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Abstract In the classical model for portfolio selection the risk is measured by the
variance of returns. Recently several alternative measures of risk have been pro-
posed. In this contribution we focus on a class of measures that uses information
contained both in lower and in upper tail of the distribution of the returns. We con-
sider a nonlinear mixed-integer portfolio selection model which takes into account
several constraints used in fund management practice. The latter problem is NP-
hard in general, and exact algorithms for its minimization, which are both effective
and efficient, are still sought at present. Thus, to approximately solve this model
we experience the heuristics Particle Swarm Optimization (PSO) and we compare
the performances of this methodology with respect to another well-known heuristic
technique for optimization problems, that is Genetic Algorithms (GA).

Keywords: Portfolio selection problem, measures of risk, constrained optimization,
evolutionary optimization, Particle Swarm Optimization, Genetic Algorithms.

1 Introduction to PSO

Particle Swarm Optimization is an iterative heuristics for the solution of nonlinear
global optimization problems [10]. It is based on a biological paradigm, which is
inspired by the flight of birds in a flock, looking for food. Every member of the
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flock explores the search area keeping memory of its best position reached so far,
and it exchanges this information with its neighbors.

In its mathematical counterpart the paradigm of a flying flock may be formu-
lated as follows: find a global minimum (best global position) in a nonlinear and
nonconvex minimization problem. Every member of the swarm (namely a particle)
represents a possible solution of the minimization problem, and it is initially posi-
tioned randomly in the feasible set of the problem. Every particle is also initially
assigned with a random velocity which is used to determine its initial direction of
movement.

The overall PSO algorithm with M particles , as in the version with inertia weight
proposed in [13], works as follows in a minimization problem:

1. Set k = 1 and evaluate f (xk
j) for j = 1, . . . ,M. Set pbest j =+∞ for j = 1, . . . ,M.

2. If f (xk
j)< pbest j then set p j = xk

j and pbest j = f (xk
j).

3. Update position and velocity of the j-th particle, j = 1, . . . ,M, as

vk+1
j = wk+1vk

j +Uφ1 ⊗ (p j −xk
j)+Uφ2 ⊗ (pg( j)−xk

j) (1)

xk+1
j = xk

j +vk+1
j (2)

where Uφ1 ,Uφ2 ∈ d and their components are uniformly randomly distributed in
[0,φ1] and [0,φ2] respectively.

4. If a convergence test is not satisfied then go to 1.

The symbol ⊗ denotes component-wise product and pg( j) is the best position in a
neighborhood of the j-th particle. The specification of the neighborhood topology is
then a choice to set. In our implementation we have considered the so called gbest
topology, that is g( j) = g for every j = 1, . . . ,M, and g is the index of the best
particle in the whole swarm. The value of the inertia weight wk, a parameter that
forces the convergence of the swarm to single solution and prevents the “explosion”
of the particles’ trajectories in the search space, is generally linearly decreasing with
the number of steps, i.e.

wk = wmax +
wmin −wmax

K
k . (3)

In this work we have used the most common values for wmax and wmin found in the
literature, that are respectively 0.9 and 0.4, while K is the maximum number of steps
allowed.

2 Portfolio Selection and Risk Measures

The basic idea in the portfolio selection problem is to select stocks in order to max-
imize the portfolio performance and at the same time to minimize its risk. This
implies that for a formal approach to the latter problem, a correct definition of per-
formance and risk of the portfolio is required. While there is a general agreement
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about the measurement of performance by the expected value of the future return of
the portfolio, the discussion regarding an adequate measure of risk is still open.

In the classical approach, since the work of Markowitz [11], variance is used to
measure risk, but this has one major shortcoming: it leads to optimal investment de-
cisions only if investment returns are elliptically distributed or if the utility function
of investors is quadratic. This consideration has opened the way for the research on
alternative measures of risk, and recently there has been a growing interest for the
so called coherent risk measures introduced in [1].

In [4] Chen and Wang have investigated the possibility of building a new class of
coherent risk measures, by combining upper and lower moments of different orders.
This approach seems to have several advantages with respect to others considered so
far. Indeed, on one hand these measures better couple with non normal distributions
than ones based only on first order moments. On the other hand, they better reflect
investors’ risk attitude, for at least a couple of reasons. First they are less affected by
estimation risk than measures that use only information from the lower part of the
return distribution. Moreover, according with the conclusions presented in [4], their
use in the portfolio selection problem allows for more realistic and robust results,
compared with the ones obtained using CVaR.

In this contribution we use this class of risk measures for a portfolio selection
problem similar to the one considered in [4], with the addition of the cardinal-
ity constraints, which yield a final model in the class of nonlinear mixed-integer
programming problems. For the latter scheme (which is an NP-hard problem [12])
at present there are not both efficient and effective algorithms as for the problem
considered in [4]: this motivates the possible introduction of evolutionary heuristic
methodologies as PSO.

2.1 The portfolio selection model

Let X be a real valued random variable defined on a probability space (Ω ,F ,), and
let us denote ∥X∥p = ([∣X ∣p])1/p, p ∈ [1,+∞[, where [⋅] indicates the expected value
of a random variable. Then, the measures of risk introduced in [4] are defined as:

ρa,p(X) = a∥(X − [X ])+∥1 +(1−a)∥(X − [X ])−∥p − [X ], (4)

where a ∈ [0,1], X− = max{−X ,0} and X+ = (−X)−.
For a and p fixed, any risk measure of this class is a coherent risk measure (see

[7]): for a proof of this and a detailed description of its properties we refer the reader
to [4]. We only remark here that ρa,p is non-decreasing with respect to p and non-
increasing with respect to a. Thus, the value of these parameters can be adjusted to
reflect different attitudes of the investors towards risk.

The portfolio selection model we consider is the following one: suppose we have
N assets to choose from, and for i = 1, . . . ,N let xi ∈ be the weight of asset i in
the portfolio, with XT = (x1 ⋅ ⋅ ⋅xN). Let zi ∈ {0,1} with ZT = (z1 ⋅ ⋅ ⋅zN) be a binary
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variable, such that zi = 1 if the asset i is included in the portfolio, zi = 0 other-
wise. Moreover, for i = 1, . . . ,N, let ri be a real valued random variable that repre-
sents the return of asset i, with r̂i its expected value, i.e. r̂i = [ri]. Then, the random
variable R ∈ that represents the return of the whole portfolio can be expressed as
R = ∑N

i=1 xiri, with expected value R̂ = ∑N
i=1 xir̂i.

Then, our overall portfolio selection problem can be written as follows:

min
X ,Z

ρa,p(R)

s.t. R̂ ≥ l
N

∑
i=1

xi = 1

Kd ≤
N

∑
i=1

zi ≤ Ku

zid ≤ xi ≤ ziu, i = 1, . . . ,N,

zi(zi −1) = 0, i = 1, . . . ,N.

(5)

The first constraint in (5) represents the the minimum desirable expected return l
of the portfolio, while the second one is the usual budget constraint. Then we have
the cardinality constraint: we neither select a too small subset of our assets (Kd) nor
a too large one (Ku). The latter choice summarizes a quite common problem for a
fund manager, who has to build a portfolio by choosing from several hundreds of
assets. Moreover, we require that any of the selected assets xi must not constitute a
too large or too small fraction of the portfolio (i.e. zid ≤ xi ≤ ziu, where d and u are
positive parameters, with d ≤ u). The last N constraints are introduced to model the
relations zi ∈ {0,1}, i = 1, . . . ,N.

Of course, (5) is a reformulation of a nonlinear and nonconvex mixed-integer
problem, where the constraints zi ∈ {0,1}, i = 1, . . . ,N, are replaced by the relax-
ations zi(1− zi) = 0, i = 1, . . . ,N. Detecting precise solutions of (5) may be heavily
time consuming in case exact methods are adopted.

3 Optimization using PSO and GA: reformulation of the
portfolio selection problem

Originally PSO was conceived for unconstrained problems. Thus, in general using
PSO formulae (1)-(2), when constraints are included in the formulation, is improper.
Indeed, in the latter case the PSO algorithm cannot prevent from generating infea-
sible particles’ positions, unless specific adjustments are adopted. When constraints
are included, different strategies were proposed in the literature (see also [2]) to en-
sure that at any step of PSO, feasible positions are generated. Most of them involve
repositioning of the particles, as for example the bumping and random positioning
strategies proposed in [15]. In this paper we decided to use PSO as in its original
formulation, so we have reformulated our problem into an unconstrained one, using
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the nondifferentiable ℓ1 penalty function method described in [14, 8]. Our reformu-
lation of (5) (which has N+1 equality constraints and 2N+3 inequality constraints)
is given by

min
X ,Z

P(X ,Z;ε)

and uses the nondifferentiable penalty function

P(X ,Z;ε) = ρa,p(R)+ 1
ε

[
max{0, l − R̂}+

∣∣∑N
i=1 xi −1

∣∣+

+max
{

0,Kd −∑N
i=1 zi

}
+max

{
0,∑N

i=1 zi −Ku
}

(6)

+∑N
i=1 max{0,zid − xi}

+∑N
i=1 max{0,xi − ziu}+∑N

i=1 ∣zi(1− zi)∣
]

and ε is the penalty parameter. The correct choice of ε ensures the correspondence
between the solutions of problems (6) and (5) (see also [6]). Of course, since PSO is
a heuristics, the minimization of the penalty function P(X ,Z;ε) theoretically does
not ensure that a global minimum of (5) is detected. Nevertheless, PSO often pro-
vides a suitable compromise between the performance (i.e. a satisfactory estimate of
a global minimizer for (5)) and the computational cost. To analyze the performance
of PSO we compare it with another well known evolutionary heuristic methodology
for optimization problems, that is a genetic algorithm (GA) in its standard form, that
is starting from an initial population of solutions we generate a new one using the
following three steps: tournament, basic crossover and basic mutation. For sake of
brevity we refer the reader to [9] for more details on GA.

4 Numerical results

In this section we briefly report the conclusions of the numerical results we have
obtained (for further results and references see also [5]).

As input data we have used the time series of the daily close prices of the 32
assets belonging to Italian FTSE MIB index from January 2003 to May 2009. Using
the same idea of [4] we have estimated the risk measure for any portfolio X as

ρa,p(R) =
a
T

[
T

∑
t=1

Ã
N

∑
i=1

(ri,t − r̂i)xi

)+]

+ (1−a)

⎧
⎨
⎩

1
T

T

∑
t=1

[Ã
N

∑
i=1

(ri,t − r̂i)xi

)−]p⎫⎬
⎭

1
p

,

where r̂i is estimated using the historical data, that is
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r̂i =
1
T

T

∑
t=1

ri,t .

To reflect a realistic problem of portfolio selection, we set the values d = 0.05 and
u = 0.20 in (6). For the cardinality constraint we have set Kd = 5, while we have
considered two different values for Ku: Ku = 20 and Ku = 10. The PSO and GA
algorithms to solve problem (6) has been implemented in MATLAB 7, and the ex-
periments have been performed on a workstation Acer Aspire M1610 with an Intel
Core 2 Duo E4500 processor.

We stopped PSO iterations when either of the following stopping criteria was
satisfied:

a) the maximum number of 10000 steps was outreached;
b) ∣ f bestk+1 − f bestk∣ < 10−8 for 2000 consecutive steps, where f best = f (pg) is

the current best value of the fitness function f = P(X ,Z;ε).

After some preliminary tests, aiming to use values for the parameters as standard as
possible in the literature, we selected the values ε = 10−6 and M = 50.

We solved the portfolio selection problems for different values of the parameters
of the risk measure ρa,p, and Ku, considering one year data of daily returns of dif-
ferent time periods. For every combinations of the parameters and the data-set, we
did first 50 runs of the algorithm, each with different random initial positions and
velocities. We then iterated the procedure in the following way: we did other 50 runs
of the algorithm, with again random initial velocities for all particles, but we used
the 50 global best positions found in the previous phase as initial positions. At the
end of this second phase we obtained convergence to the same global best position
for each run (in general not corresponding to the best position of the previous 50
ones) and we assumed this to be the global minimum (X∗,Z∗) of the optimization
problem.

We remark that the monotonicity properties expected by theoretical results ([4,
Theorem 2.3]) were respected by the results found using PSO, also with Ku = 10.
This is shown in Table 1 and Table 2. We also observe that the diversification of
the portfolio, measured by the number of assets, is decreasing with a and increasing
with p, and this is consistent with the different attitudes towards risk expressed
by the values of these parameters. The same considerations apply using data from
different time periods.

Table 1 Monotonicity of ρa,p(X∗) for p = 2 and different values of a and Ku, with one year data
from 2003-04.

a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1
ρa,2;Ku=20 0.004962 0.004667 0.003560 0.002816 0.002165

N. of assets 20 18 17 16 15
ρa,2;Ku=10 0.004968 0.004748 0.003619 0.002934 0.002372

N. of assets 9 10 9 9 9
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Table 2 Monotonicity of ρa,p(X∗) for a = 0.5 and different values of p and Ku, with one year data
from 2003-04.

p = 1 p = 2 p = 5
ρ0.5,p;Ku=20 0.002024 0.00356 0.006787
N. of assets 15 18 19
ρ0.5,p;Ku=10 0.00209 0.003619 0.00697
N. of assets 8 10 10

To analyze the performance of PSO with respect to GA, since the results in terms
of the risk measure are approximately the same, we compared the standard devi-
ations of the optimal risk measure in the first 50 runs of the two algorithms, in
order to investigate the consistency of the algorithms, that is the capability of the
two methods to converge to the same solution in each run. We observed a little bet-
ter performance of GA in this respect, especially in the case Ku = 10, but this has
a cost: the average computational time in seconds is then approximately 10 times
larger. An example of the results obtained is reported in Table 3.

Table 3 Average standard deviation and computational time of 50 runs of PSO and GA for p = 2,
Ku = 10 and different values of p.

a = 0 a = 0.25 a = 0.5 a = 0.75 a = 1
σ(PSO) 0.0904% 0.1026% 0.0727% 0.0657% 0.0315%
σ(GA) 0.0751% 0.0701% 0.0636% 0.0529% 0.0286%
t̄(PSO) 30.04 31.25 29.87 30.35 32.03
t̄(GA) 315.27 298.82 308.12 330.23 321.73

In order to analyze the financial meaning of the portfolios obtained, we used PSO
to solve another portfolio selection problem, using variance as measure of risk, and
keeping the same set of constraints of problem (5). By comparing the diversification
of the two portfolios obtained, it appears that when the cardinality constraint is in its
weaker form, that is Ku = 20, the diversification obtained using ρa,p is higher than
using variance, and it is increasing with p. This is also consistent with the results
obtained in [4], where the cardinality constraint was not explicitly introduced, and
the comparison was made with respect to CVaR.

5 Conclusions

The results obtained suggest that when challenging nonlinear and nonconvex mixed-
integer reformulations of portfolio selection are considered, including complex ob-
jective function landscapes and a set of constraints, then PSO provides a satisfactory
compromise between the performance and the computational workload required.
The latter conclusion comes up from our experience, by comparing PSO with GA,



8 Marco Corazza, Giovanni Fasano and Riccardo Gusso

when the dimensionality of the problem is high. More investigation is needed to
check the dependence of the performance of PSO with respect to the initial position
and velocities of the particles (see [3]) and to a different strategy for handling the
constraints of the problem.
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