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Abstract. We aim at completing the analysis in [1] for quadratic hypersurfaces, where the geo-
metric viewpoint suggested by the Polarity theory is considered, in order to recast basic properties
of the Conjugate Gradient (CG) method [2]. Here, the focus is on possibly exploiting theoretical
advances on nonconvex quadratic hypersurfaces, in order to address guidelines for efficient opti-
mization methods converging to second order stationary points, in large scale settings. We first
recall some results from [1], in order to fully analyze the relationship between the CG and the
Polarity theory. Then, we specifically address, from a different perspective, the geometric insight of
the pivot breakdown, which might occur when solving a nonsingular indefinite Newton’s equation
applying the CG. Furthermore, we fully exploit some novel theoretical advances of the Polarity
theory on nonconvex quadratic hypersurfaces not considered in [1]. Finally, we show that our
approach describes a general framework, which also encompasses a class of CG–based methods,
namely Planar CG–based methods. The framework we consider intends to emphasize a bridge
between the geometry behind stationary points of nonconvex quadratic hypersurfaces and their
efficient computation using Krylov–subspace methods.

Keywords: Polarity in homogeneous coordinates, Nonconvex Quadratic hypersurfaces, Conjugate
Gradient method, Indefinite linear systems.

1 Introduction

This paper deals with the Polarity theory in homogeneous coordinates [3, 4, 5]. We show that
it can be exploited to explain both the standard behavior and a possible pivot breakdown of the
Conjugate Gradient (CG) method, on symmetric indefinite linear systems. Our results are based
on and complement the ones in [1]. In particular, with respect to [1], we prove that the use of the
polarity theory is a fruitful tool to interpret several geometric properties of the class of Krylov-
subspace methods known as Planar CG–based methods [6, 7, 8]. By fully exploiting conjugacy
among vectors associated to indefinite matrices, we also prove some novel properties of the Polarity
theory applied to nonconvex quadratic hypersurfaces (see Section 4).

The CG–based methods, and in general Krylov–subspace methods, play a keynote role in many
theoretical and real-world applications of optimization. As well known, these methods are used to
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solve large symmetric, possibly indefinite, linear systems and to gain information on the system
matrix eigenvalues.

As a further application, they have been successfully employed also within nonconvex opti-
mization frameworks, in order to iteratively individuate second order stationary points of a given
objective function [9]. Specifically, at each iteration, CG–based methods can be used to refine the
computation of suitable search directions, namely negative curvature directions, which are essential
to detect stationary points satisfying second order necessary optimality conditions (see the rigorous
approach in [10]). Considering large scale settings, such directions are of difficult computation (see,
e.g., [11], since they typically require to (see, e.g., [12])

� implicitly decompose the Hessian matrix of the objective function,

� store large matrices or perform burdensome calculations, due to some re–computing,

� explicitly compute an underestimation of the least eigenvalue of the Hessian matrix.

Hence, effective iterative methods which may at once solve Newton’s equation and efficiently assess
negative curvature directions, in large scale optimization, are definitely of dramatic impact. In this
regard, Lanczos–based and CG–based methods are often the Krylov–subspace methods of choice.

In this paper we investigate CG–based methods from the geometric perspective suggested both
by Polarity theory and by some recent advances in [13]. Polarity theory commutes from Cartesian
coordinates to homogeneous coordinates, in order to deal with points at infinity. We refer the
reader to [1], for some basics on homogeneous coordinates and Polarity theory. In the present
work, we just recall the Section Theorem and Reciprocity Theorem, since they are used throughout
the paper.

Resorting to homogeneous coordinates may provide a powerful tool in computational methods.
Examples of applications are in Robotics and in 3D graphics. In robotics, homogeneous coordinates
allow to use a single matrix to represent both affine and projective transformations. Hence, a single
matrix is sufficient to define both a rotation and a translation of a vector (see e.g. [14]). In 3D
graphics, homogeneous coordinates allow to unify both translations and the division by depth in
perspective projections, so that the massive computations that are usually needed in this area can
be more efficiently performed [15].

In [1], we point out that the Polarity theory in homogeneous coordinates is helpful to describe
a precise relation among algebraic hypersurfaces. In particular, we stress the importance of han-
dling points at infinity, which play a significant role in addressing possible failures of CG–based
methods on non-convex quadratics. We also stress that an investigation of CG–based methods in
homogeneous coordinates can contribute to achieve an additional insight in their behavior. Here,
we reinforce the above results by carrying on a complete analysis on non-convex quadratics.

The paper is organized as follows. Section 2 reports some basics on Polarity for algebraic hy-
persurfaces. Sections 3 and 4 explicitly analyze how conjugate directions and polar hyperplanes, in
both homogeneous and Cartesian coordinates, play a keynote role to provide a unified geometric
perspective for the CG–based methods. In particular, geometric insights on a possible pivot break-
down of the CG method in the indefinite case are included in Section 3.1 and in the Appendix.
Section 5, together with Sections 3 and 4, encompasses the advances with respect to [1]. It uses the
Polarity theory to analyze the Planar CG–based methods, which represent extensions of the CG
method, and have been proposed in the literature of Krylov–subspace methods. Finally, a section
of Conclusions indicates future guidelines for further investigation.

In this paper we use the following notation. We represent the Euclidean norm with ‖ · ‖. We
indicate the n-dimensional Cartesian space with IRn and (to simplify the notation with respect to
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[1]) the associated homogeneous coordinates projective space with IRn+1. Given the vector x ∈ IRn

and the scalar x0 ∈ IR, we indicate with (x, x0)
T a vector in IRn+1. We use lowercase Greek letters

to represent hyperplanes, either in Cartesian or homogeneous coordinates. For the sake of brevity,
we treat the terms hyperplane and linear manifold as synonyms, then a linear manifold that includes
the origin represents a linear subspace. Finally, A � 0 indicates that the symmetric matrix A is
positive definite.

2 Basics on Polarity and on quadratic hypersurfaces

In this section, we report some definitions and two fundamental results of Polarity and quadratic
hypersurfaces: we refer the reader to [1] for further details. These definitions and results address
the relation between Polarity for quadratic hypersurfaces [3, 5], in homogeneous coordinates, and
both the solutions of symmetric nonsingular linear systems and the stationary points of quadratic
functionals.

Let A = {aij} ∈ IRn×n be a symmetric and nonsingular matrix, b = (b1, . . . , bn)T ∈ IRn be a
vector, and c ∈ IR be a scalar. Then, throughout the paper, we use the linear system

Ay = b (1)

as a reference problem. In addition, we let g : IRn → IR

g(y) =
1

2
yTAy − bT y + c =

1

2

n∑
i=1

n∑
j=1

aijyiyj −
n∑
i=1

biyi + c (2)

represent the prototype of a quadratic functional in Cartesian coordinates and f : IRn+1 → IR the
quadratic functional in homogeneous coordinates associated to g such that, for any x0 6= 0,

f(x, x0) = g

(
x

x0

)
=

1

2

n∑
i=1

n∑
j=1

aij

(
xi
x0

)(
xj
x0

)
−

n∑
i=1

bi

(
xi
x0

)
+ c.

Furthermore, we also use

F .
= {(x, x0)T ∈ IRn+1 : f(x, x0)x

2
0 = 0} ≡ {(x, x0)T ∈ IRn+1 :

1

2
xTAx− bTxx0 + cx20 = 0} (3)

to indicate the prototype of a quadratic hypersurface, and

C∞
.
= F ∩ {(x, x0)T ∈ IRn+1 : x0 = 0} ≡ {(x, 0)T ∈ IRn+1 : xTAx = 0} (4)

to represent the intersection between F and the hyperplane at infinity. We recall that x0 = 0
represents in homogeneous coordinates the hyperplane at infinity, i.e., the locus of all the points at
infinity of an n-dimensional Cartesian space IRn.

Throughout the paper, we also hold true the next assumption.

Assumption 2.1 Let A, b, c be respectively the matrix, the vector and the scalar that define the
quadratic hypersurface F in (3); then the matrix(

A −b
−bT 2c

)
∈ IR(n+1)×(n+1)

is nonsingular.
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Assumption 2.1 is necessary to guarantee that the Polarity theory defines a one-to-one correspon-
dence between points and hyperplanes in homogeneous coordinates, with respect to F in (3). This
assumption also allows us to exploit the properties of F at points at infinity: this helps to describe
several properties of CG–based methods, which are used to detect the stationary point of g in (2).

Next, we introduce the concept of polar hyperplane and summarize some fundamental results.

Definition 2.1 Consider a quadratic hypersurface F and a point (pole) P = (x̄, x̄0)
T ∈ IRn+1.

The hyperplane with equation
n∑
i=0

∂f(x1, . . . , xn, x0)

∂xi
x̄i = 0 (5)

is said to be the (first) polar hyperplane of the point P with respect to F , in homogeneous coordi-
nates.

In particular, the above definition implies that if a finite point P belongs to F , then the polar
hyperplane of P with respect to F coincides with the tangent hyperplane of F in P .

Theorem 2.1 [Reciprocity Theorem] Consider a quadratic hypersurface F and points P, Q ∈
IRn+1. If the polar hyperplane of P with respect to F includes Q, then the polar hyperplane of Q
with respect to F includes P .

An application of the Reciprocity Theorem is given in Figure 1, both for the case when the matrix A
characterizing the quadratic hypersurface F is positive definite and indefinite.

Figure 1: The point pi is the pole (in Cartesian coordinates) of the polar hyperplane πi, with
respect to the quadratic hypersurface g(y) = γ. (left) Case in which A � 0, (right) case in which A
is indefinite. Dashed lines represent the so-called asymptotic cone, see Definition 2.5.

Theorem 2.2 [Section Theorem] Consider a quadratic hypersurface F , a subspace Vd ∈ IRn+1

of dimension d ≤ n, and let F̄ = F ∩Vd be the intersection between F and Vd. If Vd is not included
in F , i.e., F̄ 6= Vd, then for any point P ∈ Vd, the intersection of Vd with the polar hyperplane of
P with respect to F coincides with the polar hyperplane of P with respect to F̄ .

An application of the Section Theorem is given in Figure 2.

Definition 2.2 Consider a quadratic hypersurface F and a point P ∈ IRn+1. Point P is self–
conjugate with respect to F if P belongs to its own polar hyperplane with respect to F .

It can be easily proven that the following result holds.
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Figure 2: The Section Theorem in Cartesian coordinates, for the family of quadratic hypersur-
faces (8). The line ` is the polar hyperplane of yk with respect to Γk, being Γk the intersection
between the hypersurface g(y) = γk and the subspace πk. The direction pk−1 is conjugate to the
hyperplane πk.

Proposition 2.1 Consider a quadratic hypersurface F and a point P ∈ IRn+1. Then, the next
three conditions are equivalent.

� The point P is self–conjugate.

� The polar hyperplane of P coincides with the tangent hyperplane of F at P .

� The point P belongs to F .

The following definitions conclude this section.

Definition 2.3 Consider a quadratic hypersurface F and a point (x∗, x∗0)
T ∈ IRn+1.

� The point (x∗, x∗0)
T is the center of F if it is the pole of the polar hyperplane at infinity x0 = 0

with respect of F .

� The hyperplanes through the center (x∗, x∗0)
T of F are the diametral hyperplanes of F .

� The lines through the center (x∗, x∗0)
T of F are the diameters of F .

Observe that by the Reciprocity Theorem, any diametral hyperplane of F is the polar hyperplane
of a point at infinity (x, 0)T ∈ IRn+1, for any x ∈ IRn.

Definition 2.4 Consider a quadratic hypersurface F .

� Two diametral hyperplanes π1 and π2 are conjugate if πi contains the pole of πj, for i, j ∈
{1, 2}, i 6= j.

� Two diameters `1 and `2 are conjugate if the point at infinity (di, 0)T of `i is the pole of a
diametral hyperplane which contains `j, for i, j ∈ {1, 2}, i 6= j.

� Two lines `1 and `2 are conjugate if they are respectively parallel to conjugate diameters.

� A diametral hyperplane π1 is conjugate to a diameter `2 if any line `1 contained in π1 and `2
are conjugate.
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� A hyperplane π1 is conjugate to a line `2 if π1 and `2 are respectively parallel to a diametral
hyperplane and a diameter that are conjugate.

Definition 2.5 Consider a quadratic hypersurface F and assume that Assumption 2.1 holds. The
asymptotic cone of F is the set of all the lines connecting the center of F and any point of C∞.

3 The CG and Polarity theory: advances

Given the preliminary results in [1], in this section we further provide a perspective on the CG
method, from the point of view of the Polarity theory.

Hereinafter, for the sake of simplicity, in place of considering the linear system (1), the quadratic
functional (2) and the hypersurface (3), we respectively address the linear system Ay = 0, the
quadratic functional

g(y) =
1

2
yTAy, (6)

and the hypersurface in homogeneous coordinates

Fγ :=

{
(x, x0)

T ∈ IRn+1 :
1

2
xTAx− γx20 = 0

}
. (7)

In this setting, as A is nonsingular, y∗ = 0 is the unique stationary point of g(y); (x∗, x∗0)
T ≡

(0,−1/(4γ))T is the center of Fγ and hence y∗ = 0 = x∗/x∗0 is also the center of the family of
quadratic hypersurfaces

1

2
yTAy = γ, γ > 0. (8)

The last positions do not introduce any loss of generality. Indeed, given the vector ỹ = −A−1b, we
set

y = ŷ − ỹ, (9)

and observe that system (1) is equivalent to system Aŷ = 0. In addition, (2) becomes ĝ(ŷ) =
1
2 ŷ

TAŷ+
(
c− 1

2b
TA−1b

)
, whose stationary point coincides with the one of (6) and whose associated

quadratic hypersurfaces (2) correspond to (7) when γ = 1
2b
TA−1b− c.

In Table 1 we recall a general scheme for the CG method, in case the quadratic functional
g(y) in (6) is considered. We incidentally note (see also [1]) that the search directions pi and pj ,
with i 6= j, generated by the CG in Table 1, are such that the lines xi + αpi and xj + βpj , with
α, β ∈ IR, are conjugate as in Definition 2.4. Then, we report the next results from [1], because of
their relevance for our analysis.

Proposition 3.1 [CG - Polar Hyperplane 1] Let the CG method in Table 1 perform m steps
to solve the linear system Ay = 0, with A � 0. Then, for every k < m, the linear manifold

yk+1 + span{p1, . . . , pk−1, pk+1, . . . , pm}

represents in Cartesian coordinates a diametral hyperplane of the hypersurface Fγ in (7), for any
γ > 0. This diametral hyperplane is the polar hyperplane of the pole (pk, 0)T , with respect to Fγ,
and can be written as

πk+1 = {y ∈ IRn : (Apk)
T y = 0}.

2
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The Conjugate Gradient (CG) method

Description: Iterative method for solving equation Ay = 0
Input: Set an initial solution y0 ∈ IRn

Step 0:
Compute the residual r0 = −Ay0, set k = 0.
If r0 = 0, then STOP. Else, set the search direction p0 = r0.
Set k = k + 1.

Step k:

Compute αk−1 = rTk−1pk−1/p
T
k−1Apk−1.

Update the point yk = yk−1 + αk−1pk−1, along with the
residual rk = rk−1 − αk−1Apk−1.
If rk = 0, then STOP. Else, set βk−1 = ‖rk‖2/‖rk−1‖2.
Update the search direction pk = rk + βk−1pk−1.
Set k = k + 1, go to Step k.

Table 1: The CG method for solving the symmetric linear system Ay = 0.

Proposition 3.2 [CG - Polar Hyperplane 2] Let the CG method in Table 1 perform m steps
to solve the linear system Ay = 0, with A � 0. Then, at Step k < m, the CG method generates a
hyperplane in Cartesian coordinates equivalent to the polar hyperplane of the point yk, with respect
to the quadratic hypersurface Fγk in (7), with γk = 1/2yTk Ayk. This hyperplane has equation

π̃k :=
{
y ∈ IRn : (Ayk)

T (y − yk) = 0
}

(10)

and contains the line yk−1 + ξpk−1, ξ ∈ IR. 2

3.1 A geometric viewpoint for CG failure

A geometric interpretation for the possible CG failure in the indefinite case requires to consider
again Figure 2. The hyperplane πk represents in IRn the polar hyperplane of (pk−1, 0)T , with
equation

πk := {y ∈ IRn : (Apk−1)
T y = 0}. (11)

We note that πk contains the center of the hypersurface g(y) = γk and is therefore both a diametral
hyperplane in IRn and a subspace. Now, let us consider the linear manifold `, obtained as the inter-
section between πk and the tangent hyperplane π̃k to the quadratic hypersurface g(y) = 1/2yTk Ayk
at yk = xk/xk0. The linear manifold `, by the Section Theorem, is equivalent in IRn to the polar
hyperplane of the point yk with respect to the hypersurface Γk, being

Γk :


g(y) = γk, with γk = 1

2y
T
k Ayk,

y ∈ πk.
(12)

These observations show that at the k-th iteration of the CG method we also have

πk := yk + span{p1, . . . , pk−2, pk, . . . , pm},
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where the vectors p1, . . . , pk−2, pk, . . . , pm are conjugate to pk−1.
On the overall, we can conclude that at the (k+ 1)-th iteration of the CG method the analysis

can be limited to consider the hyperplane πk in (11) and the hypersurface Γk in (12), as summarized
in the next result.

Corollary 3.1 Let the CG method in Table 1 perform m steps to solve the linear system Ay = 0,
with A � 0. Then, at Step k ≤ m, the polar hyperplane of (pk−1, 0)T , with respect to g(y) = γk,
includes the point yk, and is conjugate to pk−1. 2

The next proposition gives a geometric motivation for the CG failure, in case the matrix A is
indefinite. In particular, the next result explains the failure to generate a further search direction
pk+1, when a direction pk is in the asymptotic cone of Fγ .

Proposition 3.3 [CG - Failure] Let the CG method in Table 1 perform m steps to solve the
linear system Ay = 0, where A is indefinite nonsingular. Suppose the CG computes the vector pm
satisfying pTmApm = 0 (i.e. the point at infinity (pm, 0)T belongs to the asymptotic cone of Fγ in
(7), for some γ > 0). Then, the CG fails to generate the direction pm+1 and

(1) the point (pm, 0)T belongs to its own polar hyperplane with respect to Fγ, and is self-conjugate
with respect to Fγ;

(2) pm belongs to the span of all the directions which are conjugate to pm. 2

Figure 3: Possible failure of the CG method when the matrix A is indefinite, in Cartesian coor-
dinates. The dashed lines represent the asymptotic cone. At step m the CG gets stuck as by
Proposition 3.3.

Figure 3 sketches the results in Proposition 3.3. In case the direction pm is in the asymptotic cone
of Fγ (i.e., pTmApm = 0), then the CG method fails to generate the direction pm+1, since it would be
parallel to pm. On the contrary, in case ph or pk is generated, with h, k < m, then the CG method
can easily compute ph+1 or pk+1, respectively. If A represents the indefinite Hessian matrix in
Newton’s equation ∇2g(zp)d = −∇f(zp) and, at Step m of the CG method, we have pTmApm ≈ 0,
then the CG method stops prematurely, which is a serious drawback in the light of preserving
global convergence properties for the sequence {zp} (see also [16]). The last considerations may
have a dramatic impact (for instance) on truncated–Newton methods for nonconvex programming,
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where the solution of a sequence of indefinite Newton’s equations is sought. Here, an issue about
the generation of gradient–related search directions arises. Indeed, a premature stop of the CG
method may represent a frequent unexpected event to cope with (see, e.g., [17] and [18]).

We complete this section highlighting that a further viewpoint to study CG failure in the
indefinite case may be analyzed, starting from some recent advances reported in the Appendix.

4 Different quadratic hypersurfaces and CG iterations

In this and in the next section we present the main advances with respect to [1]. Similarly to
Section 3, here we again consider the linear transformation (9), so that in place of the linear system
Ay = b, we can limit our analysis to the system Ay = 0, i.e. to the functional g(y) in (6). Hence,
all the results obtained in the previous section hold. In particular, we recall that Step k of the
CG method in Table 1 uses the vector pk−1 in IRn, in order to generate the (n − 1)-dimensional
hyperplane πk in (11) and Figure 2. This hyperplane, in IRn+1, is the polar hyperplane of the point
at infinity (pk−1, 0)T , with respect to Fγk in (7), being γk = 1/2yTk Ayk, and in IRn has the equation
in (11).

At the end of the k-th iteration the directions {p1, . . . , pk} correspond to the points at infinity in
homogeneous coordinates {(p1, 0)T , . . . , (pk, 0)T }, associated with lines `1, . . . , `k. Since p1, . . . , pk
are mutually conjugate directions, by Propositions 4.1 and 5.1 of [1] the lines `1, . . . , `k are also
conjugate and linearly independent. Equivalently, at Step k the direction pk must satisfy the k− 1
orthogonality conditions pk⊥Ap1, . . . , pk⊥Apk−1, i.e. the direction pk belongs to the [n− (k − 1)]-
dimensional hyperplane π(k) defined as

π(k) :=
{
p ∈ IRn : (Ap1)

T p = 0 ; . . . ; (Apk−1)
T p = 0

}
,

and not simply to the (n− 1)-dimensional hyperplane {p ∈ IRn : (Apk−1)
T p = 0} in (11) (i.e. the

hypersurface πk in Figure 2). Let us here stress that, similarly to the previous section, the last
result is accomplished by iteratively invoking (k − 1) times the Section Theorem in homogeneous
coordinates, then resorting to Cartesian coordinates. Thus, the standard algebraic arguments used
by the CG are inessential here, being the Polarity theory sufficient to yield the same results.

In this section we show that results from the Polarity theory can be used to interpret, in a
broader sense, the CG method in Table 1. Specifically, we focus on how this method moves from
the hypersurface g(y) = γk to the hypersurface g(y) = γk+1, γk 6= γk+1, in consecutive steps.

In the following, we show specific geometric properties of directions and hyperplanes, generated
at three consecutive steps of the CG, in the light of the Polarity theory. In this context, the reader
may use Figure 4 (case A � 0) and Figure 5 (case A indefinite) as possible reference examples,
where Figure 5 sketches the k-th iteration of the CG, with specific reference to the hyperplane πk
in (11). Let us consider the points yr+1 and the directions pr+1 computed at the Steps r = k − 2,
r = k − 1 and r = k of the standard CG method. We use the following notation in Cartesian
coordinates, for r ∈ {k − 2, k − 1, k}:

� γr is the scalar value 1/2yTr Ayr;

� πr+1 is the polar hyperplane of (pr, 0)T , with respect to g(y) = γr+1,

� π̃r is the polar hyperplane of yr, with respect to g(y) = γr;

� Σk = πk ∩ π̃k is an (n− 2)-dimensional hyperplane of IRn;

� Σk+1 = πk ∩ π̃k+1 is an (n− 2)-dimensional hyperplane of IRn;
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Figure 4: How the CG iteratively generates conjugate directions, exploiting the hypersurfaces
g(y) = γk and g(y) = γk+1. The point yk−1 does not belong to the hyperplane πk (see also
Figure 2), the vectors (yk − yk−1) and (yk+1 − yk) are conjugate with respect to g(y) = γk. Both
yk−1 and zk belong to the polar hyperplane π̃k of yk with respect to the hypersurface g(y) = γk,
and Σk is the intersection between πk and the latter polar hyperplane of yk.

Figure 5: Case in which the quadratic hypersurface in πk (i.e. (y2)
2 − (y1)

2 = 1) has an indefinite
Hessian matrix, and we have zk = (2, 1). The segments joining the point yk+1 with yk and ȳk,
respectively, have equal length.
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� Σ̂r = πr ∩ πr+1 is an (n− 2)-dimensional hyperplane of IRn;

� ȳr ∈ IRn is the point such that

yr+1 =
yr + ȳr

2
;

� Σ̄k is the polar hyperplane of ȳr, with respect to the hypersurface{
g(y) = γr
y ∈ πr,

(13)

i.e. Σ̄k is the intersection between the polar hyperplane of ȳk, with respect to g(y) = γk, and
the hyperplane πk;

� zk is the pole of Σk+1, with respect to (13).

We observe that γk+1 < γk as long as A � 0 and yk is not the solution of the linear system,
since it can be easily proved that the direction pk used to define yk+1 is a descent direction for the
function g(y) in (6). We also recall that by Proposition 5.1 of [1] and Corollary 3.1 the hyperplane
πk contains the points yj , j = k, k + 1, . . .. On the other hand, Proposition 5.2 of [1] implies that
both π̃k contains the line yk−1 + αpk−1, α ∈ IR, and π̃k+1 contains the line yk + αpk, α ∈ IR. We
finally remark that Σk+1 is both the first polar of yk+1 with respect to the hypersurface{

g(y) = γk+1

y ∈ πk,
(14)

and the first polar of zk with respect to the hypersurface Γk in (12).
In Figure 4 the point zk satisfies relation g(zk) 6= γk. Indeed, ȳk is on the line joining yk and

yk+1, then the hyperplane Σk+1 passes through both the points yk and ȳk. Hence, the Reciprocity
Theorem guarantees that both Σk and Σ̄k pass through the pole of Σk+1 with respect to (12).
This latter fact and the Section Theorem imply that zk is the pole of Σk+1 with respect to the
hypersurface Γk in (12). Figure 5 portraits an analogous situation when A is indefinite.

In the light of the previous considerations, the next proposition summarizes the main geometric
properties of the CG method in view of Polarity, including a relevant extension to the indefinite case.
In particular, the next result shows how the CG method exploits different quadratic hypersurfaces
at current Step k, including the case when A is indefinite.

Proposition 4.1 [Conjugate Midpoints] Let us consider the quadratic hypersurface g(y) = γ
in (8), with g(y) = 1/2yTAy and A possibly indefinite. Assume the CG has performed m ≤ n
iterations

(i) g(ȳk) = γk, i.e. ȳk belongs to the hypersurface g(y) = γk;

(ii) the vectors zk and (yk − ȳk) are conjugate with respect to g(y) = γ, for any γ > 0;

(iii) yk+1 is the tangent point of Σk+1 to the hypersurface g(y) = γk+1;

(iv) Σ̂k contains the point

yk+1 =
yk + ȳk

2
; (15)

(v) π̃r and πr are conjugate hyperplanes with respect to g(y) = γr, for r = k, k + 1.
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Proof
(i) Recalling that yk+1 = yk + αkpk then we have ȳk = yk + 2αkpk, which trivially implies g(ȳk) =
g(yk + 2αkpk), for any k = 0, . . . ,m− 1. Hence from Table 1

g(ȳk) = g(yk + 2αkpk) = g(yk) +∇g(yk)
T (2αkpk) +

1

2
(2αkpk)

T∇2g(yk)(2αkpk)

= g(yk)− 2α2
k(p

T
kApk) + 2α2

k(p
T
kApk) = g(yk).

(ii) We first observe that zk is the pole of Σk+1 with respect to the hypersurface

{
g(y) = γk
y ∈ πk.

Analogously, yk is the pole of Σk and ȳk is the pole of Σ̄k with respect to the same hypersurface.
Thus, since Σk+1 is the intersection between πk and the polar hyperplane of zk with respect to
g(y) = γk, then Σk+1 has the following equation in IRn (see Lemma 7.1 of [1])

Σk+1 := πk ∩
{
y ∈ IRn : (zTk Azk − 2γk) + (Azk)

T (y − zk) = 0
}
. (16)

Moreover, since yk, ȳk ∈ Σk+1 we have by (16)
(Azk)

T (yk − zk) = yTk Ayk − zTk Azk

(Azk)
T (ȳk − zk) = yTk Ayk − zTk Azk.

(17)

Summing the two relations (17) we obtain

(Azk)
T

[
(yk + ȳk)

2
− zk

]
= yTk Ayk − zTk Azk,

which states that also the midpoint in the segment joining yk and ȳk belongs to Σk+1. Finally, by
subtracting relations (17) we obtain

(yk − ȳk)TAzk = 0, (18)

which shows that the direction (zk − 0) is conjugate to the direction (yk − ȳk).

(iii) We observe that the polar hyperplane of the point yk+1, with respect to the hypersurface
g(y) = γk+1, has the following equation in IRn (see Lemma 7.1 [1])

2 (g(yk+1)− γk+1) + (Ayk+1)
T (y − yk+1) = 0. (19)

On the other hand, the tangent hyperplane to g(y) = γk+1 at yk+1 is simply given by

(Ayk+1)
T (y − yk+1) = 0. (20)

Since g(y) is a regular function the last hyperplane is unique then, by Corollary 7.1 in [1], relations
(19) and (20) coincide if and only if g(yk+1) = γk+1, i.e. if and only if yk+1 is the point where Σk+1

is tangent to the hypersurface g(y) = γk+1.

(iv) We first note that by (iii) the direction (yk+1− 0) is conjugate to (yk− ȳk). Moreover, observe
that zk is conjugate to (yk − ȳk) by (18). Finally, since yk+1 and zk must belong to the same
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manifold, then the directions (yk+1 − 0) and (zk − 0) are parallel, i.e. they belong to the same
diameter containing the origin, proving that Σ̂k contains yk+1.

(v) We observe that yk is the pole of π̃k with respect to g(y) = γk, with yk ∈ πk. Thus, the Reci-
procity Theorem guarantees that π̃k includes the pole (pk−1, 0)T of πk, proving that π̃k and πk are
conjugate with respect to g(y) = γk. A similar reasoning yields that π̃k+1 and πk+1 are conjugate
with respect to g(y) = γk+1. 2

The results in the above proposition are represented in Figure 4 and Figure 5, where Σk and
Σk+1 are respectively defined by the following relations (in Cartesian coordinates)

Σk :


yTk Ay = 2γk ⇐⇒ (Ayk)

T (y − yk) = 0

y ∈ πk
(21)

Σk+1 :



(zTk Azk − 2γk) + (Azk)
T (y − zk) = 0 ⇐⇒ (Azk)

T y − yTk Ayk = 0

y ∈ πk

or equivalently

yTk+1Ay = 2γk+1 ⇐⇒ (Ayk+1)
T (y − yk+1) = 0

y ∈ πk

(22)

being γk = 1/2yTk Ayk and γk+1 = 1/2yTk+1Ayk+1. We remark that relations (21) highlight that Σk+1

is the polar hyperplane of zk, with respect to the hypersurface (12). On the contrary, relations (22)
denote that Σk+1 is the polar hyperplane of yk+1, with respect to (14). Thus, since yk is self-
conjugate (in Cartesian coordinates) with respect to the hypersurface g(y) = γk, and since yk ∈
Σk+1, we also have that zk ∈ π̃k satisfies relation (Ayk)

T (zk − yk) = 0, i.e. zTk Ayk = 2γk by the
Reciprocity Theorem. The latter relation yields therefore

0 = yTk Ayk − zTk Ayk = (yk − zk)TAyk = ∇g(yk)
T (yk − zk), (23)

proving also that the directions d1 = (yk − zk) and d2 = (yk − 0) are conjugate.

5 Polarity and Planar CG–based methods for indefinite linear sys-
tems

In Section 5 of [1] we have presented the relation between Polarity and the CG method, for solving
the linear system Ay = b, with A � 0, or equivalently for minimizing g(y) in (2). Here we recast
a similar analysis for the case of A indefinite. In particular, we apply our results to a class of
CG–based Krylov–subspace methods, the so called Planar CG–based methods.

The case of A indefinite requires a specific analysis, as the mere application of the CG method
may be inadequate (see Proposition 3.3). In particular, when the linear system Ay = b represents
the Newton’s equation ∇2g(zp)d = −∇g(zp), if the Hessian matrix ∇2g(zp) is indefinite, the step k
of a CG–based method may generate a direction pk that is not gradient-related, and it may occur
that ∇g(zp)

T pk ≥ 0.
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5.1 Preliminaries on Planar CG–based methods

The Planar CG–based methods for indefinite linear systems [19, 6, 8, 20, 7] are substantially Krylov–
subspace methods with a structure similar to the one summarized in Table 2, regardless of different
taxonomies adopted to describe them.

In this section, we discuss the relation between Planar CG–based methods and Polarity. To
this end and making reference to Table 2, we remark that the sequence of search directions
p1, . . . , pm that these methods generate is such that the lines `1, . . . , `m, with points at infin-
ity (p1, 0)T , . . . , (pm, 0)T , satisfy Proposition 4.2 in [1], i.e. pi and pj are conjugate for any
1 ≤ i 6= j ≤ m.

Consider a generic Planar CG–based method in Table 2. It checks a criterion CRk at each
Step k. We remark that each Planar CG–based method may include a different criterion CRk,
whose importance deserves a specific attention. Indeed, a Planar CG–based method may show a
completely different progress depending on the values returned by CRk. In case CRk =TRUE,
the Planar CG–based method performs a 1× 1 pivot, which is justified by the fact that the pivot
element pTk−1Apk−1 is large enough (i.e. equivalently a standard CG iteration is performed at Step

kA, inasmuch as pTk−1Apk−1 is sufficiently bounded away from zero). On the other hand, when

CRk =FALSE, then the quantity pTk−1Apk−1 is relatively small, so that a 2 × 2 pivot is necessary
at Step kB, in order to overcome a degeneracy. This mechanism allows switching from Step kA to
Step kB and yields an algorithm which is always well–posed, so that degeneracy is eliminated. A
detailed choice for the criterion CRk is reported in Section 5.3, depending on the Planar CG–based
method in hand.

We also note that, if CRk is satisfied, the direction pk−1 is not auto-conjugate (see Definition
4.2 of [1]) and does not belong to the asymptotic cone of F in (3), i.e. pTk−1Apk−1 6= 0. On the
other hand, if CRk is not satisfied, one of the following two situations occurs depending on the
Planar CG–based method currently implemented: pk−1 is auto-conjugate and qTk−1Apk−1 6= 0 (as
in [6, 20]), i.e.

pTk−1Apk−1 = 0, qTk−1Apk−1 6= 0, (24)

or (see [19, 7])
det
[
(pk−1 qk−1)

TA(pk−1 qk−1)
]
6= 0. (25)

We will show, from the geometric perspective of the Polarity theory, that the conditions (24) -
(25) allow the construction of the direction pk+1 at Step kB of Table 2. To this purpose, we observe
that (24) uses the fact that Apk−1 ⊥ pk−1, while by the boundedness of k relation (25) exploits the
fact that pk−1 and qk−1 have an angle which is sufficiently bounded away from zero (see Proposition
2.3 in [7] for a proof).

The generic Planar CG–based method in Table 2, at step k, also indirectly performs first an
iterative reduction of matrix A to a tridiagonal factorization [12]. Then, it decomposes the resulting
tridiagonal matrix in order to provide search directions and obtain a new current approximate
solution yk.

A similar approach is followed also by other Krylov–subspace methods for the solution of sym-
metric indefinite linear systems. However, methods like SYMMLQ [21] and SYMMBK [22, 23] rely
on the generation of a set of orthogonal vectors, namely the Lanczos vectors. Thus, these methods
basically do not rely on conjugacy, and may be hardly analyzed in the light of the Polarity theory.

5.2 Polarity and Planar CG–based methods: basics

Detailing the exact algorithmic differences among the Planar CG–based methods in the literature
goes beyond the interests of the current paper. Nevertheless, we prove that these methods match
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General scheme of Planar CG–based methods

Description: Iterative method for solving equation Ay = 0
Input: Set an initial solution y0 ∈ IRn

Step 0: Initialization as for the CG method in Table 1

Step k:
Using the direction pk−1 compute pTk−1Apk−1 and check for the criterion
CRk: if CRk is satisfied goto Step kA, else goto Step kB

Step kA:

� Compute the residual rk = −Ayk, at the point
yk = yk−1 + αk−1pk−1, with αk−1 ∈ IR

� Check for a stopping rule

� Compute the novel direction pk using rk

� (Possibly) compute the vector qk ∈ span{Apk, pk−1}, such that
pTkAqk 6= 0

� Set k = k + 1. Goto Step k

Step kB:

� Compute the residual rk+1 = −Ayk+1, at the point
yk+1 = yk−1 + αk−1pk−1 + αkqk−1, with αk−1, αk ∈ IR

� Check for a stopping rule

� Compute the novel direction pk+1 (indirectly) using rk+1

� (Possibly) compute the vector qk+1 ∈ span{Apk+1, pk−1, qk−1},
such that pTk+1Aqk+1 6= 0

� Set k = k + 2. Goto Step k

Table 2: A general scheme for the Planar CG–based methods, when the solution of the indefinite
linear system Ay = 0 is sought. If Step kB is never performed, then Planar CG–based methods
essentially reduce to the CG. Similarly to the CG, the computation of pk and possibly qk, at Step
kA / Step kB of Planar CG–based methods, complies with Lemma 3.2 in [1].
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the geometry presented in [1] and in the previous sections.
The results in Section 2 (see also Section 2 of [1]) perfectly apply, since they are actually

independent of the inertia of matrix A, and rely on non-singularity of A.
Propositions 4.1 and 4.2 of [1], regarding the mutual conjugacy of the search directions generated

by Planar CG–based methods, apply too. In particular, Proposition 4.1 is at the basis of both Step
kA and Step kB in Table 2, since it guarantees that at least n−1 mutually conjugate directions {pi}
can be determined in the indefinite case (being pTi Api 6= 0, for at least n− 1 values of the index i).
Equivalently, in exact arithmetics, when A is indefinite and nonsingular, if pk−1 is auto-conjugate
then pTk−1Apk−1 = 0 and the Step kB of a Planar CG–based method can be performed at most
once. To better grasp the relevance of this latter result, first observe that the criterion CRk at
Step k of Table 2 essentially checks whether the quantity pTk−1Apk−1 is sufficiently bounded away

from zero. Then, suppose by contradiction that we have both pTk−1Apk−1 = pT
k̂−1Apk̂−1 = 0 at

Steps k, k̂, with k 6= k̂, and pk−1, pk̂−1 are conjugate. In this case, we would have that both the
conjugate directions pk−1 and pk̂−1 are auto-conjugate with respect to F in (3), which contradicts
Proposition 4.1 of [1]. The previous considerations justify the next conclusion.

Remark 5.1 Let the matrix A be indefinite and nonsingular, and consider the Planar–GC method
in Table 2. Let us generate the conjugate directions {pk}: the situation pTkApk = 0 at Step k may
occur only for one value of the index k.

Now observe that the residual rk at Step kA of Table 2 is exactly −∇g(yk), being g as in (2), and
the point yk is computed in order to satisfy the relation ∇g(yk)

T (yk−1−yk) = 0. The latter equality
identifies exactly the (n−1)-dimensional hyperplane π̃k in (10), in accordance with Proposition 3.2,
and recalling that Step kA in Table 2 is essentially coincident with Step k in Table 1.

In order to better justify the Step kB in view of Polarity, we preliminarily need the next
propositions, which extend the results in Propositions 3.1 and 3.2. The next results refer to a set
of directions {ti}, defined in the following way. Consider the Step k of a Planar CG–based method,
with k < m ≤ n; then we define

(i) tk−1 = pk−1, if CRk is satisfied, being tTk−1Atj = 0, for any j < k − 1;

(ii) tk−1 = pk−1 and tk = qk−1, if CRk is not satisfied, being tTk−1Atj = tTkAtj = 0, for any
j < k − 1.

Proposition 5.1 [Planar CG Polar Hyperplane 1] Consider any Planar CG–based method as
in Table 2. Suppose it performs m steps to solve the linear system Ay = 0, with A indefinite and
nonsingular. Then, at Step k, k < m:

(a) if CRk is satisfied, the (n− 1)-dimensional manifold

πk : yk + span{t1, . . . , tk−2, tk, . . . , tm}

represents (in Cartesian coordinates) a diametral hyperplane of the homogeneous hypersurface
Fγ in (7), for any γ > 0. This diametral hyperplane πk is the polar hyperplane of the pole
(tk−1, 0)T , and has the expression

πk := {y ∈ IRn : (Atk−1)
T y = 0};

(b) if CRk is not satisfied, the (n− 2)-dimensional manifold

πk+1 : yk+1 + span{t1, . . . , tk−2, tk+1, . . . , tm}
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represents (in Cartesian coordinates) a diametral hyperplane of the homogeneous hypersurface
Fγ in (7), for any γ > 0. This diametral hyperplane πk+1 is the intersection between two
polar hyperplanes, whose respective poles are (tk−1, 0)T and (tk, 0)T , and has the expression

πk+1 := {y ∈ IRn : (Atk−1)
T y = 0, (Atk)

T y = 0}.

Proof
The proof of (a) coincides with that of Proposition 3.1. On the other hand, the proof of (b) follows
by first observing that, regardless of the current Planar CG–based method, αk−1 and αk at Step kB
are computed so that

∇g(yk+1)
T (αpk−1 + βqk−1) = 0, ∀α, β ∈ IR.

In other words, we have the relations ∇g(yk+1)
T pk−1 = (Ayk+1)

T pk−1 = (Ayk+1)
T tk−1 = 0, and

similarly ∇g(yk+1)
T qk−1 = (Ayk+1)

T qk−1 = (Ayk+1)
T tk = 0. Hence, by (i)-(ii)

(Atk−1)
T y = (Atk−1)

T [yk+1 + span{t1, . . . , tk−2, tk+1, . . . , tm}] = 0,

(Atk)
T y = (Atk)

T [yk+1 + span{t1, . . . , tk−2, tk+1, . . . , tm}] = 0,

which proves the result. 2

Proposition 5.2 [Planar CG Polar Hyperplane 2] Consider any Planar CG–based method as
in Table 2. Suppose it performs m steps to solve the linear system Ay = 0, with A indefinite and
nonsingular. Then, at Step k, k < m:

(a) if CRk is satisfied, the Planar CG–based method equivalently generates (in Cartesian coordi-
nates) the polar hyperplane of the point yk, with respect to the quadratic hypersurface Fγk in
(7), being γk = 1/2yTk Ayk. This hyperplane has the equation (Ayk)

T (y−yk) = 0 and contains
the line yk−1 + αpk−1, α ∈ IR;

(b) if CRk is not satisfied, the Planar CG–based method equivalently generates (in Cartesian
coordinates) the polar hyperplane of the point yk+1, with respect to the quadratic hypersurface
Fγk+1

in (7), being γk+1 = 1/2yTk+1Ayk+1. This hyperplane has the equation (Ayk+1)
T (y −

yk+1) = 0 and includes the linear manifold yk−1 + span{pk−1, qk−1}.

Proof (sketch)
In case CRk is satisfied, then the proof of (a) essentially coincides with the one of Proposition 3.2,
recalling that at Step kA, for any Planar CG–based method rk = −∇g(yk) = rk−1 − αk−1Apk−1,
and αk−1 is such that rTk pk−1 = 0, so that (Ayk)

T (y − yk) = 0 is satisfied with y = yk−1 + αpk−1,
α ∈ IR.

On the other hand, using a similar reasoning, when CRk is not satisfied, at Step kB the vector
rk+1 is computed, being rk+1 = −∇g(yk+1). Moreover, since we are solving Ay = 0, by definition
we have

rk+1 = −∇g(yk+1) = r0 −
k+1∑
i=1

αi−1Ati−1 = rk−1 − αk−1Apk−1 − αkAqk−1, (26)

and the parameters αk−1, αk are computed imposing the conditions rTk+1pk−1 = 0 and rTk+1qk−1 = 0,

or equivalently rTk+1(y−yk−1) = 0, with y ∈ yk−1 +span{pk−1, qk−1}. By rk+1 = −Ayk+1 the latter
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relations coincide with (Ayk+1)
T (y− yk+1) = 0, as long as y ∈ yk−1 + span{pk−1, qk−1}. Since yk+1

satisfies the equation g(y) = γk+1, then the relation (Ayk+1)
T (y−yk+1) = 0 represents in Cartesian

coordinates the polar hyperplane of yk+1 with respect to g(y) = γk+1.
Now, it remains to show that when CRk is not satisfied then the computation of αk−1 and αk is

well-posed. On this guideline observe that by (26), imposing the conditions rTk+1pk−1 = rTk+1qk−1 =
0 is equivalent to solve the 2× 2 linear system pTk−1Apk−1 pTk−1Aqk−1

qTk−1Apk−1 qTk−1Aqk−1

 αk−1

αk

 =

 rTk−1pk−1

rTk−1qk−1

 .

Recalling that at Step kB either condition (24) or condition (25) holds, depending on the Planar
CG–based method adopted, then the matrix in the last linear system is always nonsingular. 2

Moreover, also for Planar CG–based methods results similar to Corollary 3.1 and Proposition 4.1
hold, with simple modifications.

5.3 Planar CG–based methods: further results

This section proposes some advances on Step kB in Table 2, so that we can better motivate the
role of the theory of Polarity when Planar CG–methods are considered, in view of Proposition 4.2
of [1]. We first note that, roughly speaking, the Step kB in Table 2 is equivalent to a double CG
step. Then we observe that the different Planar CG–based methods proposed in the literature
substantially differ at Step kB. In particular, they differ in the way they generate the vector qk−1
(see also the vector di+1 considered in the proof of Proposition 4.2 of [1]).

The first method that we consider is the one proposed by Luenberger in 1969 [20]: to the best
of our knowledge, it is the first method for solving indefinite linear systems, entirely based on
conjugate directions. This method performs Step kB in Table 2 when an auto-conjugate direction
with respect to F in (3) is detected. In other words, as criterion CRk this method tests whether
the current direction pk−1 is auto-conjugate. In case CRk is fulfilled then Step kB is executed,
so that this method generates a new direction pk+1 using directions pk−1 and qk−1, being qk−1 a
direction in the asymptotic cone of F (i.e. qTk−1Aqk−1 = 0). Thus, by Proposition 4.1 of [1] the
vectors pk−1 and qk−1 cannot be conjugate (as also indicated in Table 2). Then, the directions
p1, . . . , pk−1, qk−1, computed up to Step k of Luenberger’s method, enjoy the following properties
(as they satisfy Proposition 4.2 of [1])

1. p1, . . . , pk−1, qk−1 are linearly independent;

2. qk−1 is conjugate to pi, with i ∈ {1, . . . , k − 2}.

The choice of qk−1 in [20] perfectly matches both the conclusions in Proposition 4.2 and Corollary 4.1
of [1] (setting respectively d1 = pk−1 and d2 = qk−1). The fact that qk−1 is self-conjugate simplifies
the computation of some coefficients in Step kB [20]. However, testing within CRk the analytical
condition pTk−1Apk−1 = 0 might yield a numerically unstable procedure, which explains why in
the literature Luenberger’s method is rarely applied (an analogous issue holds also for the method
proposed in [6]).

A different criterion CRk is adopted in the Planar CG–based methods proposed in [19] and
in [8, 7]. In [19] the quantity ∆k−1 = (pTk−1Apk−1)(q

T
k−1Aqk−1)− (pTk−1Aqk−1)

2 is tested at Step k,
where pk−1 and qk−1 are directions computed either at Step (k − 1)A or Step (k − 2)B. As proved
in [8], when ∆k−1 is sufficiently large the angle between pk−1 and qk−1 is sufficiently bounded away
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from zero, so that pk−1 and qk−1 are linearly independent. Thus, when ∆k−1 is large enough, then
Step kB is performed, otherwise the Step kB is not well-posed and Step kA is applied.

Note that in [7] the criterion CRk simply tests the quantity pTk−1Apk−1, in place of ∆k−1. If

pTk−1Apk−1 is relatively large, then pk−1 is surely not an auto-conjugate direction, and Step kA is
performed. Otherwise, the Step kB is preferred. We remark that both in [19] and [7], at Step
kB a direction qk−1 satisfying 1.–2. is used. Thus, these methods are numerically more stable and
reliable (though a bit more expensive) than [6] and [20], as also showed in [8].

We conclude this section by recalling that Step k of the standard CG method determines the
steplength αk−1 so that the functional g(y) in (6) has a stationary point along the direction pk−1.
Similarly, the four Planar CG–based methods reported above, at Step kB (see Table 2) compute
the steplengths αk−1 (along pk−1) and αk (along qk−1) so that the Ritz-Galerkin condition

∇g(yk+1)
T (y − yk+1) = 0, ∀y ∈ yk−1 + span{pk−1, qk−1} (27)

holds. This guarantees that g(y) has the stationary point yk+1 on the 2-dimensional manifold

yk−1 + span{pk−1, qk−1},

as item (b) of Proposition 5.2 suggests. The latter computation of αk−1, αk is well-posed thanks to
Proposition 5.2-(b) and Corollary 4.1 of [1], which ensure that pk−1 and qk−1 are linearly independent
(though not conjugate).

To sum up, the general theoretical results in Section 4 of [1] have an algorithmic counterpart
in the Planar CG–based methods. These methods, as well as the CG method, exploit the Polarity
theory but they do not need to resort explicitly to homogeneous coordinates. In the literature their
recurrences only refer to vectors in Cartesian coordinates. However, as we proved in Proposition 5.2,
Planar CG–based methods strongly rely on Polarity for quadratic hypersurfaces. This latter fact
proves that the Polarity theory might have potentialities to suggest novel methods even when
indefinite linear systems are considered. These new methods could be based on a different criterion
CRk at Step kB in Table 2. Equivalently, by the taxonomy in the proof of Proposition 4.2 of [1], they
could choose a novel vector di+1 (or similarly a novel vector qk−1 at Step kB), satisfying possible
additional properties. In particular, the perspective from projective geometry, as well as both the
novel approach suggested in Section 3.1 using the grossone and the stability issues exploited in
SYMMBK (see [23]), when performing a 2× 2 pivot step, might all be useful ingredients to design
an effective and stable novel Planar CG–based method.

6 Conclusions

In this paper, we have investigated in depth the strong relationship between CG–based methods
and the Polarity theory in homogeneous coordinates. In particular, we focused on quadratic hyper-
surfaces whose Hessian matrix is indefinite, recalling the geometric motivation behind a possible
CG failure.

Then, following the guidelines in [1], we have also showed how the so called Planar CG–based
methods can be recast skipping homogeneous coordinates, and simply providing their recurrences
in Cartesian coordinates. The Polarity theory has been used to give evidence on how, from a
geometric standpoint, the Planar CG–based methods are provably well-posed. The last result was
naturally accomplished in the indefinite case, resorting to the asymptotic cone.

We think that the Polarity theory may be useful to suggest further generalizations, considering
possible extensions to general algebraic hypersurfaces, not necessarily quadratic, of the Planar
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CG–based methods. In particular, possible issues of interest for further research are presented as
follows.

� New, possibly inexact, linesearch procedures along pk could be conceived, in case the matrix
A is indefinite and pk is in the asymptotic cone of F in (3). These procedures should not be
simply based on Ritz-Galerkin condition (27), and should take a specific care about preserving
convergence properties, in the light of Proposition 3.3 and its proof.

� By the proof of Proposition 3.3, observe that if in (3) the matrix A is indefinite, then the
polar hyperplane of a point at infinity P in the asymptotic cone is well-defined. On the
contrary, the latter hyperplane has not at P formally a counterpart in Cartesian coordinates,
being P a point at infinity. This suggests that a failure of the CG method, in case A is
indefinite, might be possibly recovered by suitably alternating homogeneous coordinates and
Cartesian coordinates in CG iterations. Indeed, by Proposition 3.3 a CG failure occurs in
case at Step k we have pTkApk = 0, i.e. pk is auto-conjugate with respect to the quadratic
hypersurface. Thus, from the definition of asymptotic cone, pk is in principle still a possible
search direction, in order to detect the center of the hypersurface, by computing a suitable
steplength. Of course, since possibly yk in Table 2 is not in the asymptotic cone of F , in
general in Cartesian coordinates the line yk + λpk, λ ∈ IR, does not include the center y∗ of
F . Unfortunately, the CG method is unable to compute a finite steplength along pk (see also
Figure 5), so that it stops prematurely. Nevertheless, an ad hoc inexact linesearch procedure
along pk could be investigated.

� A comment similar to the previous one also applies to the Nonlinear Conjugate Gradient
method, when used to detect a stationary point of a general polynomial function Ψ(x). In the
latter case, a point at infinity (pk, 0)T in the asymptotic cone of the hypersurface associated
to Ψ(x) can possibly play a significant role.

� The case when the CG method detects a nearly auto-conjugate direction pk (i.e., such that
pTkApk ≈ 0), represents another intriguing scenario to theoretically investigate, from a ge-
ometric standpoint. In fact, the latter case makes the CG method well-posed but possibly
numerically unstable (see e.g. [24]).

We conclude this section by observing that, as suggested in Section 3.1 and in the Appendix,
we may give an alternative interpretation for a CG failure, by adopting a recent novel paradigm
for infinite and infinitesimal computing (see also [13, 25, 26]) that gives a completely different
perspective.

Appendix

In this appendix, we argue that the failure of the CG method may be studied exploiting a recent
computational methodology that allows to easily manipulate infinities and infinitesimals (see [27,
28]) using a standard algebra.
In particular, by Proposition 3.1 in [13] we know that in case the matrix A is indefinite, a failure
to perform the Step k for the CG method in Table 1 implies

lim
γ→0
‖pk‖ = +∞,

being γk = pTk−1Apk−1; hence the CG method stops beforehand, yielding a degeneracy. This draw-
back can be skipped by introducing the numeral grossone as in [27, 28], which allows an elementary
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manipulation of the quantity ‖pk‖ in case of degeneracy at Step k. We strongly remark that the
analysis using grossone uses a completely different standpoint with respect to the Nonstandard
Analysis in calculus (see e.g. [29]). Nevertheless, the use of grossone seems yet inadequate to ex-
plain the geometry behind a CG degeneracy, as the Polarity theory straightforwardly yields (see
also Section 5.2 of [13]).
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