Griewank 2 8.1694E-07 * 0.9505
5 3.7250E-05 * 1.96844E-03
10 3.8645E-05 * 0.5813
20 1.8684E-05 * 0.6602
30 8.5806E-05 * 0.5974


