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Abstract In this work we consider the solution of large scale (possibly noncon-

vex) unconstrained optimization problems. We focus on Truncated Newton methods

which represent one of the commonest methods to tackle such problems. In partic-

ular, we follow the approach detailed in [4], where a modified version of the Bunch

and Kaufman decomposition [1] is proposed for solving the Newton equation. Such

decomposition is used within SYMMBK routine as proposed by Chandra in [6] (see

also [7, 16, 17]) for iteratively solving symmetric possibly indefinite linear systems.

The proposal in [4] enabled to overcome a relevant drawback of nonconvex prob-

lems, namely the computed search direction might not be gradient–related. Here

we propose further extensions of such approach, aiming at improving the pivoting

strategy of the Bunch and Kaufman decomposition and enhancing its flexibility.

1 Introduction

Given a real valued function 𝑓 : R𝑛 −→ R, an unconstrained optimization problem

consists of determining a local minimizer of 𝑓 by solving

min 𝑓 (𝑥)
𝑥 ∈ R𝑛. (1)

In particular, we consider problems where 𝑛 is large and the function 𝑓 is possibly

nonconvex. Moreover, we assume that both the gradient ∇ 𝑓 (𝑥) and the Hessian
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matrix ∇2 𝑓 (𝑥) exist and are continuous. We do not assume any sparsity pattern on

∇2 𝑓 (𝑥). The iterative solution of large scale unconstrained optimization problems

plays a fundamental role in many and different contexts of applied mathematics.

Therefore, it is very important to have at one’s disposal an efficient and robust

method able to tackle also large scale difficult problems (see also [5, 14]).

As well known, in case the method of choice were a Truncated Newton method,

at each iteration ℎ, a search direction 𝑝ℎ and a steplength 𝛼ℎ are determined, so that

the current point is updated according to the iterative scheme

𝑥ℎ+1 = 𝑥ℎ + 𝛼ℎ𝑝ℎ , (2)

being 𝑥0 ∈ R𝑛 a given starting point. In the Truncated Newton method, the search

direction 𝑝ℎ is often obtained by approximately solving the Newton equation

∇2 𝑓 (𝑥ℎ)𝑝 = −∇ 𝑓 (𝑥ℎ), (3)

by means of a Krylov subspace method. The iterations of the solver (called inner

iterations) are stopped according to a suited termination criterion, still ensuring a

good convergence rate of the method. This is obtained by using a particular trade–

off rule between the computational burden required to solve the system (3) and the

accuracy with which it is solved. The reader is referred to the seminal paper by S.

Nash [18] for a survey on Truncated Newton methods.

Among the Krylov subspace methods, the Conjugate Gradient (CG) algorithm

is usually the method of choice, even if it may break down when solving (3) and

the matrix ∇2 𝑓 (𝑥ℎ) is indefinite. In this case, some alternative strategies have been

proposed in literature (see, e.g., [8, 9, 10, 11, 12, 13, 15]).

In [4] the use of the SYMMBK algorithm was proposed as an alternative to the

CG method. The SYMMBK algorithm was introduced in [6] and it is based on the

Lanczos process, which does not break down in the indefinite case. More precisely,

the matrix of the Lanczos vectors is built one column at a time and (after 𝑘 iterations)

the resulting 𝑛× 𝑘 matrix 𝑄𝑘 has the property that 𝑄𝑇
𝑘
∇2 𝑓 (𝑥ℎ)𝑄𝑘 = 𝑇𝑘 , where 𝑇𝑘 is

tridiagonal. Then, the Bunch and Kaufman decomposition of the tridiagonal matrix

𝑇𝑘 is performed, namely 𝑇𝑘 = 𝑆𝑘𝐵𝑘𝑆
𝑇
𝑘

, where 𝐵𝑘 is a block diagonal matrix with

1 × 1 or 2 × 2 diagonal blocks, and 𝑆𝑘 is a unit lower triangular matrix. At each step

𝑘 , a suited strategy is adopted for deciding whether a 1 × 1 or 2 × 2 diagonal block

must be formed, in order to guarantee numerical stability.

On the other hand, the test on a pivotal element inside SYMMBK algorithm is

uniquely chosen to pursue numerical efficiency and stability, inasmuch as the Bunch

and Kaufman decomposition performed by SYMMBK focuses on the growth factor

of the matrices resulting from decomposition (see [6]). Thus, some concerns may

arise when embedding the SYMMBK algorithm within a Truncated Newton method,

where a search direction must be gradient related, i.e., eventually bounded and of

sufficient descent (see Definition 1.1 in [4] for a formal statement). The last issue

was already addressed in [4], though the modification proposed therein possibly left

room to further generalizations. Here we aim at filling the last gap, by proposing

an enhancement with respect to [4]. In particular, we are going to propose here an
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update for the parameters 𝜔 and 𝜙 used in [4], so that they can possibly depend

on the gradient vector computed at the current Truncated Newton iteration. More

specifically, in the next sections we analyze and discuss the following issues:

• at step 𝑘 of the Bunch and Kaufman routine, the test |𝛿𝑘 | > 𝜔𝜂𝛾2
𝑘+1

discussed in

[4] represents indeed a test on the curvature along the vector 𝑞𝑘 ;

• we can replace the quantity 𝜔 introduced in [4] with the sequence {𝜔𝑘 }, so that

the test |𝛿𝑘 | > 𝜔𝜂𝛾2
𝑘+1

turns into the test |𝛿𝑘 | > 𝜔𝑘𝜂𝛾
2
𝑘+1

;

• we define a specific expression for the constant 𝜙 introduced in [4], so that it

explicitly depends on the gradient vector currently available from the optimization

framework;

• the choice of the sequence {𝜔𝑘 } and the constant 𝜙 can partially be steered by

the optimization framework, in case any additional knowledge is available which

suggests that a better quality of the overall gradient–related direction can be

sought.

The paper is organized as follows. In Section 2 some preliminaries on Truncated

Newton methods and the Lanczos process are reported; then, the Bunch and Kaufman

decomposition, as well as some basics on SYMMBK (see also [7]), are given. In

Section 3 we show how to compute a gradient–related direction by using the Bunch

and Kaufman decomposition. Finally, Section 4 reports some concluding remarks.

We indicate by ‖ · ‖ the Eclidean norm of real vectors and matrices. Moreover,

𝜆ℓ (𝐶) and 𝜅(𝐶) represent the ℓ-th eigenvalue and the condition number of the real

symmetric matrix 𝐶, respectively. Finally, 𝑒𝑖 is the 𝑖-th real unit vector.

2 Preliminary results

Here we report some basic results, including introductory material on the Lanczos

process and the Bunch and Kaufman factorization. Some insights on the Lancos

process are mandatory, to show how SYMMBK performs an iterative decomposition

of the tridiagonal matrix using the Lanczos process. For the sake of brevity, we

assume that the reader is familiar with a standard Truncated Newton method which

iteratively generates the sequence {𝑥ℎ} in (2). We recall the importance of an efficient

truncation criterion for the inner iterations within Truncated Newton methods, as

also pointed out in [8, 9, 19], and more recently in [2, 3].

Assumption 1

Let be given the function 𝑓 : R𝑛 → R in (1), with 𝑓 twice continuously differ-

entiable. Then, we assume that the sequence {𝑥ℎ} in (2) satisfies {𝑥ℎ} ⊂ Ω, being

Ω ⊂ R𝑛 compact. �

As a very general convergence result for Truncated Newton methods, when conver-

gence to first order stationary points is sought, we give the next proposition.
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Proposition 1 Consider the sequences {𝑥ℎ} and {𝑝ℎ} in (2), where {𝑥ℎ} satisfies

Assumption 1 and the search directions are gradient–related. If an Armijo-type

linesearch procedure is chosen to select the steplength 𝛼ℎ in (2), then

• { 𝑓 (𝑥𝑘 )} converges regardless of the choice of the initial iterate 𝑥0;

• any subsequence of {𝑥𝑘 } converges to a stationary point of 𝑓 (𝑥).

Definition 1 Let be given the function 𝑓 : R𝑛 → R in (1), with 𝑓 twice continuously

differentiable. Consider a vector 𝑑 ∈ R𝑛 \ {0}. Then, the quantity 𝑑𝑇 ∇2 𝑓 (𝑥)𝑑 is the

normalized curvature of 𝑓 at 𝑥, along the direction 𝑑.

2.1 Matrix Tridiagonalization using the Lanczos process

The Lanczos process [7] is a Krylov-subspace method for tridiagonalizing a sym-

metric indefinite matrix. Dropping the dependency of the subscript ℎ and setting

𝐴 = ∇2 𝑓 (𝑥ℎ), 𝑏 = −∇ 𝑓 (𝑥ℎ) in (3), the application of the Lanczos process to the

linear system

𝐴𝑑 = 𝑏 (4)

yields the orthogonal Lanczos vectors 𝑞𝑖 , 𝑖 ≥ 1, according with Table 1.

Data: 𝜀 = �̄� ‖𝑏 ‖, with �̄� ∈ (0, 1) . Set 𝑘 = 1, 𝑢1 = 𝑏, 𝑞1 =
𝑢1

‖𝑢1 ‖ , 𝛿1 = 𝑞𝑇

1
𝐴𝑞1 and compute

the vector 𝑢2 = 𝐴𝑞1 − 𝛿1𝑞1.

Do
𝑘 = 𝑘 + 1;

𝛾𝑘 = ‖𝑢𝑘 ‖;
If 𝛾𝑘 < 𝜀 STOP.

Else set
𝑞𝑘 = 𝑢𝑘/𝛾𝑘 ;

𝛿𝑘 = 𝑞𝑇

𝑘
𝐴𝑞𝑘 ;

𝑢𝑘+1 = 𝐴𝑞𝑘 − 𝛿𝑘𝑞𝑘 − 𝛾𝑘𝑞𝑘−1.

End If

End Do

Table 1 The Lanczos process for the indefinite linear system (4).

After 𝑘 ≤ 𝑛 iterations the Lanczos process has generated the unit vectors

𝑞1, . . . , 𝑞𝑘 (the Lanczos vectors), along with the values 𝛿1, . . . , 𝛿𝑘 and 𝛾2, . . . , 𝛾𝑘 ,

so that setting 𝑄𝑘 = (𝑞1 · · · 𝑞𝑘 ) and defining the nonsingular tridiagonal matrix

𝑇𝑘 =

©
«

𝛿1 𝛾2

𝛾2 𝛿2 ·
· · ·
· 𝛿𝑘−1 𝛾𝑘
𝛾𝑘 𝛿𝑘

ª®®®®®¬
, (5)
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we have

𝐴𝑄𝑘 = 𝑄𝑘𝑇𝑘 + 𝛾𝑘+1𝑞𝑘+1𝑒
𝑇
𝑘 ; (6)

𝑄𝑇
𝑘 𝐴𝑄𝑘 = 𝑇𝑘 ; (7)

𝑄𝑇
𝑘𝑄𝑘 = 𝐼; (8)

𝑄𝑇
𝑘 𝑞𝑘+1 = 0; (9)

span {𝑞1, 𝑞2, . . . , 𝑞𝑘 } = span
{
𝑢1, 𝐴𝑢1, . . . , 𝐴

𝑘−1𝑢1

}
. (10)

In the case 𝛾𝑘+1 = 0 in (6), then we have from (6)-(10) (see [6]){
𝑇𝑘 𝑦𝑘 = ‖𝑏‖𝑒1

𝑑𝑘 = 𝑄𝑘 𝑦𝑘
(11)

which easily allow to first compute the vector 𝑦𝑘 (from 𝑇𝑘 𝑦𝑘 = ‖𝑏‖𝑒1) and then

𝑑𝑘 = 𝑄𝑘 𝑦𝑘 , being 𝑑𝑘 an approximate solution of (4). Finally, note that according

to Definition 1 the scalar 𝛿𝑘 represents the normalized curvature of the function

𝜙(𝑑) = 1/2𝑑𝑇 𝐴𝑑 + 𝑏𝑇 𝑑, along the direction 𝑞𝑘 .

3 Our proposal of possible generalizations

As also reported in Section 2, in a Truncated Newton framework the SYMMBK

algorithm can be applied for the solution of the indefinite Newton’s equation (4), by

exploiting the Bunch and Kaufman factorization. Unfortunately, a mere application

of the last decomposition possibly provides in (11) a search direction (namely 𝑑𝑘 )

which might not be gradient–related. Here, we suitably generalize the proposal in

[4] and better exploit the SYMMBK algorithm, so that starting from an approximate

solution of (3) we can compute a gradient–related direction.

We intend to slightly modify, at step 𝑘 , the pivoting strategy adopted by the

Bunch and Kaufman iterative decomposition 𝑇𝑘 = 𝑆𝑘𝐵𝑘𝑆
𝑇
𝑘

, when choosing at step

𝑘 between 1 × 1 or 2 × 2 pivot. Note that the matrix 𝐵𝑘 is a block diagonal matrix

containing 1 × 1 and/or 2 × 2 blocks, while 𝑆𝑘 is a unit lower triangular matrix. The

standard pivoting strategy in SYMMBK (see [6]) consists of performing at step 𝑘 a

1× 1 pivot if |𝛿𝑘 | > 𝜂𝛾2
𝑘+1

, otherwise a 2× 2 pivot is considered (where 𝜂 is a suited

scalar). This strategy has also an interesting geometric interpretation suggested by

Definition 1 and summarized in the next result.

Proposition 2 Let us consider the Bunch and Kaufman decomposition𝑇𝑘 = 𝑆𝑘𝐵𝑘𝑆
𝑇
𝑘

of the tridiagonal matrix 𝑇𝑘 in (11). Assume that at step 𝑘 of the Bunch and Kaufman

decomposition the generalized test |𝛿𝑘 | > 𝜔𝑘𝜂(𝛾𝑘+1)2 is adopted, with 𝜔𝑘 > 0.

Then, the normalized curvature 𝛿𝑘 of the function 𝜙(𝑑) = 1/2𝑑𝑇 𝐴𝑑 + 𝑏𝑇 𝑑, along

the direction 𝑞𝑘 , either satisfies 𝛿𝑘 ≤ (𝛿𝑘 )− or 𝛿𝑘 ≥ (𝛿𝑘 )+, where

• for 𝑘 = 1, for any value of 𝜔1 > 0 the quantities (𝛿𝑘 )− and (𝛿𝑘 )+ are bounded

away from zero;
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• for 𝑘 ≥ 2, there are values of 𝜔𝑘 > 0 such that (𝛿𝑘 )− and (𝛿𝑘 )+ are bounded

away from zero.

Proof: We separately analyze the cases 𝑘 = 1 and 𝑘 ≥ 2. When 𝑘 = 1, recalling

that ‖𝑞𝑖 ‖ = 1 for any 𝑖 ≥ 1, the test |𝛿1 | > 𝜔1𝜂(𝛾2)2 is equivalent to the inequalities

𝛿1 < −𝜔1𝜂
[
‖𝐴𝑞1‖2 − 𝛿2

1

]
𝛿1 > +𝜔1𝜂

[
‖𝐴𝑞1‖2 − 𝛿2

1

]
.

(12)

Recalling that 𝜂 = (
√

5 − 1)/(2 max𝑖 |𝜆𝑖 (𝐴) |) (see [6]), after an easy computation

the first inequality yields

(𝛿1)− =
1 −

[
1 + 4𝜔2

1
𝜂2‖𝐴𝑞1‖2

]1/2

2𝜔1𝜂
≤

1 −
[
1 + 𝜔2

1
(
√

5 − 1)2/𝜅2 (𝐴)
]1/2

2𝜔1𝜂
,

(𝛿1)+ =
1 +

[
1 + 4𝜔2

1
𝜂2‖𝐴𝑞1‖2

]1/2

2𝜔1𝜂
≥

1 +
[
1 + 𝜔2

1
(
√

5 − 1)2/𝜅2 (𝐴)
]1/2

2𝜔1𝜂
.

Similarly, by the second inequality we get

(𝛿1)− =
−1 −

[
1 + 4𝜔2

1
𝜂2‖𝐴𝑞1‖2

]1/2

2𝜔1𝜂
≤

−1 −
[
1 + 𝜔2

1
(
√

5 − 1)2/𝜅2 (𝐴)
]1/2

2𝜔𝜂
,

(𝛿1)+ =
−1 +

[
1 + 4𝜔2

1
𝜂2‖𝐴𝑞1‖2

]1/2

2𝜔1𝜂
≥

−1 +
[
1 + 𝜔2

1
(
√

5 − 1)2/𝜅2 (𝐴)
]1/2

2𝜔𝜂
.

When 𝑘 ≥ 2, after some arrangements, the test |𝛿𝑘 | > 𝜔𝑘𝜂(𝛾𝑘+1)2 is equivalent to

the inequality

|𝛿𝑘 | > 𝜔𝑘𝜂‖𝐴𝑞𝑘 − 𝛿𝑘𝑞𝑘 − 𝛾𝑘𝑞𝑘−1‖2
= 𝜔𝑘𝜂

[
‖𝐴𝑞𝑘 ‖2 − 𝛿2

𝑘 − 𝛾2
𝑘

]
.

Furthermore, an analysis similar to the case 𝑘 = 1 holds, after distinguishing between

the subcases ‖𝐴𝑞𝑘 ‖ > 𝛾𝑘 and ‖𝐴𝑞𝑘 ‖ ≤ 𝛾𝑘 .

In the next section we show that, for any 𝑘 , the generalized test |𝛿𝑘 | > 𝜔𝑘𝜂(𝛾𝑘+1)2

reported in Proposition 2 allows to use an adapted SYMMBK algorithm for con-

structing a gradient–related direction.

3.1 Gradient–related directions using SYMMBK

Here we show that, using the results in Proposition 2, within the Bunch and Kaufman

decomposition, it is possible to guarantee that a gradient–related direction 𝑝ℎ at 𝑥ℎ
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for the optimization problem (1) can be computed, provided that suitable values

{𝜔𝑘 } are used. In this regard, we first recall that to iteratively compute the vector 𝑑𝑘
in (11), the Bunch and Kaufman algorithm generates the intermediate vectors {𝑧𝑖}
(see also [4]), 𝑖 ≤ 𝑘 , such that

• if at step 𝑖 a 1 × 1 pivot is performed by the Bunch and Kaufman decomposition,

then the vector 𝑧𝑖 = 𝑧𝑖−1 + 𝜁𝑖𝑤𝑖 is generated,

• if at step 𝑖 a 2 × 2 pivot is performed by the Bunch and Kaufman decomposition,

then the vector 𝑧𝑖 = 𝑧𝑖−2 + 𝜁𝑖−1𝑤𝑖−1 + 𝜁𝑖𝑤𝑖 is generated,

• when 𝑖 = 𝑘 we have 𝑑𝑘 = 𝑧𝑘 ,

being the real values {𝜁𝑖} and the vectors {𝑤𝑖} computed using the entries of matrices

𝑆𝑘 and 𝐵𝑘 . Furthermore, as regards the vectors {𝑧𝑖} we have the next result, which

represents a generalization of Proposition 3.1 in [4].

Proposition 3 Let the matrix 𝐴 in (4) be nonsingular, and let 𝑧𝑖 , 𝑖 ≤ 𝑘 , be the

directions generated by the SYMMBK algorithm when solving the tridiagonal linear

system in (11). Then, for any 0 < 𝜔𝑖 < 1, 𝑖 ≥ 1, we have that

• any direction in the finite sequences 𝜁1𝑤1, . . . , 𝜁𝑘𝑤𝑘 and 𝑧1, . . . , 𝑧𝑘 is bounded;

• the vector 𝑑𝑘 in (11) coincides with 𝑧𝑘 (and is bounded).

Proof: The proof follows guidelines similar to Proposition 3.1 in [4], so that it is

omitted.

From Proposition 3 the real vector 𝜁𝑖𝑤𝑖 = 𝑧𝑖 − 𝑧𝑖−1 (respectively the vector

𝜁𝑖−1𝑤𝑖−1 + 𝜁𝑖𝑤𝑖 = 𝑧𝑖 − 𝑧𝑖−2) are bounded, and according with the next scheme in

Table 2, they can be fruitfully used to compute the search direction 𝑝ℎ , at the outer

iteration ℎ of the Truncated Newton method. We remark that the scheme in Table 2

includes a relevant piece of news for the choice of the value 𝜙, with respect to the

Reverse Scheme in [4], as detailed in the proof of Proposition 4.

In the next proposition we show that the direction 𝑝ℎ , obtained by using the

scheme in Table 2 at any iterate of the Truncated Newton method, is gradient–related.

The next result aims at rephrasing and generalizing the results in Proposition 3.2

of [4], after introducing the sequence {𝜔𝑘 } in place of the parameter 𝜔 and the

novel definition for the parameter 𝜙 in Table 2. Furthermore, the forthcoming result

shows that any vector in the sequence {𝑝ℎ} is of sufficient descent and eventually is

(uniformly) bounded by a positive finite constant value.

Proposition 4 Let Assumption 1 hold. Let us consider Proposition 3 where we set

𝐴 = ∇2 𝑓 (𝑥ℎ) and 𝑏 = −∇ 𝑓 (𝑥ℎ). Assume the search direction 𝑝ℎ in (2) is computed

as in Table 2. Then, the direction 𝑑𝑘 in (11) satisfies ‖𝑑𝑘 ‖ < 𝜇, for any 𝑘 ≥ 1, with

𝜇 > 0, and 𝑝ℎ is a gradient–related direction.

Proof: The result surely holds if in Proposition 3 the Lanczos process performs just

one iteration, inasmuch as 𝛾2 < 𝜀. On the other hand, in case the Lanczos process

has performed at least 2 iterations, the proof follows guidelines similar to those of

ODS2021, 182, v1: ’An improvement of the pivoting strategy in the Bunch and Kaufman . . . 7
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Data: Set the initial vector 𝑝ℎ = 𝑧0 = 0, along with the parameter 𝜙 = �̄� ‖𝑏 ‖, with �̄� > 0;

Do 𝑖 ≥ 1

If at step 𝑖 of the Bunch and Kaufman decomposition a 1 × 1 pivot is performed, then

If ∇ 𝑓 (𝑥ℎ)𝑇 (𝜁𝑖𝑤𝑖) > 0 then set 𝑢𝑢 = −𝜁𝑖𝑤𝑖 else 𝑢𝑢 = 𝜁𝑖𝑤𝑖 .

Set 𝑝ℎ = 𝑝ℎ + 𝑢𝑢.

If at step 𝑖 of the Bunch and Kaufman decomposition a 2× 2 pivot is performed, then set

𝜁𝑖−1 =

{
𝑠𝑔𝑛(𝜁𝑖−1) max{ |𝜁𝑖−1 |, 𝜙} 𝑖 = 2

𝜁𝑖−1 𝑖 > 2.

If ∇ 𝑓 (𝑥ℎ)𝑇 (𝜁𝑖−1𝑤𝑖−1) > 0 then set 𝑢𝑢 = −𝜁𝑖−1𝑤𝑖−1 else 𝑢𝑢 = 𝜁𝑖−1𝑤𝑖−1.

If ∇ 𝑓 (𝑥ℎ)𝑇 (𝜁𝑖𝑤𝑖) > 0 then set 𝑣𝑣 = −𝜁𝑖𝑤𝑖 else 𝑣𝑣 = 𝜁𝑖𝑤𝑖 .

Set 𝑝ℎ = 𝑝ℎ + 𝑢𝑢 + 𝑣𝑣 .

End Do

Table 2 Computing a gradient–related search direction with SYMMBK algorithm.

Proposition 3.2 in [4], so that we only report the differences. For the case in which a

the Lanczos process performs a 2 × 2 pivot, by Table 2 we obtain

∇ 𝑓 (𝑥ℎ)𝑇 𝑝ℎ = −𝑠𝑔𝑛[∇ 𝑓 (𝑥ℎ)𝑇 (𝜁1𝑞1)]∇ 𝑓 (𝑥ℎ)𝑇 (𝜁1𝑞1)
+
∑︁
𝑖>2

−𝑠𝑔𝑛
[
∇ 𝑓 (𝑥ℎ)𝑇 (𝜁𝑖𝑤𝑖)

]
∇ 𝑓 (𝑥ℎ)𝑇 (𝜁𝑖𝑤𝑖)

≤ −|𝜁1 |‖∇ 𝑓 (𝑥ℎ)‖ ≤ −𝜙‖∇ 𝑓 (𝑥ℎ)‖2
= 𝜙‖∇ 𝑓 (𝑥ℎ)‖3,

showing that 𝑝ℎ is gradient related.

As regards the property of boundedness for the vectors 𝑑𝑘 in (11) and 𝑝ℎ , for

any ℎ ≥ 1, we first have 𝑑𝑘 = 𝑄𝑘 𝑦𝑘 , so that ‖𝑑𝑘 ‖ = ‖𝑦𝑘 ‖ ≤ ‖𝑇−1
𝑘

‖ · ‖∇ 𝑓 (𝑥ℎ)‖ ≤
‖𝑆−𝑇

𝑘
𝐵−1
𝑘
𝑆−1
𝑘
‖‖∇ 𝑓 (𝑥ℎ)‖ ≤ ‖𝑆−1

𝑘
‖2 · ‖𝐵−1

𝑘
‖ · ‖∇ 𝑓 (𝑥ℎ)‖. Now, following the analysis

of Proposition 3.2 in [4] we can similarly prove that ‖𝑆−1
𝑘
‖ ≤ 𝛽, where

𝛽 =

(
𝑚1

�̄�𝜂𝜀

)
+
[
𝑘 − 𝑚1

2
max

(
4 max

ℓ
{|𝜆ℓ (∇2 𝑓 (𝑥ℎ)) |}

(
1

𝜀
+ �̃�𝜂

)
,

16

𝜀2𝜉
max
ℓ

{|𝜆ℓ (∇2 𝑓 (𝑥ℎ)) |}2

)]
+ 𝑘,

being

�̄� = min
𝑖 is 1×1 pivot step

{𝜔𝑖}

and

�̃� = max
𝑖 is 2×2 pivot step

{𝜔𝑖}.
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In addition, we also need to provide a suitable bound for the diagonal blocks of 𝐵−1
𝑘

.

From the proof of Proposition 3 and the compactness of Ω we can easily obtain the

next results:

• for 1 × 1 pivot: 𝛿−1
𝑖 is a diagonal block of 𝐵−1

𝑘
and |𝛿𝑖 |−1 ≤ 1/�̄�𝜂𝜀2,

• for 2 × 2 pivot: the reader can refer to the proof of Proposition 3.2 in [4].

4 Conclusions

In this paper we have considered efficient Truncated Newton methods for large scale

unconstrained optimization problems, where the effective use of a modified Bunch

and Kaufman decomposition within the SYMMBK algorithm is considered. We

slightly modified the test performed at each iteration of the Bunch and Kaufman

decomposition, using the guidelines in [4], so that a more general framework with

respect to the last paper is obtained. In particular, we were able to prove that the

numerical efficiency of the SYMMBK routine can be suitably coupled with some

mild arrangements on the Bunch and Kaufman decomposition, so that the computed

search direction for the optimization framework is gradient–related.

We are persuaded that further extensions can be studied, in the case the Truncated

Newton method in hand also claims for the global convergence to limit points which

satisfy both first and second order necessary optimality conditions. As well known,

the accomplishment of the last result needs an accurate analysis of the normalized

curvature of the Hessian matrix at any iterate, along any nonzero vector.
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