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Abstract. This paper extends some theoretical properties of the conjugate
gradient-type method FLR (Ref. 1) for iteratively solving indefinite linear
systems of equations. The latter algorithm is a generalization of the conjugate
gradient method by Hestenes and Stiefel (CG, Ref. 2). We develop a complete
relationship between the FLR algorithm and the Lanczos process, in the case
of indefinite and possibly singular matrices. Then, we develop simple theo-
retical results for the FLR algorithm in order to construct an approximation
of the Moore-Penrose pseudoinverse of an indefinite matrix. Our approach
supplies the theoretical framework for applications within unconstrained
optimization.
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1. Introduction

In this paper, we study iterative methods to provide a solution of a dense
linear system

Ax = b, (1)

where the symmetric matrix A ∈ R
n×n is indefinite and possibly singular, b ∈ R

n,
and n is large. Many real large-scale problems require the solution of linear
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system (1) and they often need the use of efficient solvers, along with easy software
packages. Many iterative algorithms for solving the linear system (1) provide us
with useful and efficient tools (Ref. 3); nevertheless, the selection of the appropriate
method is often a difficult problem for nonspecialists.

When Krylov subspace methods are considered (Refs. 4, 5) and good pre-
conditioners are adopted, the differences among methods become less relevant
(Ref. 6). However, this trivially shifts the problem to the identification of a suit-
able general purpose preconditioner.

When problem (1) becomes ill-conditioned, the numerical treatment is more
complicated and some regularization techniques, which use additional information
for stabilizing the solution, are often advisable (Ref. 6). Moreover, optimization
frameworks provide strong motivations for investigating the solution of the possi-
bly singular system (1).

In particular, consider the solution of the nonlinear least-squares problem

min
x∈R

n
(1/2) ‖r(x)‖2 , r : R

n → R
m, (2)

by means of the damped Gauss-Newton method (Ref. 7). Let J (x) ∈ R
m×n be

the Jacobian of the vector function r(x) at the current point x. Then, at step k, the
latter method considers the linear approximation r(xk) + J (xk)dk of r(x) at xk and
computes dk as a solution of the unconstrained subproblem

min
d∈Rn

‖r(xk) + J (xk)d‖ . (3)

Then, the next iterate is

xk+1 = xk + αkdk,

where the steplength αk ∈ R is selected by a line search procedure (Ref. 8). Let
J+(xk) be the Moore-Penrose pseudoinverse of the matrix J (xk) (Ref. 9): the
choice

dk = −J+(xk)r(xk)

among the solutions of (3) has two remarkable advantages. It is invariant under a
linear transformation on x and it is a descent direction for the objective function
in (2) (Ref. 7). In particular, the latter property is used in Refs. 10, 11, where the
CG method is adopted to compute dk , i.e. for equivalently giving a solution of the
linear system

J T (xk)J (xk)d = −J T (xk)r(xk);

see also (Ref. 12). Observe that, in general, the matrix J T (xk)J (xk) is rank defi-
cient.

The Newton method for eigenvector computation is another application
within nonconvex optimization, where a solution of the possibly singular
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system (1) is needed. Suppose that λ ∈ R is an approximate eigenvalue of the
symmetric indefinite matrix H ∈ R

n×n associated to the eigenvector υ ∈ R
n. Then,

a nontrivial solution x
∗

of the linear system (H − λI )x = 0 yields an approxima-
tion to the vector υ. The Newton method is often the method of choice for this
purpose and gives the iterate (Ref. 13)

xk+1 = xk − (H − λI )−1rk, (4)

where rk = (H − λI )xk , x0 ∈ R
n. Since (4) is not well defined, it is turned into

an iteration (Ref. 3)

xk+1 = xk − (H − λI )+rk, (5)

by introducing the Moore-Penrose pseudoinverse of H − λI . Under suitable as-
sumptions, (5) is convergent to an approximation x

∗
of the eigenvector υ. Observe

that the pseudoinverse (H − λI )+ is also an inner inverse, i.e.,

(H − λI )(H − λI )+(H − λI ) = (H − λI )

and that

rk = (H − λI )xk.

Therefore, on large-scale problems, the iteration (5) may be solved as the equation

(H − λI )(xk+1 − xk) = −rk, (6)
and a Krylov-based method may be adopted. Unfortunately, since the matrix H is
indefinite, the CG method may fail. We consider in this paper a generalized CG
method, and we prove that, under suitable assumptions, it provides the pseudoin-
verse solution of equation (6). An iteration similar to (5) is introduced when the
Jacobi-Davidson method (Ref. 14) is used, in place of the Newton method, for
computing the eigenvector υ.

The above examples, along with the low computational cost and the low
memory requirements of CG-like methods, induced us to study and consider the
FLR algorithm in Ref. 1 as a possible candidate for solving (1).

We prove also the complete theoretical relationship between the FLR
algorithm and the Lanczos process. Equivalently, under few assumptions, the
FLR algorithm is proved to generate in exact arithmetic the sequence of Lanczos
vectors.

In the following sections, we use the symbol ‖·‖ to denote the Euclidean norm
for both a real n-dimensional vector and a real n × n matrix. We use the notation
xT y for the inner product between the vectors x, y ∈ R

n, so that x⊥y is equivalent
to xT y = 0. 0[m,n] is the m × n matrix with all entries equal to zero. With R(A)
and N(A), we denote the range and the null space of the symmetric matrix A ∈
R

m×n. With Ki(v,A), we indicate the Krylov subspace span{v, Av, . . . , Ai−1v}
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associated with the vector v ∈ R
n and the matrix A ∈ R

m×n. PrW (ν)indicates the
projection of vector v onto the linear vector space W. Finally,

λm = minj

∣
∣λj (A)

∣
∣ , λM = maxj

∣
∣λj (A)

∣
∣ ,

where λj (A), j ≥ 1, are the smallest and largest eigenvalues of the symmetric
matrix A.

The paper is organized as follows. Section 2 deals with the description of a
few general preliminaries. Sections 3 and 3.1 provide some relevant features of the
FLR algorithm (Ref. 1), when used for solving (1) and the coefficient matrix A is
indefinite and possibly singular. Here, under mild assumptions, the latter algorithm
is used to construct an approximation of the Moore-Penrose pseudoinverse A+.
Sections 4 and 5 provide a noteworthy relation between the FLR algorithm and the
Lanczos process. Finally, Section 6 contains conclusions and perspectives related
to the treated subject.

2. Some General Results

In this section, we introduce a few general results for the solution of (1) which
will be used in the sequel. Consider the CG-based algorithm FLR described in
Ref. 1 (see Table 1). The latter algorithm is a general planar method (Refs. 15–19)
for solving (1), when the matrix A is indefinite; i.e., it avoids the possible pivot
breakdown of the CG in the indefnite case, by introducing 2 × 2 pivot elements.

Table 1. FLR Algorithm for solving the linear system (1).

Step 1. Set k = 1, x1 ∈ R
n, r1 = b − Ax1.

If r1 = 0, then stop. Else, set p1 = r1.
Step k. Compute dk = pT

k Apk ; set εk > 0.

If |dk | ≥ εk ||pk ||2, go to Step kA.

If |dk | < εk ||pk ||2, go to Step kB .

Step kA. Set ak = rT
k pk/dk, xk+1 = xk + akpk, rk+1 = rk − akApk.

If rk+1 = 0, then stop. Else,
set bk = −pT

k Ark+1/dk and pk+1 = rk+1 + bkpk.

Set k = k + 1 go to Step k.
Step kB . If k = 1, then set qk = Apk .

If k > 1 and the previous Step is (k − 1)A, then
set βk−1 = −(Apk−1)T Apk/dk−1 and qk = Apk + βk−1pk−1.
If k > 1 and the previous Step is (k − 2)B , then
set β̂k−2 = −(Aqk−2)T Apk and qk = Apk + β̂k−2(dk−2qk−2 − δk−2pk−2)/�k−2.

Compute ck = rT
k pk, δk = pT

k Aqk, ek = qT
k Aqk, �k = dkek − δ2

k and
ĉk = (ckek − δkq

T
k rk)/�k, d̂k = (dkq

T
k rk − δkck)/�k.

Set xk+2 = xk + ĉkpk + d̂kqk, rk+2 = rk − ĉkApk − d̂kAqk.

If rk+2 = 0, then stop. Else,
compute b̂k = −qT

k Ark+2 and set pk+2 = rk+2 + b̂k(dkqk − δkpk)/�k.

Set k = k + 2 go to Step k.
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Table 2. The Lanczos process applied to the
system (1).

Step 0. k = 0, v0 = b ∈ R
n,

u0 = 0, δ0 = ||b||.
Step k. If δk = 0, then stop. Else, set uk+1 = vk/δk.

Set k = k + 1, γk = uT
k Auk,

vk = (A − γkI )uk − δk−1uk−1

δk = ||vk ||, go to Step k.

We are concerned with proposing some new properties of the FLR algorithm in
the case where the matrix A in (1) is singular.

We remark that the Krylov based algorithm FLR is a generalization of the
CG in the case where the matrix A is indefinite. Indeed from Table 1, as long as
the quantity dk at step k is relatively large, a CG step is performed at step kA. On
the contrary, whenever dk is relatively small, the vector qk is generated at step
kB , so that the solution of (1) is detected over the 2-dimensional manifold span
{pk, qk}; see also Ref. 20. Furthermore, from Lemma 2.2 of Ref. 1, if rk �= 0 and
at Step kA we have dk = 0 (i.e., a pivot breakdown occurs), the step kB cannot fail
by a possible division by zero (i.e., �k �= 0) and the FLR algorithm does not stop.

First, we intend to determine the properties of the FLR algorithm when
the matrix A is singular. Then, we study the relationship between the sets of
orthogonal directions generated by the Lanczos process and the FLR algorithm,
when solving (1).

Consider algorithm FLR and the Lanczos process (Table 2), where without
loss of generality we assumed v0 = b at Step 0 (see Ref. 21 for a more general
choice). Recalling the symmetry of the matrix A, let either the first nonzero Lanczos
vector u1 or the first residual r1 in the FLR algorithm be given by

u1 = y + z, y = PrR(A)(u1), z = PrN(A)(u1), (7a)

r1 = y + z, y = PrR(A)(r1), z = PrN(A)(r1). (7b)

Then, the following general result holds (see also Refs. 22, 23).

Lemma 2.1. Given the symmetric matrix A ∈ R
m×n, let Pi(•) be a nonzero

real polynomial of finite degree i ≥ 1. Let λ1, . . . λk, k ≤ n, be all the nonzero
eigenvalues of the matrix A. Assume that only the nonzero eigenvalues λj1 , . . . λjk

are distinct, with jh ∈ {1, . . . , k}, h = 1, . . . , k̂. For the hth distinct eigenvalue
λjh

, consider the corresponding eigenspace Ejh
, i.e., the subspace Ejh

which spans
the eigenvectors associated with λjh

.

(i) If the vector y ∈ R(A) has a nonzero orthogonal projection on only l̂ ≤ k̂

eigenspaces among Ej1 , . . . , Ejk̂
, then we have Pi(A)y = 0 only if i ≥ l̂.
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(ii) The sequence {Pi(A)y}, which is dependent on the index i, contains at
most l̂ linearly independent vectors.

Proof.

(i) Assume without loss of generality that

PrEjh
(y) �= 0, h = 1, . . . l̂.

Then, l̂ orthonormal eigenvectors yj1 ∈ Ej1 , . . . , yjl̂
∈ Ejl̂

and the vector c ∈ R
l̂

exist such that

y =
l̂

∑

h=1

cjh
yjh

, cjh
�= 0. (8)

From the symmetry of the matrix A, an orthogonal matrix V ∈ R
n×n exists such

that

A = V DV T , D = diag
{

λ1, . . . λk, 0[n−k]
}

, V = [y1 · · · ykz1 · · · zn−k], (9)

where y1, . . . , yk are orthonormal eigenvectors associated with the eigenvalues
λ1, . . . , λk and

yjh
∈ {y1, . . . yk}, for any jh ∈ {j1, . . . jl̂}. (10)

Moreover, z1, . . . , zn−k are orthonormal eigenvectors associated with the zero
eigenvalue. Thus, for any i,

Pi(A) = V Pi(D)V T ; (11)

consequently Pi(A)y is given by

Pi(A)y = V

⎛

⎜
⎜
⎜
⎝

Pi(λ1)
. . .

Pi(λk)
Pi

(

0[n−k,n−k]
)

⎞

⎟
⎟
⎟
⎠

l̂∑

h=1
cjh

V T yjh,

= V u,

where u ∈ R
n and from (10), for P = 1, . . . n,

up =
{

cpPi(λp), if p ∈ {j1, . . . jl̂},
0, otherwise.

Since cjh
�= 0, for any jh ∈ {j1, . . . , jl̂}, and since V is nonsingular, Pi(A)y =

0 if and only if Pi(λjh
) = 0, jh ∈ {j1, . . . , jl̂}. In particular, this implies that the l̂

distinct eigenvalues λj1 , . . . , λjl̂
are roots of the polynomial Pi(λ). Consequently,

if Pi(A)y = 0, then i ≥ l̂.
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(ii) Consider the relation (8). Observe that (λjh
, yjh

) is an eigenpair of the
matrix A and the eigenvectors yj1 , . . . , yjl̂

are orthogonal. Therefore,

Pi(A)y ∈ span{yj1 , . . . , yjl̂
}, for any i ≥ 1.

This implies that the sequence {Pi(A)y} contains at most l̂ linearly independent
vectors, regardless of the choice of index i ≥ 1. �

Remark 2.1. Observe that, according with the definitions used in Ref. 21,
the integer l̂ of Lemma 2.1 is the grade of y with respect to matrix A, i.e., the
lowest degree of the polynomial P(A) such that P(A)y = 0. Therefore Lemma 2.1
states a relationship between the grade of y and the eigenpairs of matrix A. Fur-
thermore, connections between the polynomial Pl̂(A) and the minimal polynomial
of matrix A were highlighted in Ref. 12.

3. FLR algorithm for Singular Linear Systems

Here, we aim at extending the results in Refs. 12, 16 and in the previous
section, when considering the FLR algorithm in Table 1 for solving (1), in the
case of indefinite and possibly singular matrix A. When the indefinite matrix
A is nonsingular and rk �= 0 in the FLR algorithm, at step k we have either
dk �= 0 or �k �= 0 (Ref. 1); i.e., we are ensured that either step kA or step kB , can
be performed. In this section, we are concerned with recasting an analogous result
under the hypothesis that the matrix A is singular. Observe that, at step k of the
FLR algorithm, dk = 0 implies

�k = δ2
k = −||Apk||4,

since

δk = pT
k Aqk = ||Apk||2

from Theorem 2.1 of Ref. 1. Hence, if dk = 0 and the matrix A is singular, then
�k is nonzero as long as

pk /∈ N (A), k < n. (12)

The following theorem yields some results in order to satisfy condition (12).
Theorem 3.1. Consider the linear system (1) and let the matrix A be indefinite

and possibly singular. In the FLR algorithm Let r1 = y + z, with y = PrR(A)(r1) and
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z = PrN(A)(r1). Suppose that the integer l̂ and the vector y satisfy the hypothesis
of Lemma 2.1. Then, the FLR algorithm generates the sequences

ri =Pi−1(A)y + z, i ≤ l̂,

pi =Qi−1(A)y + mi−1z, i ≤ l̂,

qi =Ri(A)y + niz, i ≤ l̂ − 1,

(13)

where Pj (•), Qj (•), Rj (•), are real polynomials of degree j and mj, nj , ∈ R.
Moreover, the directions pi and qi satisfy the relations:

pi /∈ N (A), i ≤ l̂,

qi /∈ N (A), i ≤ l̂ − 1.
(14)

Proof. By complete induction, when i = 1, then r1 = p1 = y + z; if step 1B

is performed, q1 = Ay, according with (13). Moreover, let us distinguish between
two cases. On the one hand, assume

ri−1 = Pi−2(A)y + z,

pi−1 = Qi−2(A)y + mi−2z,

and let the FLR algorithm perform step (i − 1)A. Then,

ri = Pi−2(A)y + z − ai−1AQi−2(A)y

= Pi−1(A)y + z,

pi = Pi−1(A)y + z + bi−1[Qi−2(A)y + mi−2z]

= Qi−1(A)y + mi−1z.

Furthermore, if the subsequent step is step iB , then we obtain

qi = Api + βi−1pi−1 = AQi−1(A)y + βi−1[Qi−2(A)y + mi−2z]

= Ri(A)y + niz,

according to (13)
On the other hand, assuming

ri−2 = Pi−3(A)y + z,

pi−2 = Qi−3(A)y + mi−3z,

let the FLR algorithm perform step (i − 2)B . Then,

ri = Pi−3(A)y + z + ĉi−2AQi−3(A)y − d̂i−2ARi−2(A)y

= Pi−1(A)y + z,

pi = Pi−1(A)y + z + (b̂i−2/�i−2)[di−2(Ri−2(A)y + ni−2z)

− δi−2(Qi−3(A)y + mi−3z)] = Qi−1(A)y + mi−1z.
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Furthermore, if the subsequent step is step iB , then we obtain

qi = A[Qi−1(A)y + mi−1z] + (β̂i−2/�i−2)(di−2qi−2 − δi−2pi−2)

= Ri(A)y + niz,

according to (13). As regards (14), the hypotheses ensure that pi ∈ N (A) if and
only if Qi−1(A)y = 0. By Lemma 2.1, the latter equality cannot hold as long as
i ≤ l̂. Similarly, we have

qi ∈ N (A), if and only if Ri(A)y = 0;

hence, as long as i ≤ l̂ − 1, qi /∈ N (A). �

Now consider the FLR algorithm in Table 1 and let the vectors t1,. . .,tk , k ≤ n

be defined in the following way:

if|dk| ≥ εk||pk||2, then set αk = ak and tk = pk, (15a)

if|dk| < εk||pk||2, then set

{
αk = ĉk, tk = pk,

αk+1 = d̂k, tk+1 = qk.
(15b)

Proposition 3.1. Let the matrix A in (1) be indefinite and possibly singular;
let l̂ and r1 satisfy (7) and the hypothesis of Lemma 2.1. Then, the FLR algorithm
generates directions t1, . . . , tl̂ , with ti /∈ N (A), i = 1, . . . , l̂, and these vectors are
linearly independent.

Proof. The result is straightforward from Ref. 1, Theorem 3.1 and
Lemma 2.1. �

3.1. Algorithm FLR and Moore-Penrose Pseudoinverse. Consider
Theorem 3.1 and suppose that the FLR algorithm has generated directions t1, . . . , tl̂
before stopping. We prove that, if b ∈ R(A), i.e., z = PrN(A)(r1) = 0, the FLR al-
gorithm can provide an approximation of the Moore-Penrose pseudoinverse A+,
where A is indefinite and possibly singular.

More specifically, from Lemma 2.1, we introduce the following linear sub-
space, dependent on both the matrix A and the vector r1:

Rp(r1, A) = span{yj1 , . . . , yjl̂
} ⊆ R(A), (16)

where yjh
∈ Ejh

, h = 1, . . . , l̂ are orthogonal eigenvectors and Ej1 , . . . , Ejl̂
are

the eigenspaces of the matrix A, respectively associated to the distinct nonzero
eigenvalues λj1 , . . . , λjl̂

, with PrEjh
(r1) �= 0, h = 1, . . . , l̂. Now, since r1 = y +

z, from the relation (13) the FLR algorithm can give the solution x̃ of (1) pro-
vided that z = 0. Moreover, if b ∈ R(A), i.e., z = 0, exactly l̂ directions are
generated by the FLR algorithm before converging to x̃. Indeed, Lemma 2.1 and
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Theorem 3.1 ensure that the FLR algorithm generates exactly the independent
directions t1, . . . , tl̂ , since the last step performed is either step (l̂ − 1)A or
step (l̂ − 2)B . As a consequence, if x̃ is a solution of the linear system (1) de-
tected by the FLR algorithm, by the definition of Moore-Penrose pseudoinverse
(Ref. 9)

PrR(A)(x̃) = A+b

= A+(r1 + Ax1)

= A+r1 + PrR(A)(x1), (17)

where the matrix A is indefinite and possibly singular. Moreover, from (15),

x̃ = x1 +
l̂

∑

i=1

αiti , (18)

and assuming z = 0, from (13) of Theorem 3.1,

PrR(A)(x̃) = PrR(A)(x1) +
l̂

∑

i=1

αiti . (19)

Finally, combining (17) and (19), and considering again the relation z = 0,
along with the expression of the coefficients αi, i = 1, . . . , l̂, in (15), we have4

A+y =
l̂

∑

i=1

αiti

=
∑

i∈S1

aipi +
∑

i∈S2

(

ĉipi + d̂iqi

)

=
∑

i∈S1

(

pT
i ri/p

T
i Api

)

pi

+
∑

i∈S2

(1/�i)[(eipi − δiqi)
T ripi + (diqi − δipi)

T riqi]. (20)

Now, it can be readily proved that

pT
i ri = pT

i r1, qT
i ri = qT

i r1;

4 In the following relations, we have introduced the pair of disjoint sets S1 and S2: S1 is the set of
indices h ≤ l̂ for which the FLR algorithm performs step hA, while S2 is the set of indices h ≤ l̂ for
which the FLR algorithm performs step hB . Thus, for the cardinality of the sets S1 and S2 the relation
|S1| + 2|S2| = l̂ holds.
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see also Ref. 1. Thus, recalling that z = 0 and �i �= 0 in (20), Table 1 and (16)
yield, for any y ∈ Rp(r1, A),

0 = A+y −
∑

i∈S1

(

pip
T
i /pT

i Api

)

r1

−
∑

i∈S2

(1/�i)[pi(eipi − δiqi)
T + qi(diqi − δipi)

T ]r1

= A+y −
[
∑

i∈S1

(

pip
T
i /pT

i Api

) +
∑

i∈S2

(1/�i)(pi qi)

(

ei −δi

−δi di

) (

pT
i

qT
i

)]

y

=
[

A+ −
∑

i∈S1

(

pip
T
i /pT

i Api

) −
∑

i∈S2

(pi qi)

(

di δi

δi ei

)−1 (

pT
i

qT
i

)]

y

= [A+ − (t1 · · · tl̂)B−1
l̂

(t1 · · · tl̂)T ]y, (21)

Bl̂x = diagi∈S1,j∈S2

{

di,

(

dj δj

δj ej

)}

. (22)

Observe that, in (21), whenever the pairs (pi , qi), i ∈ S2, are conjugate (i.e., δi = 0,
for any i ∈ S2, so that the FLR algorithm reduces to CG), the matrix Bl̂ in relation
(22) is diagonal; see also Ref. 12.

In addition, let (λi, vi), i = 1, . . . , n, be the eigenpairs of the symmetric
nonsingular matrix C ∈ R

n×n. Then, the spectral form of C−1 is simply (Ref. 3)

C−1 =
n

∑

i=1

(1/λi)viv
T
i

= (v1 · · · vn)
−1(v1 · · · vn)T , (23a)


 = diag1≤i≤n{λi}, (23b)

which can be generalized by (22) in the singular case. Indeed, from (22), we have

A+y = (t1 · · · tl̂)B−1
l̂

(t1 · · · tl̂)T y, ∀y ∈ Rp(r1, A), (24)

so that, if l̂ = n, then

Rp(r1, A) ≡ R
n, A+ = A−1,

and (24) yields

A−1y = (t1 · · · tn)B−1
n (t1 · · · tn)T y. (25)

Finally, recalling that, in (23), the orthogonal eigenvectors vi , vj also satisfy
vT

i C−1vj = 0, for any i �= j ≤ n, we recognize that (25) is a generalization of
the spectral form (23). Relation (22) gives an approximation of the pseudoinverse
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matrix A+ on the linear subspace Rp(r1, A). Finally, we prove the following result,
which holds in particular, also for the CG, in the positive semidefinite case.

Theorem 3.2. Let b /∈ R(A) and let the hypothesis of Theorem 3.1 hold.
Then, the solution x̃ = x1 + �l̂

i=1αiti , calculated by the FLR algorithm when
solving (1) is not a least square solution of (1).

Proof. Consider the relation (13) and let b /∈ R(A), i.e. z �= 0. From Lemma
2.1 the FLR algorithm provides in exact arithmetic tl̂+1 ∈ N (A), after the genera-
tion of directions t1, . . . tl̂ . Now, by means of the substitutions

p̄i = Qi−1(A)y and q̄i = Ri(A)y

in relations (13), we obtain from Table 1

x̃ = x1 +
l̂

∑

i=1

αiti

= x1 +
[
∑

i∈S1

(

pip
T
i /pT

i Api

) +
∑

i∈S2

(pi qi)

(

di δi

δi ei

)−1 (

pT
i

qT
i

)]

r1

= x1 +
∑

i∈S1

(

1/p̄T
i Ap̄i

)

[p̄i + mi−1z][p̄i + mi−1z]T r1

+
∑

i∈S2

(p̄i + mi−1z q̄i + niz)

(

di δi

δi ei

)−1 (

p̄T
i + mi−1z

T

q̄T
i + niz

T

)

r1,

and since

p̄T
i z = q̄T

i z = 0, zT r1 = ||z||2,
we obtain

x̃ = x1+
∑

i∈S1

[(

p̄i p̄
T
i /p̄T

i Ap̄i

)

r1 + ||z||2(mi−1/p̄
T
i Ap̄i

)

p̄i

] + λ1z

+
∑

i∈S2

[

(p̄i q̄i)

(

di δi

δi ei

)−1 (

p̄T
i

q̄T
i

)

r1

+||z2||(p̄i q̄i)

(

di δi

δi ei

)−1 (

mi−1

ni

)]

+ λ2z, (26)

where

λ1 = mi−1
(

p̄T
i r1/p̄

T
i Ap̄i

) + m2
i−1

(||z||2/p̄T
i Ap̄i

)

λ2 = (

p̄T
i r1 + mi−1||z||2 q̄T

i r1 + ni ||z||2
)
(

di δi

δi ei

)−1 (

mi−1

ni

)

.
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Now, observe that x̃ can be a least squares solution of (1) if and only if

x̃ = A+b + z̃, with z̃ ∈ N (A).

Thus, projecting x̃ in (26) onto the subspace R(A), we simply have

PrR(A)(x̃) = PrR(A)(x1) +
∑

i∈S1

[(

p̄i p̄
T
i /p̄T

i Ap̄i

)

y + ||z||2(mi−1/p̄
T
i Ap̄i

)

p̄i

]

+
∑

i∈S2

[

(p̄i q̄i)

(

di δi

δi ei

)−1 (

p̄T
i

q̄T
i

)

y (27)

+||z||2(p̄i q̄i)

(

di δi

δi ei

)−1 (

mi−1

ni

)]

. (28)

Finally, recalling (17), (21), and considering in (27) the terms which contain
||z||2, we conclude that, if b �∈ R(A) x̃ is not a least-square solution of the linear
system (1). �

4. Lanczos Vectors and FLR Algorithm Residuals

In this section, we describe a twofold result: first, we report some theoretical
properties of the Lanczos process (Table 2) when matrix A in (1) is singular. This
aims at investigating possible similarities with the results of Section 3, where
the FLR algorithm is studied in the singular case. Then, a relevant relationship
between the Lanczos vectors {ui} and the residuals {ri} calculated by the FLR
algorithm is accomplished. We prove that the proper choice of the parameter εk ,
at step k of the FLR algorithm, plays a key role for the latter purpose.

Theorem 4.1. Consider the linear system (1), where A is indefinite and
possibly singular. Consider the Lanczos process in Table 2 and let u1 = y + z,
with y = PrR (A)(u1) and z = PrN (A) (u1). Let λ1, . . . , λ1, λk, k ≤ n, be the nonzero
eigenvalues (possibly not all distinct) of the matrix A. Suppose that the vector y
and the integer l̂ satisfy the hypothesis of Lemma 2.1. Then, the Lanczos process
generates the sequence of orthonormal vectors

ui = Ui−1(A)y + ηi−1z, 1 ≤ i ≤ l̂, (29)

where Uj (•) is a real polynomial of degree j and ηj ∈ R, with j ≥ 3,

U0(A) = I, η0 = 1, (30a)

U1(A) = (1/δ1)(A − γ1I )U0(A), η1 = −γ1η0/δ1, (30b)
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Uj−1(A) = (1/δj−1)[(A − γj−1I )Uj−2(A) − δj−2Uj−3(A)],

ηj−1 = − (γj−1ηj−2 + δj−2ηj−3),

δj−1
. (30c)

Moreover, ui /∈ N (A), for any i ≤ l̂.

Proof. From the hypothesis and Lemma 2.1, the Lanczos process performs
exactly l̂ iterations before stopping. Then, Table 2 yields

u1 = y + z = U0(A)y + η0z

and

u2 = v1/δ1

= (1/δ1)[(A − γ1I )u1 − δ0u0]

= (1/δ1)(A − γ1I )U0(A)y − γ1(η0/δ1)z,

so that the first two lines in (30) hold. Finally, by Table 2, relation (29), and
complete induction, we obtain, for i ≥ 3,

ui = vi−1/δi−1

= (1/δi−1)[(A − γi−1I )ui−1 − δi−2ui−2]

= (1/δi−1){(A − γi−1I )[Ui−2(A)y + ηi−2z] − δi−2[Ui−3(A)y + ηi−3z]},
which yields the third line in (30). �

Lemma 4.1. Let matrix A in (1) be indefinite and possibly singular. Suppose
the Lanczos process and the FLR algorithm are applied to solve (1), with x1 = 0
in the FLR algorithm. Then, in exact arithmetic the Lanczos and FLR algorithms
perform the same number of iterations.

Proof. Evidently, if at the step k both the Lanczos process and the FLR
algorithm have not yet stopped, they have respectively generated the orthogo-
nal sequences u1, . . . , uk and t1, . . . , tk , in the Krylov subspaces Kk(u1, A) and
Kk(r1, A). Since x1 = 0,

Kk(u1A) ≡ Kk(r1, A), (31)

so that the statement holds from (13), (29), and Lemma 2.1. �

Theorem 4.2. The vectors ui , i ≥ 1, and ri/||ri ||, i ≥ 1, generated respec-
tively by the Lanczos process and the FLR algorithm with x1 = 0, in exact arith-
metic satisfy the relation

ui = si(ri/||ri ||), si ∈ {+1,−1}. (32)
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Proof. By complete induction, x1 = 0 yields

u1 = r1/||r1|| = b/||b||. (33)

Now, suppose that

ui−1 = si−1ri−1/||ri−1||;
we prove that

ui = siri/||ri ||.
On this purpose, let l̂ be the number of iterations performed by Lanczos process
and the FLR algorithm, according to Lemma 4.1. Recall that the Lanczos vectors
u1, . . . , ul̂ , satisfy uT

i uj = 0, l̂ ≥ i �= j ≥ 1 (Ref. 3). Furthermore, considering at
step kB of the FLR algorithm the dummy residual (Refs. 24, 20)

rk+1 = −ᾱkrk − (1 + ᾱk) sign (dk)Apk, (34a)

ᾱk = − |dk|
(||rk||2 + |dk|) , (34b)

sign(dk) =
{

1, dk ≥ 0,

−1, dk < 0,
(34c)

the sequence r1, . . . , rl̂ satisfies rT
i rj = 0, where l̂ ≥ i �= j ≥ 1 (Ref. 1). Now,

observe that

ui ∈ Ki(u1, A), (35a)

ui ⊥Ki−1(u1, A) = span{Ki−2(u1, A), ui−1}, (35b)

ri ∈ Ki(r1, A), (35c)

ri ⊥Ki−1(r1, A) = span{Ki−2(r1, A), ri−1}, (35d)

and from (33) and the inductive hypothesis

Ki−1(u1, A) = Ki−1(r1, A).

Thus, from (33) and (35), ui and ri are parallel. Finally, since ||ui || = 1, the
relation (32) holds. �

Theorem 4.3. Consider the FLR algorithm in Table 1. Let x1 = 0 and let at
iB the dummy residual (34) be calculated. At step i, if the parameter εi is chosen
according with

0 < ε̄ ≤ εi, step iA, (36a)

0 < ε̄ ≤ εi < min{||Api ||2||ri ||2/||pi ||4, ||Api ||4/(λM ||pi ||2||qi ||2)}, step iB,

(36b)
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then in exact arithmetic the sequences {ui} and {ri/||ri ||} generated by the Lanczos
and FLR algorithms satisfy

ui = si(ri/||ri ||), i ≥ 1, (37)

where

s1 = 1, (38a)

si = −si−1 sign
(

pT
i−1Api−1

)

, if step (i − 1)A is performed, (38b)

si−1 + −si−2 sign
(

pT
i−2Api−2

)

, if step (i − 2)B is performed, (38c)

si = −si−2, if step (i − 2)B is performed. (38d)

Proof. See Ref. 25.

Remark 4.1. Observe that condition (36) on εi is slightly less restrictive
in respect to condition (12) in Ref. 1, since it does not require the knowledge
of λm. As regards the apparently cumbersome computation of qi in (36), refer
to the considerations in Ref. 1. We highlight also that the approximation of the
Moore-Penrose pseudoinverse A+, provided in (22) by algorithm FLR, is not in-
expensively available from the Lanczos process. In particular, the set of directions
t1, . . . , tl̂ should be ad hoc generated by the Lanczos process.

5. Lanczos Process from the FLR Algorithm

Note that the relations (37) and (38) are also a generalization of the results,
reported in Ref. 26, by replacing CG with the FLR algorithm. In particular, in
matrix terms, the Lanczos process gives at step k (Ref. 26)

T
(L)
k = UT

k AUk, (39)

where

T
(L)
k =

⎡

⎢
⎢
⎢
⎢
⎣

δ0 γ1

γ1 δ1 ·
· · ·
· δk−1 γk

γk δk

⎤

⎥
⎥
⎥
⎥
⎦

, Uk = (u1 · · · uk),

and relation (37) can be restated as

Uk = RkSk, (40)

where

Rk = (r1/||r1||, . . . , rk/||rk||) , Sk = diag1≤i≤k{si}.
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Combining (39) and (40), we obtain

T
(L)
k = ST

k

(

RT
k ARk

)

Sk = SkT
FLR
k Sk, (41)

where the tridiagonal matrix T FLR
k is available at step k of the FLR algorithm. The

explicit expression of T FLR
k , in terms of the coefficients of the FLR algorithm, is

given in Ref. 24.

Proposition 5.1. In the hypothesis of Theorem 4.3 and in exact arithmetic,
the tridiagonal matrix T

(L)
k of the Lanczos process is a straighforward by product

of the FLR algorithm, as indicated in (41).
Furthermore, in the hypothesis of Theorems 4.1 and 4.3, the solution x̃ of

(1) provided by the Lanczos process, may be given in terms of the FLR algorithm
quantities. Indeed (Ref. 21),

x̃ = Ul̂

[

T
(L)
l̂

]−1
δ0e1, eT

1 = (1, 0, . . . 0),

and from (40)–(41)

x̃ = Ul̂Sl̂

[

T FLR
l̂

]−1
Sl̂δ0e1 = Rl̂

[

T FLR
l̂

]−1
Sl̂δ0e1 = Rl̂

[

T FLR
l̂

]−1 ||b||e1,

where the last equality follows from Table 2, relation eT
1 = (1, 0, . . . , 0), and

(38).

6. Conclusions and Perspectives

This paper has described several properties of the FLR planar-CG algorithm,
proposed in Ref. 1, for solving indefinite linear systems. We have proved that the
sequence of orthogonal residuals {ri} of the FLR algorithm, yields the sequence
of orthogonal vectors {ui} of the Lanczos process, provided that the parameter
εi at step i of the FLR algorithm is chosen according with Theorem 4.3. Since
the FLR algorithm is a cheap CG-type method, this result encourages us to con-
sider a numerical comparison of these methods within nonconvex optimization
frameworks, where efficient tools for the solution of indefinite linear systems are
claimed.

On the other hand,we have studied the solution of the linear system Ax =
b, A ∈ R

n×n indefinite and possibly singular, by means of the FLR algorithm: this
extended the results provided by the CG in the positive semidefinite case (Ref. 12).

We conclude that the FLR algorithm proved to be a general tool for the solu-
tion of symmetric linear systems i.e., for the search of stationary points of quadratic
forms in unconstrained optimization frameworks. In addition, the approximation
of the Moore-Penrose pseudoinverse A+ provided by the FLR algorithm, may be
a fruitful instrument for the construction of preconditioners (Ref. 27). Finally as
Section 1 reported, the Newton method for the computation of real eigenvectors
could gain advantage from the consideration of FLR algorithm.
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