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I. ABSTRACT

This paper discusses certain shape optimization problems
in which the solution depends on more disciplines, presenting
results for the optimal shape of the keel fin of a sailing yacht,
simultaneously accounting for hydrodynamics and elasticity.
A pure fluid dynamic approach would simply consider the
hull, the keel fin and the bulb as rigid, connected bodies. In
the Multidisciplinary Design Optimization (MDO) framework
these are considered instead as elastic and the shape of the
keel fin is hence modified by the hydrodynamic loads. As a
result, the final performances of the yacht are also influenced
by the structural behavior of the fin.

For this problem we study and compare a suite of different
MDO formulations. The optimal design problem is finally
tackled considering a Global Optimization (GO) problem
within a MDO framework. MDO both includes difficult theo-
retical and computational aspects, determined by the simulta-
neous solution of different disciplines affecting each other, and
by the related solvers involved all at once in the convergence
of the overall optimization framework. We first introduce and
describe some MDO approaches from the literature. Then, we
consider our MDO scheme where we deal with the GO box-
constrained problem

min
a≤x≤b

f(x), f : IRn → IR.

In general, the objective function f(x) is non-linear and
non-convex and, in simulation based design approaches, also
costly. We also assume that the solution of the problem re-
quires the use of a derivative-free method since the derivatives
of f(x) are unavailable and/or the function must be treated as
a ‘black-box’ (see [30] and [23], [40]). Within this frame-
work we study some globally convergent modifications of the
evolutionary Particle Swarm Optimization (PSO) algorithm
[24], suitably adapted for box-constrained optimization. To
this purpose we adopt both the theory described in [27] for
exact methods, and the generalized PSO scheme [10], which
includes the standard PSO scheme. Finally, we report our
numerical experience for the design of the sailing yacht elastic
keel fin.

Keywords : Multidisciplinary Design Optimization, Global
optimization, Particle Swarm Optimization, Derivative-free
methods, Global Convergence.

II. INTRODUCTION

Reliable Computational Fluid Dynamics (CFD) solvers, as
long as design databases, are a modern way to reduce the
number of experimental tests on models. However, due to
the increasing interest on the design optimization, mature
CFD analysis should also be used in a larger context, where
the simultaneous effectiveness of different solvers is sought.
The problem complexity has so far prevented from assessing
a satisfactory reformulation of the overall design problem,
into a unique mathematical programming formulation. In fact,
traditional approaches to shape design have often focused on
the satisfaction of feasibility constraints of the problem in
hand, rather than tackling optimal solutions.
As a result, when several disciplines are involved in the
design problem, different heuristic methods have been used,
which address individual disciplinary optimization. The grow-
ing complexity of modern engineering systems has spurred
designers to provide more efficient heuristics. Unfortunately,
the latter are often based on designers personal skills on the
specific problem treated, instead of relying on exact and self-
adaptive techniques. Thus, the application of heuristics to new
instances of general real problems, may be unsatisfactory. As
a result, new designs are often desirable, but one cannot rely
on historical databases, which are mainly the result of human
experience rather than quantitative methods.
These reasons motivate our interest for the systematic nu-
merical approach to MDO. In our case the multidisciplinarity
refers to the design of a ship, which encompasses interacting
physical phenomena as hydrodynamics, structural mechanics,
and control.

Recently a larger number of real industrial applications
have included complex optimization approaches, where effi-
cient solutions were claimed. Aircraft and spacecraft engines
design are among the latter applications, which intrinsically
yield challenging MD formulations (see e.g. [1]). Observe
that in most of the cases, MDO methodologies substantially



imply a process of parallelization and coupling of different
independent optimization schemes (disciplines). Moreover, a
distinguishing feature of MDO formulations is that the interac-
tion among the standard optimization approaches, each related
to a discipline, is non-trivial.

Furthermore, the accurate coupling of disciplines might be
essential to guarantee the convergence properties of the overall
framework. Thus, a specific care should be paid to provide the
correctness of the MDO formulation, for the problem in hand.
On the other hand, both the theoretical results and the methods
provided by nonlinear programming, for standard optimization
problems, must be coupled accordingly. This suggests that
those MDO formulations, which strongly rely on the abilities
of optimization methods, may efficiently gain advantage from
conventional optimization [3], [4].
On this guideline, observe that most of the typical issues con-
sidered for nonlinear programming formulations (e.g. feasibil-
ity, optimality conditions, sensitivity analysis, duality theory,
etc.), require a suitable adaptation when considered in an MDO
framework.

The first attempts to give a taxonomy of MDO formulations,
simply relied on managing standard nonlinear programming
schemes in a sequential fashion. I.e., no real coupling among
the disciplines was considered, and the interaction among
optimization codes was often non-significative. The latter sce-
nario was essentially the consequence of the early incapability
to match several numerical codes, independently studied for
each discipline. In addition, large scale MDO problems were
even tougher, so that coarse solutions had to be allowed and
the coupling among disciplines was possibly weakened. As
a consequence, the early MDO formulations often described
quite poorly several non-convex real challenging problems.

This work briefly reviews the main results of MDO litera-
ture, and details some more recent MDO formulations based
on multilevel programming. In the latter schemes, the overall
MDO formulation is decomposed into a master level problem
and a set of optimization subproblems. The master (i.e. the
system level) problem depends on the optimal solutions of
subproblems; conversely each subproblem includes a set of
unknowns provided by the master level. Then, we study and
solve the MDO formulation of a sailing yacht keel fin design
problem, where the derivatives of the objective functions
are unavailable. The latter problem is a hydroelastic design
optimization problem for a race yacht, where the fin is used
to sustain the bulb, adopted to increase the stability of the
sailing yachts during a competition (e.g. the America’s Cup).

Unlike to a pure fluid dynamic approach, in a multidis-
ciplinary framework, the shape of the keel fin is influenced
by both the weight of the bulb and the hydrodynamic forces
arising from the different sailing positions. Therefore, the final
performances of the yacht are undoubtedly affected by the
structural behavior of the fin. We study and compare a suite
of different MDO formulations underlying the latter problem.
The interaction between the two disciplines is approached with
the application of derivative-free optimization methods. We
highlight that for several MDO problems the real functionals to

be minimized are described by expensive simulations and the
derivatives are unavailable. This strongly motivates the interest
for effective derivative-free techniques.
We apply a modified Particle Swarm Optimization (PSO,
[11]) method, which belongs to the family of evolutionary
algorithms. PSO [24] owes its popularity to the reasonable
balance between its overall computational cost and the quality
of the final solution it provides. More specifically, the PSO
algorithm is an iterative method, which is tailored to detect a
global minimum for the unconstrained optimization problem

min
x∈IRn

f(x), (1)

i.e., a point x∗ ∈ IRn such that f(x∗) ≤ f(x), for any x ∈ IRn.
For a computationally costly function f(x), exact iterative
methods are possibly too expensive or they may not provide
a current satisfactory approximation of the solution, after a
finite number of iterations. In these scenarios heuristics may be
fruitfully used, whenever the computational resources and/or
the time allowed for the computation are severely bounded. On
this guideline, PSO proved to be both effective and efficient
on several practical applications from real life [35].
Since the algorithms as PSO are mainly heuristics (see [9],
[41] for exceptions), their progress may be eventually very
slow. The latter drawback can be explained by observing that
these techniques completely disregard any condition related
to first order information on the objective function. Thus,
eventually they possibly have poor performance and hardly
retain theoretical convergence properties. In this regard, we
propose a suitable modification of PSO. Our proposal both
preserves asymptotic convergence properties, and after a finite
number of iterations it provides a satisfactory approximation
of the solution. We focus here on a modification of the
PSO algorithm, where converging subsequences of iterates
are generated. The modifications we propose guarantee that
the generated subsequences of iterates converge to stationary
points, satisfying the first order optimality conditions for the
box-constrained problem

min
a≤x≤b

f(x), x ∈ IRn (2)

(see also [20], [21]). In particular, we prove the global
convergence to first order points under very mild assumptions,
in a linesearch framework. Therefore, in this paper we both
focus on the theoretical properties of PSO, and propose
a numerical experience with PSO on the sailing yacht
design problem described above. Definitions and the general
mathematical framework about optimization are summarized
in the Appendix.

III. INTRODUCTION TO MDO FORMULATIONS

As we introduced in Section II, some peculiar aspects
should be identified when addressing an MDO formulation.
In particular we can consider the following:
• the overall problem includes several disciplines;



• each discipline is essential to describe the overall prob-
lem;

• the overall problem can be hardly formulated as a non-
linear mathematical program;

• each discipline is an independent problem with its own
formulation. The latter formulation and its solution rely
on theoretical results (e.g. optimality conditions, sensitiv-
ity analysis, convergence analysis), solution techniques
(e.g. solution methods, heuristics, etc.), and possibly
codes which may not be worth for the other disciplines;

• there exists a procedure (either iterative or direct) such
that
(a) it collects, in a finite number of steps, the results

provided by each discipline,
(b) it yields a partial (intermediate) result of the MDO

problem (i.e. the results from the independent disci-
plines are suitably gathered and coordinated).

Of course the steps (a) and (b) are specifically critical, in
as much as they do not indicate a unique nonlinear formula-
tion (and the related feasibility/optimality conditions), for the
overall MDO problem.

Some unknowns of the overall formulation, included in the
formulations of the disciplines, will be addressed as design
unknowns, since they have a physical meaning. On the other
hand, the formulation associated with each discipline often
includes also state unknowns (e.g. discipline auxiliary param-
eters, state unknowns of control systems, variables generated
by the discretization of a PDE solver, etc.). The latter variables
do not play a direct role in the design problem, i.e. a specific
physical meaning is not usually associated with them.

Let us now formally describe the formulation of an MDO
problem. Consider the disciplines Di, i = 1, . . . , p, and
let the pair of vectors (xT

i , sT
i )T ∈ IRni+mi be associated

with Di. Here, si ∈ IRmi represents the state of the i-th
discipline Di, while xi ∈ IRni are the design unknowns
arising in the formulation of Di. With these positions, and
including the subvector x0 ∈ IRn0 of design unknowns shared
by the p disciplines, we formally introduce the definition
for MDO formulations, by considering the overall vectors:
xT = (xT

0 xT
1 · · · xT

p ) ∈ IRn, n = n0 +n1 + · · ·+np (design
variables), and sT = (sT

1 · · · sT
p ) ∈ IRm, m = m1 + · · ·+mp

(state vector).
We are now ready to give the following general definition
for MDO formulations, which will be adopted in this paper,
unless differently specified.

Assumption 3.1: Consider a real problem and suppose
it involves the disciplines Di, i = 1, . . . , p. Let xT =
(xT

0 xT
1 · · · xT

p ) ∈ IRn, n = n0 + n1 + · · · + np, and
sT = (sT

1 · · · sT
p ) ∈ IRm, m = m1 + · · · + mp, suppose

that
1) we can introduce the set Bi ⊆ IRn0×ni×m (possibly

empty) for the discipline Di, such that

Bi = {(x0, xi, s), x0 ∈ IRn0 , xi ∈ IRni , s ∈ IRm :
gi(x0, xi, s) ≥ 0, Ai(x0, xi, s) = 0};

2) the nonlinear function fi(x0, xi, s) exists (possibly con-
stant), with fi : IRn0 × IRni × IRm → IRqi , such that
the formulation associated with the discipline Di is

min
(x0,xi,s)∈Bi

fi(x0, xi, si), i = 1, . . . , p;

3) there exist f(x, s) = ϕ[f1(x0, x1, s), . . . , fp(x0, xp, s)]
and g0(x, s) (either explicitly or implicitly defined), with
f : IRn × IRm → IRq and g0 : IRn × IRm → IR, such
that if B = {(x, s), x ∈ IRn, s ∈ IRm : g0(x, s) ≥
0, (x0, xi, s) ∈ Bi, i = 1, . . . , p} the real problem may
be formulated as

min
(x,s)∈B

f(x, s). (3)

♦
Definition 3.1: Let the Assumption 3.1 hold; then, we say

that (3) is a nonlinear MDO formulation for the MDO
problem.

♦
We remark that with the latter definition we intend to dis-
tinguish between tractable MDO problems (i.e. those prob-
lems for which a nonlinear MDO formulation exists), and
intractable MDO problems, whose formulation is misleading
or it cannot be described, either explicitly or implicitly, by a
mathematical program.
The formulation (3) is only apparently a standard nonlinear
program, so that the usual techniques from numerical opti-
mization cannot in general be used to solve it. Indeed, the
specific difficulty of (3) is that the feasible set B also includes
the so called MultiDisciplinary Analysis (MDA), defined as

MDA =


A1(x0, x1, s) = 0

...
Ap(x0, xp, s) = 0.

MDA only implicitly describes a nonlinear system of equa-
tion, in as much as the i-th block of equalities Ai(x0, xi, s) =
0 may not correspond exactly to a set of nonlinear equations.
It may be a black-box, which implicitly defines a map among
the variables x0, xi and s. Moreover, it often corresponds
to the discretization of PDE systems, so that the implicit
function theorem cannot be exploited to retrieve s = s(x). As
a result, apart from specific cases, (3) can be hardly solved as
a nonlinear program uniquely dependent on the design vector
x.

As mentioned in the Appendix, the Karush-Kuhn-Tacker
(KKT) conditions (a set of optimality conditions for a general
mathematical programming problem) require some assump-
tions on both the objective function (differentiability) and
the feasible set in (3) (e.g. constraint qualification). It is not
difficult to find simple examples of MDO problems where the
latter assumptions do not hold at all. Hence, this proves the
intrinsic difficulty of providing both a complete convergence
analysis and effective algorithms for the formulation (3).

As we will describe in Section VII, our real MDO prob-
lem also imposes box constraints on a subset of the design



unknowns. The latter constraints are implicitly included in the
block of inequalities g0(x, s) ≥ 0 of (3).

A. A classification for MDO formulations

The definition of a general classification for nonlinear MDO
formulations is an intriguing issue (see for instance [4] and
therein references). On this purpose we partially rewrite (3)
as

min
(x,s,t)∈B̂

f̂(x, s, t), B̂ = Γ1 ∩ Γ2 ∩ Γ3, (4)

where the sets Γ1, Γ2, Γ3 are respectively given by

Design Constraints:

Γ1 =


g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0

Disciplinary Analysis Constraints (MDA):

Γ2 =


A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0

Interdisciplinary Consistency Constraints:

Γ3 =


t1 = C1(s1)

...
tp = Cp(sp).

The main difference with respect to (3) is that the Interdis-
ciplinary Consistency Constraints introduce the new set of
unknowns tT = (tT1 · · · tTp ). For each block Ai(x0, xi, s), i =
1, . . . , p in (3), the vector ti simply weaken the dependency
of Ai(x0, xi, s) from the vector s, i.e. the state unknowns of
the i-th discipline are de-coupled. This implies that any two
blocks i and j among the MDA constraints, i.e.

Ai(x0, xi, si, t1, . . . , ti−1, ti+1, . . . , tp) = 0

Aj(x0, xj , sj , t1, . . . , tj−1, tj+1, . . . , tp) = 0,

only share the sub-vector of unknowns x0 and not also the
sub-vector s. The latter structure of the formulation could
be fruitfully used to apply either decomposition techniques
or multilevel methods to the nonlinear program (4). With
a common terminology within the MDO literature, we say
that the auxiliary variables t de-couple the interdisciplinarity
among disciplines.
In spite of the considerations above, the formulation (4)
can be hardly solved with a direct application of standard
mathematical programming techniques. Thus, we prefer to
introduce the following concept of reformulation for an MDO
formulation, in order to have a more tractable alternative
scheme.

Definition 3.2: Let the set B̂ in (4) be nonempty, let Z∗

be the solution set of the MDO formulation (4). We say that
F̂ is a reformulation of (4) if

• F̂ is a formulation for the MDO problem;
• a smooth nonlinear function ϕF̂ exists such that

ϕF̂ (ẑ∗) ∈ Z∗, for any ẑ∗ ∈ Ẑ∗, where Ẑ∗ is the solution
set of F̂ .

♦
We remark that by the latter definition any MDO formulation
is also an MDO reformulation with ϕ given by the identity.
Furthermore, the solution(s) of the reformulated problem may
not be in general optimal solutions of (4). We also introduce
the following definition of equivalence among reformulations,
in order give criteria for evaluating the solutions provided by
different reformulations.

Definition 3.3: Let F̃ and F̄ be reformulations of (4). Let
Z̃∗ and Z̄∗ be the solutions sets of F̃ and F̄ respectively. We
say that F̃ is equivalent to F̄ (i.e. F̃ ∼ F̄) if the smooth
nonlinear functions ϕF̃ , ϕF̄ exist, such that ϕF̃ (x̃∗, s̃∗, t̃∗) ∈
Z̄∗ and ϕF̄ (x̄∗, s̄∗, t̄∗) ∈ Z̃∗, for any (x̃∗, s̃∗, t̃∗) ∈ Z̃∗ and
(x̄∗, s̄∗, t̄∗) ∈ Z̄∗.

♦
The latter definition is evidently of difficult application since
Z̃∗ and Z̄∗ are in general unavailable.
This partially explains why in the MDO literature the authors
prefer to handle more qualitative classifications for the refor-
mulations of (4). One of these classifications introduces the
following naive distinction [3].

• Structural (or Analytical) Perspective. A general refor-
mulation of (4) is proposed which meets a suitable nice
structure. In particular we say that a nice structure is
available if the formulation associated to each discipline
may be treated independently, by using standard nonlinear
programming techniques. Consequently, the MDO refor-
mulation results into a decomposed problem with respect
to the disciplines (an overall globalization strategy is still
necessary but discipline specific codes may be used).

• Algorithmic Perspective. The reformulation of (4) must
be aimed at using as many results, algorithms and
packages as possible, from nonlinear programming. For
instance, convex or continuously differentiable reformu-
lations would be in general preferable to respectively
nonconvex or nonsmooth ones.

By reasoning from a different perspective, another possible
criterion to classify MDO reformulations may be given
according to the following definition [2].

Definition 3.4: Consider the reformulation F̂ of the non-
linear MDO formulation (4). We say that F̂ is closed [open]
with respect to the block Γi, i = 1, 2, 3, of constraints, if
regardless of the optimization algorithm(s) used to solve F̂ ,
the block Γi is always satisfied [not satisfied].

♦



Observe that in the previous definition, the classification
criterion does not rely on the optimization technique(s) used
to tackle the solutions of the MDO reformulation. From
Definition 3.4 we associate to the MDO reformulation F̂ the
label

α̂D / β̂DA / γ̂IC, α̂, β̂, γ̂ ∈ {O,C}, (5)

where the possible entries {O,C} for α̂, β̂ and γ̂ stand
respectively for ‘OPEN’ and ‘CLOSE’.

B. Examples of MDO reformulations from the literature

In this section we describe some MDO reformulations of
(4), which are widely adopted in the literature (we will con-
sider examples of them in Section VII). We urge to remark that
the structure of both the objective function and the constraints
in (4) is clearly dependent on the application in hand. This
suggests that a specific reformulation might be suitable for
a real problem, while it can be completely inadequate for
another application. The following MDO reformulations of (4)
are based on the classification induced by Definition 3.4. We
highlight that the reformulations (R4)-(R5) correspond to a
bilevel optimization formulation.

(R1) MultiDisciplinary Feasible (MDF). It is an MDO refor-
mulation of (4) also known as FIO or AIO [8], which
represents the most trivial approach to the solution. It
consists of using the implicit function theorem to explicit
the vectors s = s(x) and t = t(x) from the Disciplinary
Analysis and the Interdisciplinary Constraints. Then, the
resulting MDO reformulation reduces to

min
x

f̂(x, s(x), t(x))

g0(x, s(x)) ≥ 0
g1(x0, x1, s(x)) ≥ 0

...
gp(x0, xp, s(x)) ≥ 0,

(6)

which may be treated as a nonlinear program depending
on the vector of unknowns x ∈ IRn. As we said, the
equality constraints in (4) can be hardly inverted to
provide s = s(x), so that the reformulation (6) turns
to be quite unusual. According with the pattern (5), the
MDF scheme is an OD/CDA/CIC reformulation.

(R2) Simultaneous Analysis and Design (SAD). Also known
with the acronyms AAO or SAND [22], is the counterpart
of MDF. Indeed, now x, s and t must be treated as
independent unknowns, so that the overall reformulation

to be solved is

min
x,s,t

f̂(x, s, t)

g0(x, s) ≥ 0
g1(x0, x1, s) ≥ 0

...
gp(x0, xp, s) ≥ 0
A1(x0, x1, s1, t2, . . . , tp) = 0

...
Ap(x0, xp, sp, t1, . . . , tp−1) = 0
t1 = C1(s1)

...
tp = Cp(sp).

(7)

Observe that the number of unknowns for SAD is
relatively larger with respect to MDF. From (5) and
the Definition 3.4, the SAD scheme is an OD/ODA/OIC
reformulation.

(R3) Distribute Analysis Optimization (DAO). This is an inter-
mediate approach (see Section VII) between the previous
two; that is why it is often addressed as the In Between
[8], [26] reformulation, or alternatively it is the IDF
approach [8]. Here, a subset of the equality constraints is
used to explicit a sub-vector of the unknowns in terms of
the remaining variables (i.e., the implicit function theo-
rem may be partially applied). Considering the following
partition of vectors sT = (s̃T ŝT ) and tT = (t̃T t̂T ),
the resulting optimization problem becomes (for sim-
plicity we have compounded the Disciplinary Analysis
and the Interdisciplinary Consistency constraints)

min
x,s̃,t̃

f̂
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
g0

[
x, (s̃T ŝT (x, s̃))T

]
≥ 0

g1

[
x0, x1, (s̃T ŝT (x, s̃))T

]
≥ 0

...
gp

[
x0, xp, (s̃T ŝT (x, s̃))T

]
≥ 0

A
[
x, (s̃T ŝT (x, s̃))T , (t̃T t̂T (x, s̃))T

]
= 0

t̃ = C̃(s̃).
(8)

Finally observe that the DAO scheme is an
OD/CDA/OIC reformulation.

(R4) Optimization by Linear Decomposition (OLD). This is
a true bilevel reformulation of (4) [14]. Indeed, the first
(upper) level of minimization (the master level) has the
role of coordinating the results coming from the second
(lower) level of minimization, which is the disciplines



level. The resulting overall nonlinear program is

min
x0,t

f̂ [x0, x1, .., xp, s1(x0, x1, t), .., sp(x0, xp, t)]

g0 [x0, x1, .., xp, s1(x0, x1, t), .., sp(x0, xp, t)] ≥ 0

mi(x0, xi, t) ≤ 0, i ≤ p

min
xi

mi(x0, xi, t)

ti = Ci [si(x0, xi, t)] , i ≤ p
(9)

where

mi(x0, xi, t) =
∥∥g+

i [x0, xi, si(x0, xi, t)]
∥∥2

(10)

and

g+
i [x0, xi, si(x0, xi, t)] =

min {0, gi [x0, xi, si(x0, xi, t)]} ,

and the last equality is intended componentwise. Ob-
serve that here the sub-vector si(x0, xi, t) is supposed
to be computed by the implicit function theorem,
applied to the i-th block of MDA constraints (i.e.,
Ai(x0, xi, si, t1, . . . , ti−1, ti+1, . . . , tp) = 0). The func-
tion mi() (the so called discrepancy function [4]) in both
the upper and lower level of (9) substantially measures
a penalization for infeasible solutions. Note that the
exponent 2 in (10) is introduced in order to yield a
continuously differentiable objective function, for the
lower level.

(R5) Collaborative Optimization (CO). Similarly to OLD, CO
is a multilevel optimization reformulation [7]. Here, the
different role played by the system level and the disci-
plines level is strongly remarked. In particular, we allow
the dependency of the Interdisciplinary Constraints from
both the design variables and the state variables. The
overall nonlinear program is described by introducing
the so called surrogates y1, . . . , yp of vector x0. Observe
that for each discipline, the latter unknowns are used to
de-couple the upper level and the lower level, i.e. they
play a role similar to that of vector t.

min
x0,t

f̂(x0, x1, . . . , xp, t)

‖ti − Ci (yi − x0, si(yi, xi, t))‖∗ = 0, i ≤ p

min
yi,xi

1
2

[
‖yi − x0‖2 + ‖si(yi, xi, t)− ti‖2

]
gi (yi, xi, si(yi, xi, t)) ≥ 0, i ≤ p.

(11)
The reformulation (11) strongly requires that the sub-
vector si = si(yi, xi, t) can be computed, by applying
the implicit function theorem to the i-th block of MDA
constraints Ai(yi, xi, si, t1, . . . , ti−1, ti+1, . . . , tp) = 0.
As reported above, the bilevel structure of CO may be

fruitfully exploited by using suitable nonlinear program-
ming techniques [14]. Finally, the choice of the norm ‘∗’
is substantially arbitrary; however, common choices are
‘∗’= 1 (CO1) and ‘∗’= 2 (CO2).
With the choice ‘∗’= 1 in (11), the constraints of the
upper level are not differentiable. This implies that the
Lagrange multiplier rule may fail [39]. On the other
hand, The choice ‘∗’= 2 is appealing because it gives a
smooth feasible region of the upper level in (11). Unfor-
tunately, in case the feasible region of the upper level is
open, the KKT optimality conditions may fail, since the
Jacobian matrix (of the upper level constraints) vanishes
in any feasible point. Thus, the Lagrange multiplier rule
[6] may fail as well.

IV. A GENERALIZED PSO SCHEME FOR GO

As described in Section II, PSO is an iterative heuristics
for the solution of (1). It generates subsequences of points in
IRn which possibly converge eventually to a stationary point
of f(x) (see also Section VIII).
At the current iteration k the PSO algorithm generates the P
sequences {xk

j }, j = 1, . . . , P , according with (see [10]):

vk+1
j = χ

[
wkvk

j + cjrj(pk
j − xk

j ) + cgrg(pk
g − xk

j )
]
,

xk+1
j = xk

j + vk+1
j .

(12)
PSO is in the wide class of evolutionary algorithms and
follows the natural paradigm of a bird flock, where the
trajectories of the birds (so called particles) are represented by
the P sequences {xk

j }. On the other hand, the vector vk
j ∈ IRn

represents the so called speed of the j-th particle at iteration
k. Finally, the n-real vectors pk

j and pk
g , for any k, satisfy the

conditions

1) pk
j ∈ {x`

j} ` ≤ k, j = 1, . . . , P,

2) f(pk
j ) ≤ f(x`

j) ∀` ≤ k, j = 1, . . . , P,
(13)

and

1) pk
g ∈ {x`

1, . . . , x
`
P } ` ≤ k,

2) f(pk
g) ≤ f(x`

j) ∀` ≤ k, ∀j = 1, . . . , P.
(14)

Furthermore, χ,wk, cj , rj , cg, rg are real bounded coefficients.
Observe that we use the subscript j to indicate the sub-
sequence, while the superscript k indicates the iterate in
the subsequences {xk

j }. Also note that pk
j represents the

‘best position’ in the j-th subsequence, while pk
g is the

‘best position’ among all the subsequences. The choice of
the coefficients is often problem dependent; however, several
values for them were proposed in the literature [13], [36], [42],
[10]. In particular, the parameters rj and rg are often random
parameters with uniform distribution in [0, 1].
Observe that in relation (12) the speed vk+1

j depends only on
the vectors pk

j −xk
j , pk

g −xk
j . However, for the j-th particle an



obvious generalization of (12) could be thee following [10]

vk+1
j = χk

j

[
wk

j vk
j +

P∑
h=1

ch,jrh,j(pk
h − xk

j )

]
,

xk+1
j = xk

j + vk+1
j ,

(15)

where the speed vk+1
j depends on the P vectors pk

h− xk
j (see

also [31]), h = 1, . . . , P .
Now, assuming χk

j = χj and wk
j = wj , for any k ≥ 0, the

iteration (15) is equivalent to the discrete stationary (time-
invariant) system

Xj(k + 1) =

 ajI −ωjI

ajI (1− ωj) I

 Xj(k)

+


P∑

h=1

χjch,jrh,jp
k
h

P∑
h=1

χjch,jrh,jp
k
h

 , (16)

where aj = χjwj , ωj =
∑P

h=1 χjch,jrh,j and

Xj(k) =

 vk
j

xk
j

 ∈ IR2n, k ≥ 0. (17)

The sequence {Xj(k)} identifies the trajectory of the j-th
particle in the real space IR2n. In addition, this trajectory can
be split into the free response XjL(k) and the forced response
XjF (k) (see also [34]). In other words, for any k ≥ 0, Xj(k)
may be rewritten according with

Xj(k) = XjL(k) + XjF (k), (18)

where

XjL(k) = Φj(k)Xj(0), XjF (k) =
k−1∑
τ=0

Hj(k−τ)Uj(τ),

(19)
and (after few calculations [10])

Φj(k) =

 ajI −ωjI

ajI (1− ωj) I

k

, (20)

Hj(k − τ) =

 ajI −ωjI

ajI (1− ωj) I

k−τ−1

, (21)

Uj(τ) =


P∑

h=1

χjch,jrh,jp
τ
h

P∑
h=1

χjch,jrh,jp
τ
h

 . (22)

V. ISSUES ON THE CONVERGENCE OF PSO
In this section we partially study conditions to ensure the

convergence of PSO algorithm. On this guideline, according
with a well known result for discrete linear systems (see
[34]), we have the following

Proposition 5.1: Suppose Xj(k) ∈ A, for any j and k,
where A is a compact set. Then,

lim
k→∞

XjL(k) = 0, for any Xj(0) ∈ IR2n, j = 1, . . . , P,

(23)
is a necessary condition to have

lim
k→∞

Xj(k) = lim
k→∞

XjF (k), j = 1, . . . , P.

♦
In few words, in order to get convergent sequences {Xj(k)},
regardless of the choice for the initial points Xj(0), j =
1, . . . , P , relation (23) imposes the free response XjL(k) to
be bounded away from zero only for finite values of the
index k. It is easy to verify that equivalently, (23) requires
that the eigenvalues of the unsymmetric matrix Φj(1) satisfy
suitable conditions, which limit the values of the coefficients
in (15). Indeed, after few calculations [11] we have that the
unsymmetric matrix Φj(1) has at most the two real distinct
eigenvalues λj1 and λj2 with

λj1 =
1− ωj + aj −

[
(1− ωj + aj)2 − 4aj

]1/2

2

λj2 =
1− ωj + aj +

[
(1− ωj + aj)2 − 4aj

]1/2

2
.

(24)

The following result yields (23):

Proposition 5.2: Consider the PSO iteration (15) for any
j ∈ {1, . . . , P} , and let χk

j = χj , wk
j = wj , k ≥ 0. Suppose

that for any j ∈ {1, . . . , P} the eigenvalues λj1 and λj2 in
(24) satisfy

|λj1| < 1

|λj2| < 1.
(25)

Then, (23) holds.
♦

Unfortunately the latter proposition does not provide results
for the following relevant convergence issues:

1) The hypothesis (25) in Proposition 5.2 neither ensures
that {Xj(k)} is a converging sequence, nor it guarantees
that {Xj(k)} admits limit points. Indeed, (25) does not
avoid possible diverging subsequences of {Xj(k)} (i.e.
we are not guaranteed that in Proposition 5.1 Xj(k) ∈ A
for any k).

2) In case the subsequence {Xj(k)}K converges, i.e.
{Xj(k)}K → X∗

j , with (see (17))

X∗
j =

 v∗j

x∗j

 ,



the property

f(x∗j ) ≤ f(x), ∀x s.t. ‖x− x∗j‖ ≤ ε, ε > 0,

may not be satisfied. I.e., x∗j may fail to be a local
minimum of f(x).

The first issue was partially investigated in [25]; here we focus
on the second issue. In particular, in the next section we will
consider the PSO algorithm for problem (2), then we will
describe some derivative-free approaches in order to compute
a stationary point for (2).

VI. ISSUES ON BOX-CONSTRAINED MINIMIZATION

Consider the KKT conditions for the box-constrained min-
imization problem (2), where f(x) is assumed to be contin-
uously differentiable. Observe that now, at a stationary point
x∗, the first order optimality conditions for the unconstrained
problem (1), i.e.

∇f(x∗) = 0, (26)

may fail [6]. Indeed, the convexity of the feasible set F =
{x ∈ IRn : a ≤ x ≤ b} yields the new optimality conditions
[6]

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ F . (27)

In particular, setting aT = (a1, . . . , an) and bT = (b1, . . . , bn),
the condition (27) may be rephrased into the component-wise
conditions

∇rf(x∗) = 0, (28)

where∇rf(x∗) ∈ IRn is the so called reduced gradient, whose
i-th entry is given by

[∇rf(x∗)]i =


max

{
∂f(x∗)

∂xi
, 0

}
if xi = bi,

min
{

∂f(x∗)
∂xi

, 0
}

if xi = ai,
∂f(x∗)

∂xi
if ai < xi < bi.

Observe that if ai = −∞, i = 1, . . . , n, and bi = +∞,
i = 1, . . . , n, the box-constrained problem (2) reduces to
(1), so that (28) simply reduces to (26). Finally, we remark
that in (2) the constraints are linear, so that the constraint
qualification conditions are always satisfied. This also implies
that a straightforward application of the KKT conditions
directly yields (28).

We want to solve (2) by adopting a globally convergent
algorithm (see Section VIII) which does not use derivatives.
Thus, we have to guarantee the satisfaction of condition (28)
by means of a suitable derivative-free scheme. We can find
several algorithms satisfying (28) in the literature, based on
different approaches. In particular we consider algorithms
showing both a mature convergence analysis along with satis-
factory performance: the direct search methods.

According with [38], [25], in the latter class we include
derivative-free methods which are simply based on “the ranks
of a countable set of function values”. We report here below
a brief description of some of these methods. In particular
we consider iterative methods in the class of Generating Set
Search (GSS), where at each iteration a suitable set of search

directions is considered, in order to guarantee a decrease of
the function f(x).

• Pattern Search-based methods. Observe that the partial
derivatives ∂f(x∗)/∂xi substantially provide information
on f(x) along the coordinate axes. When the derivatives
are unavailable, a suitable alternative is to consider a
GSS. The directions of the generating set are cyclically
exploited, in order to choose descent directions. Then,
suitable samplings of the function f(x) along the latter
directions ensure that either the conditions

lim inf
k→∞

‖∇rf(x∗)‖ = 0, or lim
k→∞

‖∇rf(x∗)‖ = 0,

eventually holds (see [37], [29]). In particular, the pres-
ence of the convex feasible set F ⊂ IRn in (2), imposes
that if the current point xk does not satisfy the condition
∇rf(x∗) = 0 (i.e. finite convergence is not achieved),
then the set of search directions must contain a feasible
descent direction d. The latter condition equivalently
imposes that moving from xk along d, with sufficiently
small stepsizes, then the function f(x) decreases and the
points generated are feasible. This ensures that the global
convergence for pattern search methods can be proved.
The local convergence analysis of pattern search meth-
ods has also been fruitfully combined with evolutionary
techniques, in order to provide globally convergent algo-
rithms. On this purpose, examples of combined methods
where evolutionary strategies and pattern search schemes
yield globally convergent algorithms, can be found in
[19], [20], [21], [41].

• Linesearch-based derivative-free methods. These meth-
ods are based on the results reported in [27], [29], and
have the following distinguishing features:

1) they use the unit vectors of the coordinate axes as
a GSS;

2) if a suitable feasible descent direction d̂ is selected
in the GSS, then a linesearch procedure is performed
along d̂ (see the Expansion Step described in Table
II);

3) at the current iteration k, a local model of f(x)
is implicitly considered using the information col-
lected by the algorithm, both in the previous itera-
tions and at the current one.

The theoretical results proved for the linesearch-based
methods are similar to those provided by pattern search
methods. However, linesearch-based schemes turn to be
more flexible in iteratively generating the points. The
latter result is a direct consequence of the fact that both
the direction and the steplength are computed by pursuing
a ‘sufficient decrease’ of f(x) (instead of relying on a
specific grid of points as in pattern search approaches).
The theoretical results of linesearch-based methods for
the solution of (2) are summarized in [27]. The latter
paper proposes the globally convergent algorithm PLA,



for the box-constrained problem (2).
In this paper we suitably modify PLA, in order to
combine that approach with PSO. The final result is the
algorithm PLA-PSO reported in Table I. As we described
in Section V, the scheme PLA is used within PLA-PSO
to guarantee the global convergence properties (i.e. the
effectiveness), which are not provided by PSO. On the
other hand, PSO is used (see Table III) to improve the
efficiency of PLA-PSO, and to avoid a slow convergence.
At Step 0. (see Table I) some initializations are intro-
duced, including the choice of the steplengths α̃i

1, which
provisionally estimate the steplength along the search
directions. The latter initialization is necessary since the
algorithm PLA-PSO is tailored for the solution of (2),
where possibly for some i ∈ {1, . . . , n}, ai = −∞ or
bi = ∞.
At Step 1. we indicate xk = (x1

k, . . . , xn
k )T , and we refine

the value of the provisional steplength along the current
direction di, so that also feasibility is preserved.
At Step 2. we substantially check whether the choice
of the steplength α is worth for convergence. Moreover,
at Step 3. the procedure Expansion Step() attempts to
increase the value of the steplength, while preserving
a reduction of the function value. Finally, at Step 5.
the procedure PSO procedure() is called in order to
perform an improvement of the current point x̃k+1. In
particular, the latter procedure aims to integrate a global
search in the local scheme developed at Steps 1.-4.
We remark that the algorithm PLA-PSO, as long as
the procedure PSO procedure(), does not require the
feasible set F to be bounded (i.e., it may happen that
for some i ∈ {1, . . . , n}, either ai = −∞ or bi = ∞).
As we said, this gives reasons for the initialization of
the coefficients α̃i

1, i ∈ {1, . . . , n}, at Step 0., which
otherwise could be set as α̃i

1 = bi − ai, i ∈ {1, . . . , n}.
The Theorem 6.1 summarizes the theoretical results for
PLA-PSO.
Theorem 6.1: Let the function f(x) in (2) be bounded
from below on the feasible set F = {x ∈ IRn : a ≤
x ≤ b}. Let {xk} be the sequence produced by algorithm
PLA-PSO. Then, every limit point of {xk} is a stationary
point for PLA-PSO, i.e.

lim inf
k→∞

‖∇rf(x∗)‖ = 0.

Proof
The proof straightforwardly follows from Proposition 3.2
in [27].

♦

VII. NUMERICAL EXPERIMENTS

In order to give numerical examples of the application of
the PSO algorithms, a test problem has been set up and solved.
The application is related to a real situation affecting the
performances of some sailing yachts, with particular reference
to the America’s Cup Class. For these sailing yachts, stability
is substantially enforced by concentrating the large part of

Step 0. Choose x0 ∈ IRn, θ ∈ (0, 1), α̃i
1 ≤ bi − ai, di = ei,

i = 1, . . . , n. Set k = 1, i = 1, hk = 1.

Step 1. If di = ei then set αmax = bi − xi
k , α−max = xi

k − ai,
Else set αmax = xi

k − ai, α−max = bi − xi
k .

If αmaxα−max = 0 then set
α = min{α̃i

k, max{αmax, α−max}},
Else α = min{α̃i

k, αmax, α−max}.

Step 2. If αmax > 0 and f(xk + αdi) ≤ f(xk)− γα2

then go to Step 3.
If α−max > 0 and f(xk − αdi) ≤ f(xk)− γα2

then set di = −di, αmax = α−max and go to Step 3.
Set αk = 0, α̃i

k+1 = θα, and go to Step 4.

Step 3. Compute αk by the linesearch procedure
Expansion Step(di, α, αmax) and set α̃i

k+1 = αk .

Step 4. Set x̃k+1 = xk + αkdi, α̃j
k+1

= α̃j
k

for any
j ∈ {1, . . . , n} and j 6= i.

Step 5. If hk ≥ n then find xk+1 with PSO procedure(a, b, x̃k+1)
such that xk+1 ∈ F , Else set xk+1 = x̃k+1.
If xk+1 6= x̃k+1 then hk+1 = 1 Else hk+1 = hk + 1.
Set i = mod(i, n) + 1, k = k + 1 go to Step 1.

TABLE I
THE GLOBALLY CONVERGENT ALGORITHM PLA-PSO.

Expansion Step(di, α, αmax):

Step 0. Set γ > 0, δ ∈ (0, 1).

Step 1. Set α̃ = min{αmax, α/δ}.
If α = ᾱ or f(xk + α̃di) > f(xk)− γα̃2 then
set αk = α and Stop.

Step 2. Set α = α̃ and go to Step 1.

TABLE II
THE LINESEARCH SCHEME Expansion Step FOR PLA-PSO.

the hull weight in a single streamlined body, usually called
“keel bulb”. In the America’s Cup regattas, the yacht proceeds
along two directions only: downwind and upwind, and marks
are placed in order to obtain this path, according to weather
conditions. When the yacht proceeds downwind, the boat is
substantially horizontal on the water. On the contrary, when
the yacht is going upwind, it is forced to proceed tracing
a zig-zag path, and the wind is alternatively coming form
port and starboard, with an angle not far from 45 degrees.
In this situation, a large side force is acting on the sails, and
it tends to capsize the boat. Since most of the hull weight is
represented by the keel bulb (typically more than 80% of the
total weight), a righting moment is produced whenever the
yacht starts heeling. With reference to figure 1 if the keel
bulb submergence at rest is L and θ is the heeling angle,
the keel bulb weight is responsible for the righting moment
P ·L ·sin(θ). The lower the heel angle, the higher the applied
force on the sails and the propulsive force. For this reason,



PSO procedure(a, b, x̃k+1):

Set q ≥ 1 integer and P ≥ 1 integer. Set i = 1.
Set a ≤ p1

h ≤ b, h = 1, . . . , P ,
Set v1

j ∈ IRn, j = 1, . . . , P , and
Set z1

1 = x̃k+1, a ≤ z1
j ≤ b, j = 2, . . . , P .

While i ≤ q
Set χi

j , wi
j , ch,j , rh,j , j, h = 1, . . . , P .

Compute for j = 1, . . . , P

vi+1
j = χi

j

[
wi

jvi
j +

P∑
h=1

ch,jrh,j(p
i
h − zi

j)

]
,

zi+1
j = ProjF

[
zi
j + vi+1

j

]
,

where ProjF [y] = z is given by (` = 1, . . . , P )

z` =

{
y` if a` ≤ y` ≤ b`

a` if y` < a`

b` if y` > b`

Set i = i + 1.
End While
Set xk+1 = argmin{1≤h≤P, i≤q}{f(pi

h)}.

TABLE III
THE PSO procedure FOR PLA-PSO.

the submergence of the keel bulb is as high as possible, and
the America’s Cup Class Rules enforce a maximum depth.

In figure 1, a picture of a classical resulting configuration
for this class of yacht is depicted. The bulb is attached to the
hull by a long and thin keel fin. The keel fin is also responsible
for the side reaction of the hull: elsewhere, the yacht is only
able to go along the wind direction. Keel fin is asked to give
an high side force without paying it with a large resistance: for
this reason, the keel fin is extremely thin. It is now evident
how this appendage plays a double (crucial) role: structural
and hydrodynamic. The design of such appendages normally
do not involve an integration of structural and hydrodynamic
computations. In reality, due to the extreme slenderness of
the appendage, deformation of the keel fin under loads is
not negligible: the sailing team is often able to observe the
deformation of the keel fin from aboard when the yacht is
heeled. As a consequence, hydrodynamic performances are
strongly influenced by the loads, since the shape of the keel
fin in motion is different than the shape of the keel fin at
rest. A traditional CFD optimization will assume the body as
rigid, therefore failing to capture the fin deformation and its
unavoidable influence on the hydrodynamic performance of
the sailing yacht.
This is a good example of the usefulness of MDO, since a
difference of 1% in performances is able to determine the
winner and the looser for this competition.

A. Definition of the optimization problem and the Simulation
methodology

The shape of the keel fin has been parameterized by using
4 design variables. The modified geometry is obtained by
superimposition of a Béziér patch to the original keel fin.
Further details of the parametrization technique are given in

Fig. 1. On top: scheme of the righting moment given by the ballast bulb.
On bottom: Classical configuration of an America’s Cup Class Yacht.

[32].
Only box constraints on the 4 design variables have been

imposed to the optimization problem, allowing variations ∈
[−0.1 : 0.1] that correspond to about [−20cm : +20cm] in
physical units in the y (transversal) direction.

The original keel fin design has been taken from the
available data of the “Il Moro di Venezia” America’s Cup
sailing yacht [5]. The original keel fin is cylindrical, that is,
the section of the fin does not change throughout the span, this
feature has been preserved for the optimal keel fin. Objective
function is the ratio between the side force and the resistance:
it is the inverse of the price to pay for the unit side force. This
function has to be maximized.

Two different codes are used for the solution of the struc-
tural and hydrodynamic problems. For the hydrodynamic part,
a non-linear BEM for potential flows with lifting surfaces and
free surface is applied, while a FEM is used for the structural
problem. A similar problem has been previously faced in
[12]. Since then, some changes in the numerical solvers have
been applied. The most important is the application of an
open-source code for the solution of the structural problem:
references and validation are given in http://www.calculix.de.
Moreover, not only the isolated keel fin is now modelled:
the whole yacht but the keel bulb are considered in the



hydrodynamic problem. The keel bulb is modelled uniquely
during the structural analysis: its weight is applied to the lower
part of the keel fin. The objective function is computed for a
single hull speed (Fr = 0.30) and for the hull advancing under
an heel angle of 20 degrees and a drift angle of 4 degrees. A
picture of the pressure on the hull for the original geometry
is reported in figure 2. Only the keel fin is considered in the
structural problem solution.
In what follows we describe a full MDA analysis (see Section
III), without introducing the optimization procedure. As Table
2 will suggest, the unavoidable elasticity of the keel fin
introduces a decrease in its efficiency: this simply yields
a multidisciplinary equilibrium but possibly not an optimal
solution.

Fig. 2. Pressure on the hull at the speed of Fr=0.3 for the original
configuration. Hull, rudder and keel fin are analyzed, while the keel bulb
is not included. Red regions indicate high pressure, while blue regions stand
for low pressure. Hydrostatic pressure is not here accounted for.

In order to compute the objective function, a first solution of
the hydrodynamic problem is produced with the undeformed
geometry. The resulting pressure loads are then applied to the
keel fin, together with the weight of the keel bulb, and the
structural problem is solved. The geometry is now deformed
according to the results provided by the structural solver, and a
new hydrodynamic computation is performed on the updated
geometry. A new set of loads is derived, and the algorithm
proceeds. After a number of iterations, a convergent value
for loads and deformation will be reached, and the objective
function is taken from this convergent solution (i.e. the MDA
block of Section III is satisfied). A view of the obtained
deformed keel fin is reported in figure 4.

The effect of the consideration of deformability is also
evident from Table IV. Here the hydrodynamic characteristics
of the keel fin assumed as an infinitely rigid body or a
deformable body are reported. The resistance is higher and the
side force is smaller if deformations are accounted for, with a
resulting decrease on the global efficiency of about 10%.

Resistance Side Force Efficiency
Rigid body 13.321 15.903 1.194
Elastic body 13.373 14.639 1.095

TABLE IV
VARIATION OF EFFICIENCY OF THE KEEL FIN AS A CONSEQUENCE OF THE

DEFORMATION UNDER LOADS. FORCES ARE IN KGF, MODEL SCALE.

Fig. 3. Our MDO scheme.

Fig. 4. Maximum deformation of elastic keel (red line), with respect to the
rigid one (black line), at the junction with the keel bulb.

B. Algorithmic scheme for the MDA convergence

In order to stop the MDA loop, a quantity able to give an
evidence of the degree of coupling between the disciplines
has to be defined. According to [12], this quantity has been
obtained by measuring the discrepancies in the hydrodynamic
prediction between two successive iterations of the MDA. We
monitor the ratio

ρ =
f(xk)− f(xk−1)

f(xk)

where f(xk) is the objective function value at the kth step
of the disciplinary convergence iteration and f(xk−1) is the
objective function at the previous step, and xk are the design
unknowns. The coupling between the disciplines is considered
satisfactory if ρ is lower than a selected value ρ0. A different
degree of coupling between the disciplines can be obtained
by varying the value of ρ0. If ρ0 is small, a high degree of
coupling is asked. The latter MDO approach is a SAD scheme
(see Section III).

C. A SAD/MDF scheme for the acceleration of the MDA

Observe that the algorithm does not change significatively
the investigated geometries when it is close to convergence.
This feature can be used in order to enforce implicitly the
convergence of the disciplinary variables too: instead of start-
ing from the undeformed geometry for each single MDA, and
looking directly for an accurate degree of coupling, we can



assume as the initial value of the deformation the same scheme
as from the end of the previously performed MDA, and wait
the convergence of the optimization algorithm in order to gain
an high degree of coupling between the disciplines. In fact, if
a nearly-correct initial condition for the disciplinary variables
is applied, we can obtain a very small value of ρ just from the
start of the MDA. This approach can be defined as SAD/MDF,
since it speeds up the multidisciplinary feasibility with respect
to the SAD scheme described above.

When the change in the two successively tested geometries
is not large, this assumption is helpful: if the hypotheses
of continuity of the deformation with the design variable
variation holds, once the parameters start stabilizing also the
convergent local deformation does not change significatively.
On the contrary, it could result in an increase of the iterative
process for the single MDA. What has been verified in [12] is
that the total number of calls to the solvers is decreased by this
approach when a local optimization algorithm is adopted, since
it naturally produces a sequence of geometries not far from
each other. Otherwise, when largest steps in the design variable
space are produced during the optimization algorithm iterate,
the effectiveness of this approach is not fully demonstrated.
Moreover, if the degree of coupling is not high, there might
be a substantial difference in the results obtained by different
optimization algorithms, if the coupling among disciplines is
relaxed.

In our global optimization framework we introduce an
iterative procedure which is used to select, in the feasible
domain, the most promising designs.
Let us consider our PSO algorithm described in Section IV:
here the different individuals in the swarm are moving along
individual trajectories, whose speed is self-regulated by the
particle position xk

j , according to (15). Hence, we perform an
MDA analysis for each individual of the swarm, relying on
the concrete possibility that the state unknowns s (see (3) did
not change significantly with respect to the previous iteration.

D. Comparison between local and global strategies

As a first step, it is essential to verify the usefulness of
the proposed strategy in this contest. In figure 5 we report a
numerical experience using a SAD scheme, which proves that
both the optimization strategies - the simplex and the proposed
PSO method - yield an improvement of the objective function
(we recall that a maximization is performed). The simplex
method was successfully applied in [12], while our PSO
algorithm was studied in [10]. Convergence of the simplex
method is faster, but the final optimal value found by this
method is significantly lower than the real one. Moreover, PSO
is much competitive with the simplex method.

Figure 6 report the history of the design variables value
during the optimization process. A maximum number of
iterations was imposed for both the algorithms. The simplex
method reached the convergence and stopped before this limit
was outreached finding an optimum f(xo) = 1.449, but
missing a better optimum found by the PSO, f(xo) = 1.542.
We recall that the initial value of the objective function (for

Fig. 5. Comparison of the course of the simplex method (red dots) and PSO
algorithm (blu dots) optimization algorithm for the proposed problem using
the SAD formulation. On the abscissa, the iteration number is reported. On
the vertical axis is reported the value of the objective function for all the
particles of the swarm (PSO) and for the vertices of the simplex.

the original - but deformable - keel fin) was 1.095. Hence, the
improvements have been +32% with the simplex algorithm
and +41% with the PSO.

It is evident how the searching strategy is different for the
two algorithms. After a transient phase (say ∼ 100 itera-
tions), the simplex method generates a monotonic sequence
converging to a sub-optimal solution. On the contrary, PSO
spreads out a number of elements (the swarm encompasses 16
particles) and generates a sequence which appear as a dumped
oscillation.

In the next section we are going to test the performance of
PSO for the solution of the SAD/MDF framework.

E. Comparison between SAD and SAD/MDF formulation us-
ing PSO

Our emphasis now is on giving evidence of the usefulness
and applicability of the SAD/MDF formulation, in order to
speed up the process with respect to SAD.

Here, we do not require a strong precision when solving
the MDA; nevertheless, when we are approaching the optimal
solution, very similar designs are generated by the algorithm.
This in turn implies that if, from the iteration k to k + 1 the
quantity ‖xk−xk+1‖ is relatively small, then also ‖sk−sk+1‖
is accordingly small. Thus, the number of iterations in order
to get the convergence of MDA, is possibly reduced, hence we
are not far from the solution. As a first check, a comparison
between SAD and SAD/MDF formulation with the same
level of requested convergence in the coupling parameter has
been tested by posing ρ0 = 10−2. Result are shown in
figure 7, where the value obtained for the convergence ρ is
reported versus the total number of calls of the (hydrodynamic
and structural) disciplinary solvers, hence representing the
convergence history of each of the MDA performed.

For the SAD algorithm (blue dots), results concentrates
around two different levels: around ρ = 0.05 and ρ=0.01
(that is, the around prescribed value for ρ0). It is worthwhile



Fig. 6. Comparison of the course of the simplex method and the PSO
algorithm, applied for the solution of the proposed SAD formulation. On the
abscissa, the iteration number is reported. The vertical axis shows the value
of each of the four design variables respectively. Also the results obtained by
using PSO for the SAD/MDF formulation are reported.

to recall the procedure: when the SAD algorithm performs
a MDA, the initial values of the state variables s are set
to 0, i.e. the SAD starts each time from the undeformed
geometry: a first convergence is obtained with a high value
of ρ (corresponding to the higher band in figure 7). When
a second iteration is performed, the convergence is obtained
(the second band is indeed lower than the tolerance value ρ0

, set in this case equal to 10−2. With the SAD/MFD method
instead, once the population has been evaluated for the first
time, each particle has its own initial deformed shape: as a
consequence, the first value of ρ obtained at each MDA is
lower than the corresponding SAD value. This means that the
convergence of the MDA will be faster and that the degree of
the disciplinary coupling in SAD/MDF is higher. Furthermore,
the number of total calls decreases, passing from 1089 (SAD)
to 610 (SAD/MDF) (-44%), reducing the wall-clock time of
the entire optimization process.

Fig. 7. Coupling parameter during the MDA iteration for the SAD and
SAD/MDF algorithm. On the horizontal axis, the counter of the number of
calls to the solvers is reported, while the vertical axis shows the actual degree
of coupling between the disciplines. Even tought the required accuracy is
poor (10−2), the SAD/MDF algorithm gives an higher degree of coupling as
a consequence of the convergence of the optimization algorithm.

The figure 8 is reports this tendency. Here, the total number
of calls to the solvers is reported as a function of the required
coupling accuracy ρ0. The saving on the number of solver calls
seems to be pretty constant even when the required accuracy
is varied.

From figure 6 is also quite evident how little discrepancies
in the convergent values of the design variables are found when
comparing SAD and SAD/MDF algorithm results. On the
other hand, no real differences in the objective function value
are detected, as reported in figure 9. This means that, from
the standpoint of the obtained improvements and final shape,
differences between the two algorithms are negligible. The
computational advantage in adopting the SAD/MDF algorithm
is hence extremely promising.

F. Optimization results
In figure 10 we report the shape of the sections for the

original and for several different optimized keel fins, using



Fig. 8. Coupling parameter during the MDA iteration for the SAD and
SAD/MDF algorithm. On the horizontal axis, the required level of accuracy
for the discipline couplig, on the vertical axis, the total number of calls to the
solvers is reported.

Fig. 9. Comparison of the course of the SAD and SAD/MDF algorithms.
On the abscissa, the iteration number is reported. On the vertical axis, the
value of the objective function. The agreement between the two algorithms is
almost complete, hence the two set of solutions are almost overlapped.

both the SAD and the SAD/MDF algorithms and solving the
optimization problem with the simplex or with the PSO.

The optimal geometries found by the SAD or the SAD/MDF
algorithm are almost coincident, and the difference seems
to be made entirely by the two optimization algorithms, the
advantage of the SAD/MDF with respect to the SAD being
the reduced computational time.

It is also interesting to notice that, as figure 10 shows, both
the PSO and the simplex find an optimal shape thicker than the
original one (see in figure 4), that in turn leads to a reduced
elastic deformation under the effect of the hydrodynamic
loads, as can be observed by comparing the lateral bending
in figure 10 and 4.

VIII. CONCLUSIONS

Optimization problems in which the solution depends on
more disciplines may be tackled with MDO. In this paper we

Fig. 10. Comparison of the optimized geometries. SAD and SAD/MDF
results obtained using the simplex (top) and the PSO (bottom). The root
geometry is black, while the deformation at the tip is reported in red.

presents results for the MDO optimal shape of the keel fin of
a sailing yacht, simultaneously accounting for hydrodynamics
and elasticity. In the (MDO) framework the keel fin is assumed
to be elastic and hence it can be modified by the hydrodynamic
loads.

For this problem we have studied and compared different
MDO formulations. The optimal design problem is finally
tackled considering a Global Optimization (GO) problem
within a MDO framework. Some numerical experiments have
been performed on a test problem, showing different algo-
rithmic structures for the MDO formulation and how these
can be helpful in reducing the total computational cost of
the optimization process Moreover, has been also shown how
global optimization algorithms can be applied in this context.

Future work will include a more articulated reshaping of the
profile (as to the optimizer), the modeling of the keel fin using
non-isotropic materials (like carbon fiber) for the structural
analysis, and the use of a RANS solver for the hydrodynamic
analysis.
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APPENDIX ON OPTIMIZATION

We use IRn to indicate the real n-dimensional space. The
Euclidean norm of vector x is ‖x‖ .=< x, x >1/2, while
‖x‖α represents the general α norm, α > 0. The subscripts
identify the different particles in a PSO scheme (see Section
IV), while the superscripts indicate the iteration. We denote
by I the identity matrix of suitable dimension. The symbol
{xk}K represents the subsequence K of the sequence {xk}.
Finally, we say that the function f(x), x ∈ IRn, is continuously
differentiable in IRn, if the n partial derivatives ∂f/∂xi,
i = 1, . . . , n, exist and are continuous in IRn.

Let us consider the following general mathematical pro-
gramming problem,

min
x∈A

f(x) (29)

where A ⊆ IRn, n ≥ 1, A is the so called feasible set
and f : IRn → IRq is the objective function. Observe that
whenever q = 1, (29) represents the minimization of a real
functional, while f(x) = const. for any x ∈ A indicates
that (29) is a feasibility problem. Finally, if q > 1, (29) is a
multiobjective problem, where the simultaneous minimization
of q real functionals is claimed.
A local minimum of f(x) on the set A is a point x∗ ∈ A such
that:

f(x∗) ≤ f(x), ∀x ∈ A ∩B(x∗, ρ),

where B(x∗, ρ) ⊂ IRn is a ball centered in x∗ and radius
ρ > 0.
Similarly, a global minimum of f(x) on the set A is a point
x∗ ∈ A such that:

f(x∗) ≤ f(x), ∀x ∈ A.

We usually introduce a set of optimality conditions for (29), as
a set of analytical relations satisfied by the so called stationary
points of f(x). Several optimality conditions may be defined,
according with the information available on f(x) and A. In
particular, we distinguish between first order conditions, where
just the gradient ∇f(x) and the Jacobian of the constraints are
involved, and second order conditions, where also the second
order derivatives are required. Karush-Kuhn-Tacker (KKT)
conditions are among the most adopted optimality conditions
for nonlinear optimization.
Furthermore, a larger information on the objective function and
the constraints (e.g. convexity, Lipschitz continuity, etc.) may
yield stronger optimality conditions. Unless we differently
specify, when we say that the point x∗ ∈ A simply satisfies
some optimality conditions, we mean that the latter conditions
are only necessary for x∗ to be a local minimum.

Then, we say that an iterative algorithm for solving (29) is
globally convergent when it generates the (possibly infinite)
sequence {xk} ⊂ A, converging to a stationary point of (29),
regardless of the choice for the initial point x0. For instance,
when A ≡ IRn and f(x) is continuously differentiable, the
latter definition corresponds to an algorithm which generates
the sequence {xk}, such that

lim inf
k→∞

‖∇f(xk)‖ → 0.

Note that the latter condition may be strengthened under addi-
tional assumptions, and possibly we can generate a sequence
of points {xk} such that

lim
k→∞

‖∇f(xk)‖ → 0,

or even
lim

k→∞
xk = x∗, ∇f(x∗) = 0.


