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Abstract

This work is concerned with the study and the evaluation of formulations for Multidisciplinary Design
Optimization (MDO) problems. The latter topic includes very difficult computational aspects, naturally
arising from the simultaneous solution of several related optimization problems. In particular, in the
naval applications deep interaction among different disciplines (i.e. optimization/feasibility problems) is
claimed, in order to provide the solution. Each discipline concurs to give intermediate results to other
disciplines, until the convergence of the overall framework is reached. The usual nonlinear programming
techniques, including multiobjective optimization methods, seem still inadequate to cope with most of
these challenging applications. In this work we first consider some relevant formulations proposed in
the literature for MDO. Then, we consider the relationship between MDO and NonLinear Programming
(NLP), with specific reference to feasibility and convergence analysis. Preliminary numerical results on
a ship design application are included.

Keywords: Multidisciplinary Design Optimization, Nonlinear Programming, Formulation and Feasibility
issues, Convergence analysis.

1 Introduction

In the last decades a large number of industrial applications claimed for complex optimization approaches,
in order to obtain reliable and effective solutions. Several of these applications (e.g. aircraft and spacecraft
engines design) provide challenging problems which have been formulated within MDO frameworks [9, 1].
The latter methodologies substantially include both parallelization and coupling of different optimization or
feasibility schemes, i.e. the disciplines, involved in the application. This kind of approach is still missing in
the framework of the marine design, while the design activities in this field involve naturally several different
disciplines, with an high degree of coupling. Under this perspective, marine design would be taking an
enormous advantage by the application of MDO.

Unfortunately, the interaction among the standard optimization techniques used within the respective
disciplines is non-trivial. This requires a special care for the overall resulting formulation. Nevertheless, the
formal and accurate coupling among disciplines is essential, in order to guarantee both the convergence and
satisfactory performance of the overall framework [1]. On one hand, specific attention has to be paid in order
to ensure the correctness of the MDO formulation in hand. Indeed, a single application often allows different
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MDO formulations. However, some of them are naive or permit only a poor convergence analysis; hence they
should be discarded if theoretical achievements are sought [9]. On the other hand, nonlinear programming
often provides powerful and reliable techniques for the solution of standard optimization problems. This
suggests that those MDO formulations, which rely on the abilities of optimization methods, may efficiently
gain advantage from conventional optimization algorithms [3, 4]. Observe that most of the usual ingredients
considered for nonlinear programming (e.g. feasibility, optimality conditions, sensitivity analysis, duality,
etc.), are not immediately applicable and require a suitable adaptation to MDO frameworks.

On these guidelines, the first classifications proposed in the literature for MDO problems, often relied on
the possibility of managing standard and simple nonlinear programming schemes. This was partially imposed
by the huge computational burden usually involved in large scale design problems. In addition, whenever
coarse solutions where allowed, for extremely tough practical problems, the coupling among disciplines
was weakened. Thus, independent optimization methods could be autonomously applied, so that MDO
frameworks reduced to a sequence of mere nonlinear programming schemes, adaptively coordinated by some
rules [3]. Unfortunately, the resulting scenarios poorly described several non-convex real problems, which
tried engineers’ abilities and efforts [16].

In this work we review some issues related to the current formulation of MDO problems. Then we
consider more recent papers, where novel MDO formulations are studied. In particular we focus on bilevel
programming methods, where the original MDO formulation is decomposed into a system level problem and a
set of lower level subproblems. The master (i.e. the system level) problem depends on the optimal solutions
of subproblems; conversely each subproblem includes a set of unknowns provided by the master level. We
specifically review some theoretical difficulties related to the convergence of MDO bilevel formulations.

Then, we apply our preliminary conclusions to the formulation of a small scale ship design problem,
where PDE solvers are included. We finally give evidence that the solution of the resulting optimization
problem requires efficient techniques from nonconvex Nonlinear Programming.

2 Preliminaries

In this paper1 we indicate with
min
x∈A

f(x) (2.1)

the general mathematical programming problem, where A ⊆ IRn, n ≥ 1, is the feasible set and f : IRn → IRq

is the objective function. If q > 1 then (2.1) is a multiobjective problem, while f(x) = const. for any x ∈ A,
transforms (2.1) into a feasibility problem.

A local minimum of f(x) on the set A is a point x∗ ∈ IRn such that:

f(x∗) ≤ f(x), ∀x ∈ A ∩B(x∗, ρ),

where B(x∗, ρ) ⊂ IRn is a ball with center in x∗ and radius ρ > 0. Similarly, a global minimum of f(x) on
the set A is a point x∗ ∈ IRn such that:

f(x∗) ≤ f(x), ∀x ∈ A.

We define a set of optimality conditions for (2.1) as a set of analytical relations satisfied by the so called
stationary points of f(x) in (2.1). The set of stationary points includes the minima of f(x) on A, but in
general may also include other points like local maxima, inflection points, etc. Then, when we report that
the point x∗ ∈ A simply satisfies some optimality conditions, we mean that the latter conditions are only
necessary for x∗ to be a local minimum.

Then, we say that an algorithm for solving (2.1) is globally convergent when it generates the (possibly
infinite) sequence {xk} ⊂ A, converging to a stationary point of (2.1), regardless of the choice for the
initial point x0. For instance, when A ≡ IRn and f(x) is continuously differentiable, the latter definition
corresponds to an algorithm which generates the sequence {xk}, such that lim inf ‖∇f(xk)‖ → 0. When
further (stronger) assumptions are considered (e.g. the convexity of f(x) in (2.1), the convexity of A, etc.),

1The following notation is adopted: IRn is the real n-dimensional space. We indicate the Euclidean norm of vector x as
‖x‖ .

=< x, x >1/2, while ‖x‖α represents the general α norm, for any α > 0.



it is possible to ensure also sufficient conditions for the convergence to a minimum point.
Observe that despite the misleading use of the term ‘global’, the definition of global convergence and global
minimum are independent, i.e. a globally convergent method could in general yield a local minimum [7].

Without loss of generality we consider in the paper only minimization problems. This is not a limitation;
indeed, suppose for instance that we have to maximize the objective function f : IRn → IR over the set
A. Then, by means of the identity maxx∈A f(x) = −minx∈A[−f(x)] we can immediately transform the
maximization into an equivalent minimization. On this guideline, we remark that the optimality conditions
can be intended for both minimization or maximization problems2.

3 General aspects of an MDO formulation

As the Section 1 suggests, in general the MDO formulation of a real problem may be not unique. Indeed,
an MDO formulation is characterized by the following ingredients:

• each discipline contributes to describe the overall problem;

• each discipline represents an independent problem with its own formulation. This formulation and
its solution rely on theoretical results (e.g. optimality conditions, sensitivity analysis, convergence
analysis), solution techniques (e.g. solution methods, heuristics, etc.) and possibly use software codes
arising from within that discipline;

• the independent formulations of the different disciplines require a suitable unification, to form an
overall MDO formulation, which claims for its own theory, solution methods and software packages.

From this scenario several theoretical difficulties naturally arise when dealing with MDO, not to mention
severe feasibility issues, which arise in different forms for both the discipline and the MDO level (see Section
3.2). Let us describe now a formal representation of an MDO formulation.

Some variables of the overall formulation, which comprehends the formulations of the disciplines, are
design unknowns, i.e. they have a physical meaning related to real parameters of the ship. On the other
hand, in the formulation associated with each discipline, other variables are in general introduced, e.g. state
unknowns of the discipline, auxiliary parameters, etc., and do not play a direct role in the design problem.
More formally, consider the discipline Di, i = 1, . . . , p, and let the pair of vectors (xi, si) ∈ IRni×mi be
associated with Di. In particular, si is the subvector of unknowns representing the state of that discipline Di

(e.g. variables generated by the discretization of a PDE solver), while xi is the subvector of design unknowns
included in the formulation of Di. With these positions, and including the subvector x0 of design unknowns
shared by the p disciplines, we want to address a formal definition for MDO formulations, by considering the
vectors: xT = (xT

0 xT
1 · · · xT

p ) ∈ IRn, n = n0 +n1 + · · ·+np (design variables), and sT = (sT
1 · · · sT

p ) ∈ IRm,
m = m1 + · · ·+ mp (state vector).

Assumption 3.1 Consider a real problem and suppose it involves the disciplines Di, i = 1, . . . , p. Let
xT = (xT

0 xT
1 · · · xT

p ) ∈ IRn, n = n0 + n1 + · · · + np, and sT = (sT
1 · · · sT

p ) ∈ IRm, m = m1 + · · · + mp,
suppose that

1. the set Bi ⊆ IRn0×ni×m exists for the discipline Di, such that it is defined by the block of nonlinear
constraints

Bi = {(x0, xi, s) ∈ IRn0×ni×m : gi(x0, xi, s) ≥ 0, Ai(x0, xi, s) = 0};

2. the nonlinear function fi(x0, xi, s) exists, with fi : IRn0×ni×m → IRqi , such that it is always possible to
associate the formulation

min
(x0,xi,s)∈Bi

fi(x0, xi, si)

to each discipline Di, i = 1, . . . , p;
2Note that the Karush-Kuhn-Tacker (KKT) conditions are among the most adopted optimality conditions for nonlinear

optimization. However, in the literature they are often referred to minimization problems, so that their application to a
maximization problem requires some simple but careful changes.



3. the functions f(x, s) = ϕ[f1(x0, x1, s), . . . , fp(x0, xp, s)] and g0(x, s) exist, with f : IRn×m → IRq and
g0 : IRn×m → IR, such that if B = {(x, s) ∈ IRn×m : g0(x, s) ≥ 0, (x, s) ∈ B1 ∩ · · · ∩ Bp} the real
problem may be formulated as

min
(x,s)∈B

f(x, s). (3.2)

2

We are now ready to give the following general definition for MDO formulations, which will be adopted in
this paper, unless differently specified.

Definition 1 Consider a real problem and suppose the Assumption 3.1 holds; then, we say that (3.2) is a
nonlinear MDO formulation for that problem. 2

Observe that the previous definition is necessary, in order to distinguish between tractable MDO problems
(i.e. those problems whose formulation can take advantage from the nonlinear programming techniques),
and intractable MDO problems, whose formulation is unclear or it is not a mathematical program.
If the formulation (3.2) were treated as a nonlinear program, the usual techniques from numerical opti-
mization could be adopted for its solution. Unfortunately, the specific difficulty of (3.2) is in the equality
constraints, the so called MultiDisciplinary Analysis (MDA) of the feasible set B, given by

MDA =


A1(x0, x1, s) = 0

...
Ap(x0, xp, s) = 0.

Indeed, the i-th block of equalities Ai(x0, xi, s) = 0 may not correspond exactly to a set of nonlinear
equations; though it may be a black-box, which only implicitly defines a nonlinear relation among the
variables x0, xi and s. Moreover, the MDA often corresponds to the discretization of PDE systems, so
that the implicit function theorem cannot be exploited to retrieve s = s(x). Thus, (3.2) can be hardly
reformulated as a nonlinear program uniquely dependent on the design vector x.

We say that an algorithm for solving the formulation (3.2 ) is convergent if it is globally convergent, so that
a stationary point (x∗, s∗) is given for (3.2), which satisfies some optimality conditions. The Karush-Kuhn-
Tacker (KKT) conditions are the most common optimality conditions adopted for the nonlinear program
(3.2): they may involve the use of first and second order derivatives [14]. We avoid a detailed description
of KKT conditions [6], nonetheless we remind that they often provide analytical conditions which can be
fruitfully implemented within convergence frameworks of optimization algorithms. On the other hand, KKT
conditions require some assumptions on both the objective function and the feasible set in (3.2). It is not
difficult to find simple examples of MDO problems where the latter assumptions do not hold. Hence, this
proves the intrinsic difficulty of providing both a complete convergence analysis and effective algorithms for
the formulation (3.2).

Finally, we remark that most of the real problems implicitly require box constraints, at least for a subset
of the design unknowns. The block of inequalities g0(x, s) ≥ 0 in (3.2) also includes the latter constraints.

3.1 MDO reformulations: issues on classification

In order to provide a general classification for nonlinear MDO formulations, a further set of constraints and
unknowns has to be introduced in (3.2). In particular, suppose we modify (3.2) as [4]

min
(x,s,t)∈B′∩IRn×m×m

f ′(x, s, t), B′ = Γ1 ∩ Γ2 ∩ Γ3, (3.3)

where the sets of constraints Γ1, Γ2, Γ3 are defined by



Design Constraints: Γ1 =


g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0

Disciplinary Analysis Constraints (MDA) Γ2 =


A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0

Interdisciplinary Consistency Constraints Γ3 =


t1 = C1(s1)

...
tp = Cp(sp).

The Interdisciplinary Consistency Constraints are assumed nonlinear and introduce with respect to (3.2)
the new set of unknowns tT = (tT1 · · · tTp ). For each block Ai(x0, xi, s), i = 1, . . . , p in (3.2), they weaken
the dependency from the entire vector s of the state unknowns. The latter modification may be suitably
appreciated by recalling that in this way, the general blocks Ai(x0, xi, s) = 0 and Aj(x0, xj , s) = 0, in
the MDA, only share the subvector of unknowns x0. This particular structure of the formulation could be
used to apply optimization algorithms for the nonlinear program (3.3). In particular, either decomposition
techniques or multilevel methods could be advisable in this case. According with a common terminology
within the MDO literature, we can say that the set t of auxiliary variables is introduced in order to decouple
the interdisciplinarity among disciplines.
As previously reported, the formulation (3.3) can be hardly solved with a direct application of standard
mathematical programming techniques. Most of the times, optimality conditions, as KKT conditions, cannot
be directly used and (3.3) must be reformulated into more tractable alternative problem(s), were nonlinear
algorithms may be adopted.

Definition 1 Let the set B′ in (3.3) be nonempty, let Z∗ be the solution set of the MDO formulation (3.3).
We say that F̂ is a reformulation of (3.3) if a smooth nonlinear function ϕF̂ exists such that ϕF̂ (ẑ∗) ∈ Z∗,
for any ẑ∗ ∈ Ẑ∗, where Ẑ∗ is the solution set of F̂ . 2

Note that any MDO formulation is also an MDO reformulation with ϕ given by the identity. Furthermore,
the solution(s) obtained for the reformulated problem are not in general optimal solutions of (3.3). This
opens a serious discussion on all the possible and reliable reformulations for (3.3). Anyway, this is far beyond
the purposes of the present paper; thus, we simply introduce the following definition of equivalence among
reformulations.

Definition 2 Let F̃ and F̄ be reformulations of the MDO formulation (3.3). Let Z̃∗ and Z̄∗ be the solutions
sets of F̃ and F̄ . We say that F̃ is equivalent to F̄ (i.e. F̃ ∼ F̄) if the nonlinear functions ϕF̃ , ϕF̄ exist
such that ϕF̃ (x̃∗, s̃∗, t̃∗) ∈ Z̄∗ and ϕF̄ (x̄∗, s̄∗, t̄∗) ∈ Z̃∗, for any (x̃∗, s̃∗, t̃∗) ∈ Z̃∗ and (x̄∗, s̄∗, t̄∗) ∈ Z̄∗. 2

The latter definition3 is evidently inoperative, due to the difficulty in computing all the solutions (x̃∗, s̃∗, t̃∗)
and (x̄∗, s̄∗, t̄∗) of the MDO reformulations F̃ , F̄ . Then, a more qualitative (and realistic) classification for
the reformulations of (3.3), may be given according with either of the following general criteria (see also [3]).

• Structural (or Analytical) Perspective: we give a reformulation of (3.3) which meets a suitable nice
structure. On this guideline we usually consider a structure where each discipline may be treated
approximately as independent with respect to the others, so that some known results from nonlinear
programming may be usefully applied. Consequently, the resulting reformulation is partially decom-
posed with respect to the disciplines: this requires a globalization method for analytically coordinate
the intermediate results from each discipline.

3It is easy to prove that the equivalence of reformulations introduced in Definition 2 satisfies the standard Reflexive, Symmet-
ric and Transitive properties. Thus, the equivalence relation induces a suitable partition of the set of all possible reformulations
for MDO formulation (3.3).



• Algorithmic Perspective: the reformulation of (3.3) is aimed at using as many results, algorithms and
packages as possible, from nonlinear programming. For instance, convex or continuously differentiable
reformulations would be in general preferable to respectively nonconvex or nonsmooth ones.

Another possible criterion, for classifying the reformulations of nonlinear MDO formulation (3.3), is hinted
by the following definition (see [2]).

Definition 3 Consider the reformulation F̂ of the nonlinear MDO formulation (3.3). We say that F̂ is
closed [open] with respect to the block Γi, i = 1, 2, 3, of constraints, if the structure of F̂ assumes that the
block Γi is satisfied [not satisfied], regardless of the optimization algorithm(s) used to solve F̂ . 2

Note that in the previous definition, the classification does not rely on the optimization technique(s), which
can be used to approach the set of solutions of the MDO reformulation. From Definition 3 we associate to
the MDO reformulation F̂ the label

α̂D / β̂DA / γ̂IC, α̂, β̂, γ̂ ∈ {O,C}, (3.4)

where the possible entries {O,C} for α̂, β̂ and γ̂ stand respectively for ‘OPEN’ and ‘CLOSE’. As an example,
an MDO reformulation with the label OD/CDA/CIC is OPEN with respect to the Design Constraints and
CLOSED with respect to both the Disciplinary Analysis and the Interdisciplinary Constraints.

3.2 Relevant MDO reformulations from the literature

This section reviews some specific MDO reformulations of (3.3), which are also MDO formulations and are
widely adopted in the applications. We urge to remark that the structure of both the objective function and
the constraints in (3.3) is strongly dependent on the application in hand. This suggests that a reformulation
may be suitable for a specific real problem though, it might be completely inadequate for another application.
The latter drawback is intuitively a consequence of the general complexity of nonlinear MDO formulations,
where the interdisciplinarity represents both a theoretical and a computational challenge. Here we consider
the following MDO reformulations of (3.3), according with the classification suggested by Definition 3.

• MultiDisciplinary Feasible (MDF). It is an MDO reformulation of (3.3) also known as FIO or AIO
[9], which represents the most trivial approach to the solution. It consists of using the implicit func-
tion theorem to explicit the vectors s = s(x) and t = t(x) from the Disciplinary Analysis and the
Interdisciplinary Constraints. Then, the resulting MDO reformulation is simply

min
x

f ′(x, s(x), t(x))

g0(x, s(x)) ≥ 0
g1(x0, x1, s(x)) ≥ 0

...
gp(x0, xp, s(x)) ≥ 0,

(3.5)

which may be treated as a nonlinear program in the unknown x ∈ IRn. As previously said, the equality
constraints in (3.3) often represent the state equations of the disciplines, hence they strongly affect
the difficulty to get a solution. Therefore, the equality constraints in (3.3) can be hardly inverted to
provide s = s(x), so that the reformulation (3.5) is quite unlikely in general for the MDO formulation
(3.3). According with the pattern (3.4), the MDF scheme is an OD/CDA/CIC reformulation.

• Simultaneous Analysis and Design (SAD). Also known with the acronyms AAO or SAND [11], may be
considered as the counterpart of MDF. Indeed, here x, s and t are all variables of the reformulation,



so that the overall optimization problem to be solved is

min
x,s,t

f ′(x, s, t)

g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0
A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0
t1 = C1(s1)

...
tp = Cp(sp).

(3.6)

Observe that the number of unknowns for SAD may be relatively larger than in the case of MDF.
However the reformulation (3.6) may be treated as a unique nonlinear program, implying the use of
theory and algorithms from optimization. From (3.4) and the Definition 3 the SAD scheme is an
OD/ODA/OIC reformulation.

• Distribute Analysis Optimization (DAO). This is an intermediate approach between the previous two
(indeed it is often addressed as the In Between [9, 12] reformulation, or alternatively it is the IDF
approach [9]). Here, a subset of the equality constraints is used to explicit a subvector of the unknowns
in terms of the remaining variables. Considering the following partition of vectors sT = (s̃T ŝT ) and
tT = (t̃T t̂T ), the resulting optimization problem becomes (for simplicity we have compounded the
Disciplinary Analysis and the Interdisciplinary Consistency constraints)

min
x,s̃,t̃

f ′
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
g0

[
x, (s̃T ŝT (x, s̃))T

]
≥ 0

g1

[
x0, x1, (s̃T ŝT (x, s̃))T

]
≥ 0

...
gp

[
x0, xp, (s̃T ŝT (x, s̃))T

]
≥ 0

A
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
= 0

t̃ = C̃(s̃).

(3.7)

Finally observe that the DAO scheme is an OD/CDA/OIC reformulation.

• Optimization by Linear Decomposition (OLD). Despite the previous MDO reformulations, this is a
bilevel reformulation [10]. Here the first (upper) level of minimization has the role of coordinating the
results coming from the second (lower) level of minimization, which is the disciplines level. The overall
nonlinear program is

min
x0,t

f ′ [x0, x1, . . . , xp, s1(x0, x1, t), . . . , sp(x0, xp, t)]

g0 [x0, x1, . . . , xp, s1(x0, x1, t), . . . , sp(x0, xp, t)] ≥ 0

mi(x0, xi, t) ≤ 0, i ≤ p

min
xi

mi(x0, xi, t)

ti = Ci [si(x0, xi, t)] , i ≤ p

(3.8)



where
mi(x0, xi, t) =

∥∥g+
i [x0, xi, si(x0, xi, t)]

∥∥2

g+
i [x0, xi, si(x0, xi, t)] = min {0, gi [x0, xi, si(x0, xi, t)]} ,

and the last equality is intended componentwise. Observe that here the subvector si(x0, xi, t) is made
explicit from the i-th block of constraints Ai(x0, xi, t1, . . . , ti−1, si, ti+1, . . . , tp) = 0. The function mi()
(discrepancy function [4]) in both the upper and lower level of (3.8) substantially measures a penaliza-
tion of the infeasibility. Moreover, the exponent 2 in its definition yields a continuously differentiable
objective function for the lower level.

• Collaborative Optimization (CO). Likewise the previous case, CO provides a multilevel optimization
reformulation [8], where it is more clear the different role played by the system level and the disciplines
level. In the following scheme we allow the dependency of the Interdisciplinary Constraints from both
the design variables and the state variables. The final nonlinear program is given by introducing a
sequence {y1, . . . , yp} of the so called surrogates of vector x0. For each discipline the latter unknowns
have substantially a role similar to that of vector t, i.e. they are used to decouple the upper level and
the lower level in the following MDO reformulation.

min
x0,t

f ′(x0, x1, . . . , xp, t)

‖ti − Ci (yi − x0, si(yi, xi, t))‖∗ = 0, i ≤ p

min
yi,xi

1
2

[
‖yi − x0‖2 + ‖si(yi, xi, t)− ti‖2

]
gi (yi, xi, si(yi, xi, t)) ≥ 0, i ≤ p

(3.9)

where the explicit availability of the subvector si = si(yi, xi, t), by the implicit function theorem ap-
plied to the i-th block of constraints Ai(yi, xi, t1, . . . , ti−1, si, ti+1, . . . , tp) = 0, is a strong prerequisite.
Observe that also in this case the MDO reformulation is quite articulate, however the bilevel structure
may be fruitfully exploited by suitable techniques [10] of nonlinear programming. The choice of the
norm ‘∗’ is substantially arbitrary. However, common choices are ‘∗’= 2 (which yields CO2) and ‘∗’= 1
(which yields CO1).

The first one is appealing because it gives a smooth feasible region of the upper level in (3.9). Unfor-
tunately, in case the feasible region of the upper level is open, the KKT optimality conditions may fail,
since the Jacobian matrix (of the upper level constraints) vanishes in any feasible point. Thus, the
Lagrange multiplier rule [7] may not be satisfied, unless the solution is also an unconstrained stationary
point of the upper level objective function.
The choice ‘∗’= 1 in (3.9) may be also troublesome, inasmuch as the constraints of the upper level are
not differentiable. This again implies that the Lagrange multiplier rule may fail. Numerical results
give evidence of the shortcomings described for the MDO reformulations CO1 and CO2 [17].

4 A case study: sail boat keel design

The theory described in Sections 2-3, though not immediately applicable, must be considered for any MDO
problem. We describe here an application on ship design, where unfortunately the discussion above has not
a straightforward application. The design optimization of a fin of a sailing yacht is here described. This
particular device is often used in race yacht to sustain the bulb, a faired object whose weight is able to
give stability to the yacht itself. The bulb sometimes represents a large portion of the ship’s displacement,
around 80% in the America’s Cup sailing yachts. A ”pure” fluid dynamic approach will simply consider the
hull, the fin and the bulb as rigid, connected bodies. Unlikely, as a consequence of the weight of the bulb
and of its position, the shape of the fin is largely modified by the bending moments and stresses arising from



the different sailing positions plus the dynamic pressure field, and the final performances of the yacht are
undoubtedly influenced by the structural behavior of the fin.

In the following an extremely simplified case will be considered, which however contains all the funda-
mental elements of a typical MDO problem: an immersed, isolated fin moving at constant speed at a yaw
and heel angle. The objective function is to maximize the efficiency of the fin (i.e. the ratio between the
horizontal lift and the drag) The fin is assumed to have a constant horizontal section. Only the hydrody-
namic actions are take into account and will be responsible for the bending of the fin which is assumed to be
fixed at a certain level. This simplified problem will be solved by using a limited number of design variables
and a single constraint is imposed, that is, a prescribed volume must be contained into the fin body.

The multidisciplinary equilibrium can be obtained in an iterative way. A non-linear BEM solver is adopted
for the determination of the hydrodynamic loads: once these are computed, the deformed shape is obtained
by the FEM solver and then passed back to the BEM solver, and so on until convergence. Convergence check
is performed by monitoring the difference of the objective function value of the fin between two successive
iterations j and j + 1. When the difference is less than a cut-off threshold the equilibrium is assumed to be
reached. The optimizer has then the task of finding a better shape, which at the beginning will not satisfy
the multidisciplinary equilibrium. This basic approach is however well suited to test different reformulations
and degrees of coupling among the disciplines, the focus of the present paper, which may be enforced by
simply changing the convergence cut-off parameter.

In this preliminary application, a MDF reformulation and a suite of different DAO reformulations are
solved and compared. In the following, H,S indicate the hydrodynamic and the structural simulations,
respectively, u is the vector of the disciplinary variables, x is the vector of the design variables identifying
the shape of the fin and f is the objective function (here we drop the ′ for simplicity). The basic algorithm
at the step k is the following:

H : xk, ũ0
S =⇒ uj

H , f j

S : xk, uj
H =⇒ ũj

S

H : xk, ũj
S =⇒ uj+1

H , f j+1

S : xk, uj+1
H =⇒ ũj+1

S

Then convergence is checked: if | f
j+1−fj

fj | ≤ ε then
{

ũj+1
S → uk

S

f j+1 → fk

Once the new multidisciplinary equilibrium has been found, the optimizer play the role of finding the
new shape xk+1 and the cycle is ready to continue. In a MDF-type reformulation, the initial guess for the
disciplinary variables is ũ0

S = 0, whereas in a DAO reformulation, the initial guess is ũ0
S = uk

S . The latter
choice ensures a faster convergence of the disciplinary variables once we are in the nearby of the optimal
solution, because the initial values are nearly the convergent ones.

As a preliminary example, the standard (single-discipline) non-MDO reformulation can be compared
with one MDO result. In figure 1, the objective function and the second design variable values provided by
the single discipline optimization problem (hydrodynamic only) and the MDF reformulation of the coupled
hydroelastic problem are reported. The same optimization algorithm has been adopted in both the numerical
experiments. The difference in the objective function values is evident: the objective function value provided
by the non-MDO reformulation is better than the one of the MDO problem. However, we should keep in
mind that the non-MDO reformulation consider the body as rigid, which in this case is rather far from the
reality. The hydroelastic approach is the only way to correctly consider (and try to solve) the design problem
at hand. Differences in the results are indirect indicators of the inaccuracy in the solution of the problem if
the hydroelastic coupling is not taken into account via an MDO approach.

The second example of the paper is introduced in the attempt of detecting some of the pros and cons
coming out from the application of different reformulations and optimization algorithms. In the following,
two different reformulations (MFD and DAO) and two different optimization algorithms will be applied
to the same optimization problem. The coupling between the disciplines is modulated by means of the
differences in the objective function value between two successive iterations: in this particular application,



Figure 1: Comparison between the standard non-MDO reformulation and an MDO reformulation. The pure
hydrodynamic non-MDO reformulation consider the body as rigid, whereas the more realistic hydroelastic
approach take into account the deformation of the fin due to the hydrodynamics loads. On left: history
of the objective function value during the iterations. On right: history of the second design variable value
during the iterations. The other variables behave similarly.

the threshold value ε for the equilibrium constraints is set to 10−5 (see the above convergence condition).
Both the MDO reformulation have been tested with two different optimization algorithms: a standard

Simplex Method [15] and a Derivative-Free Method [13]. In figure 2 the history of the design variables for
the four different numerical experiments are reported.

A first comment about the influence of the MDO reformulation of the problem is nearly straightforward.
In fact, no real differences are observed between the solutions provided by the Derivative-Free algorithm
when changing the MDO problem reformulation, whereas only small differences are observed when using the
Simplex algorithm. This behavior could be interpreted as a sign of the weak influence of the reformulation
on the numerical solution of the MDO problem: the final solution does not change with the reformulation,
which in turn means that the two reformulations can be considered as totally equivalent.

In table 1, the number of objective function evaluations and the number of inner iteration to achieve
the convergence are also presented; in the last column, the average of the cost of the single objective
function evaluation in terms of inner iterations is computed. It is evident how the DAO reformulation gives
advantages in terms of the convergence of the disciplinary variables, decreasing the unit cost of the single
multidisciplinary analysis.

On the other hand, different reformulations have a higher impact on the overall cost of the solution.
In table 1, the number of objective function evaluations (i.e. the total number of CFD solution required
which in more general terms are the number of disciplinary analyzes) and the number of inner iteration to
achieve the convergence are presented; in the last column, the average cost of the single objective function
evaluation in terms of inner iterations is computed. The DAO reformulation gives a slightly advantage in
terms of convergence of the disciplinary variables, decreasing the unit cost of the single multidisciplinary
analysis.

On the other hand, an increase in the number of iterations is observed. Moreover, the difference in the
adopted algorithm results in different detected local minima. Both these features could be partly explained
in a similar way. In fact, due to the adopted approach of considering the disciplines coupling convergence,
we are introducing a numerical noise, i.e. a feasibility error when attempting at satisfying the equilibrium
constraints. When the MFD reformulation is applied, the starting value for the disciplinary variables is
set to zero and this is true for every single computation. On the contrary, for the DAO reformulation, the
initial guess depends from the last computed configuration. Since the objective function f ′ = f ′(x, s(x), t(x))
depends on the disciplinary variables s(x), a different coupling parameter ε in the convergence check and/or
a different initial guess for s(x) could result in different final values of s(x∗) and f ′(x∗, s(x∗), t(x∗)). The
coupling parameter ε was set quite low in this test and with an expected weak influence on the objective
function value, but one must keep in mind that optimization algorithms are in general highly sensitive to
this feature. As a consequence, the algorithm could perform poorly till convergence.



Figure 2: History of the design variables during the optimization process. Full symbols refer to the Derivative-
Free algorithm, empty symbols refer to the Simplex algorithm. Circles indicate the MDF reformulation,
squares the DAO. From top to bottom, left to right, variables 1, 2, 3 and 4.

A second simpler explanation for the different solutions detected is probably the fact that different
algorithms have different selection strategy for the new iterate, and possibly this concurs in the selection
of different local minima. This explains the difference in the optimal solution detected by the different
algorithms.

It is finally fundamental here to stress that by changing the ε value in the convergence check, the advantage
of the DAO w.r.t the MDF reformulation will probably increase greatly. In other terms, ε play the role of
control over computational burden and by relaxing its value a substantial reduction in the total time is
expected. The verification of this feature will represents the next step of this work.

5 Conclusions

This paper partially surveys some introductory aspects of renowned MDO formulations from the litera-
ture. Furthermore, specific emphasis is devoted to the relation between MDO problems and Nonlinear
programming. A numerical experience is finally provided, in order to start the exploration of some of the
main features of the problem reformulations. Numerical results demonstrate both the usefulness and the
complexity of the problem.
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Reformulation Algorithm Total calls Iterations Unit cost
MDF Simplex 2597 248 10.5
MDF Derivative Free 1303 110 11.9
DAO Simplex 2832 290 9.8
DAO Derivative Free 1710 184 9.3

Table 1: Cost of the optimization problem solution as a function of the adopted reformulation and algo-
rithm. Total calls indicates the total number of disciplinary calls: total elapsed time is proportional to this
value.Iteration represents the number of solutions required by the algorithm to achieve convergence. Unit
cost is the ratio between the total calls and the iterations number and gives the average number of solver
calls per each multidisciplinary analysis.
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