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A numerical study of model-based methods for derivative-free optimization is presented. These methods
typically include a geometry phase whose goal is to ensure the adequacy of the interpolation set. The
paper studies the performance of an algorithm that dispenses with the geometry phase altogether (and
therefore does not attempt to control the position of the interpolation set). Data are presented describing
the evolution of the condition number of the interpolation matrix and the accuracy of the gradient estimate.
The experiments are performed on smooth unconstrained optimization problems with dimensions ranging
between 2 and 15.

Keywords: derivative-free optimization; nonlinear optimization; unconstrained optimization

1. Introduction

Model-based methods have proved to be effective techniques for solving unconstrained optimiza-
tion problems for which derivatives are not available [1–6,9,12–14,19]. Some of these methods
construct quadratic models of the objective function by interpolating a set of function values, and
compute steps by minimizing the models inside a trust region. For the model to be well defined,
the interpolation points must be poised [5,14], meaning that they must be compatible with the
interpolation conditions imposed on them. In practice, it is common for the interpolation points to
lose poisedness as the iteration progresses, and this is reflected in an increasing ill-conditioning
in the interpolation system. To prevent difficulties, a geometry phase is included in contemporary
model-based algorithms; it typically replaces one or more of the interpolation points by other
points that are selected with the exclusive goal of improving the position of the interpolation set.

In this paper we consider the effect of dispensing with the geometry phase altogether. We
find, to our surprise, that omitting the geometry phase does not seem to harm the efficiency and
robustness of our algorithm, which is competitive in our tests with two established model-based
algorithms that include a geometry phase. Although high ill-conditioning in the interpolation
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146 G. Fasano et al.

system is observed during the course of the iteration, and the quality of model is often poor at
regular intervals, the overall progress achieved by the method appears to be quite satisfactory.
The conditioning of the interpolation system grows initially, but then oscillates during much of
the run and tends to increase slowly (except possibly very near the solution). We conjecture that
a self-correction mechanism may be at play that prevents the conditioning from growing steadily
and prevents the algorithm from failing.

The observations made in this paper are based on experiments involving 60 smooth test problems
with dimensions ranging between 2 and 15. All the algorithms tested construct quadratic models
using (n + 1)(n + 2)/2 interpolation points. Our results are relevant to the design of algorithms
because the geometry phase adds substantial complexity to these algorithms.

2. A simple model-based algorithm

We limit our discussion to the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f is a scalar-valued function.We consider an algorithm that, at every iteration, approximates
the objective function f by means of a quadratic model mc. To define the model, we assume
that at the current iterate xc we have a set of interpolation points Yc = {y1, y2, . . . , yq}, with
yi ∈ R

n, i = 1, 2, . . . , q, where

q = 1

2
(n + 1)(n + 2). (2)

We assume that xc is an element of this set and that no point in Yc has a lower function value than
xc. We write the quadratic model in the form

mc(xc + p) = dc + gT
c p + 1

2
pTGcp, (3)

and determine the scalar dc, the vector gc ∈ R
n, and the symmetric matrix Gc ∈ R

n×n by imposing
the interpolation conditions

mc(y
�) = f (y�), � = 1, 2, . . . , q. (4)

Since there are (1/2)(n + 1)(n + 2) coefficients in the model (3), the interpolation conditions (4)
represent a square system of linear equations in the coefficients dc, gc, Gc. If we choose the
interpolation points y1, y2, . . . , yq so that this system is non-singular, the model mc will be
uniquely determined (we follow Conn et al. [5] and say that points with this property are poised).

Once mc has been formed, we compute a step pc by approximately solving the trust-region
subproblem

min
p

mc(xc + p), subject to ‖p‖2 ≤ �c, (5)

for some trust-region radius �c > 0. The complete algorithm (which is a simplification of the
method described in [9]) is specified as follows.

ALGORITHM 1 Choose the parameters α ∈ [0, 1), β ∈ (0, 1), γ > 1, an initial trust region radius
�c > 0, and an initial guess xc. Select an initial interpolation set Yc = {y1, y2, . . . , yq} that is
poised. (We assume that xc ∈ Yc and that f (xc) ≤ f (y) for all y ∈ Yc).
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Optimization Methods & Software 147

Repeat until a convergence test is satisfied

(1) Form the model (3) that interpolates the function f on the interpolation set Yc;
(2) Compute pc by (approximately) solving subproblem (5);
(3) Set ared(pc) = f (xc) − f (xc + pc) and pred(pc) = mc(xc) − mc(xc + pc);
(4) Update �c

If ared(pc) > α pred(pc), set �+ = γ�c;
else set �+ = β�c;

(5) Find a point in Yc that is farthest from the current iterate (break ties arbitrarily)
y�out = arg maxy∈Yc

‖y − xc‖2;
(6) If f (xc + pc) < f (xc) (successful iteration)

Update the current iterate, and include xc + pc in the interpolation set, discarding y�out

(a) x+ = xc + pc;
(b) Y+ = {x+} ∪ Yc \ {y�out };

else (unsuccessful iteration)
If the new trial point is not further from the current iterate than y�out

admit it to the interpolation set, discarding y�out ; otherwise, discard the new trial point;
(c) x+ = xc;

(d) Y+ =
{

{xc + pc} ∪ Yc \ {y�out } if‖y�out − xc‖2 ≥ ‖(xc + pc) − xc‖2,

Yc otherwise;
(7) xc ← x+, Yc ← Y+, �c ← �+;
End

Note that Algorithm 1 does not include a geometry phase, i.e. it does not attempt to ensure the
poisedness of the interpolation set in any way. We use the method of Moré and Sorensen [10] to
compute a solution of the problem (5). In our experiments, we set α = 0, β = 0.75 and γ = 1.5.

The initial point xc in Algorithm 1 is selected by the user; the rest of the points in the initial set
Yc are chosen as the set of vertices and mid-points of the simplex defined by (see [15,16])

yi = xc + �c ei, i = 1, . . . , n, (6)

where the initial trust region radius is set to �c = 0.5, and ei denotes the ith coordinate vector.
Algorithm 1 is not as economical as other model-based methods for derivative-free optimiza-

tion, because it recomputes the model mc at every iteration, which requires forming and factoring
the coefficient matrix in the linear system (4) afresh at every iteration. This causes the workload of
each iteration to be of order O(n6). The linear algebra cost could be reduced to O(n4) by express-
ing the model mc using Lagrange polynomials and updating them at every iteration [15]. One
could reduce the work even further by implementing the Powell–Frobenius [16–18] approach
that only imposes O(n) interpolation conditions. However, since the aim of this paper is to
study the effect of omitting the geometry phase, we choose to work with the simplest possible
algorithm.

3. Numerical tests

We describe the results of numerical tests comparing Algorithm 1 with the NEWUOA and DFO

software packages. NEWUOA implements the Powell–Frobenius method [18,19] and DFO is a
well-established code that uses an increasing number of interpolation points until a full set of
(n + 1)(n + 2)/2 is available [2]. Both NEWUOA and DFO include a geometry phase.
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148 G. Fasano et al.

In NEWUOA, the number of interpolation points can be chosen between 2n + 1 and (1/2)(n +
1)(n + 2); the remaining degrees of freedom are absorbed by a minimum Frobenius norm update.
In our experiments, we use (1/2)(n + 1)(n + 2) interpolation points so that NEWUOA uses the
same amount of information as Algorithm 1 and DFO. (In Section 3.1 we also report comparisons
with the WEDGE software package [9], but that algorithm attempts to control poisedness of the
interpolation set in a different manner than most model-based algorithms.)

Algorithm 1 uses a monomial basis to define the quadratic interpolant, whereas NEWUOA and
DFO employ Lagrange and Newton polynomials, respectively, that yield substantial savings in
computation; see [16,18]. Algorithm 1 moves the reference point in the definition of the quadratic
model at every iteration (it is the current iterate xc), whereas NEWUOA and DFO change the reference
point in their bases only a few times throughout the whole iteration. Therefore Algorithm 1 has a
slight numerical advantage because displacing the reference point limits rounding errors. We do
not believe, however, that this fact alters the observations made below.

We tested the three codes on the 60 problems from the CUTEr collection listed in Table 1. All
problems are unconstrained and the number of variables varies between 2 and 15. Table 1 reports
the name of the problem, the number of variables, the number of function evaluations required
by the KNITRO package [20] (using second derivatives) and the optimal objective value computed
by KNITRO to approximately 14 digits of accuracy. We use the results of KNITRO as a reference for
our experiments.

To compare the three algorithms for various levels of accuracy in the solution, we terminated
the runs when a prescribed number of correct significant figures in f was attained, or when
a limit of 15,000 function evaluations was reached. We use two levels of accuracy: three and

Table 1. Test problems.

Name n fev f ∗ Name n fev f ∗

allinitu 4 9 5.74438491032034e+00 freuroth 10 11 1.01406407257452e+03
arglinb 10 2 4.63414634146338e+00 genhumps 5 64 9.31205762089110e−33
arglinc 8 2 6.13513513513513e+00 gulf 3 26 5.70816776659866e−29
arwhead 15 7 5.32907051820075e−15 hairy 2 39 2.00000000000000e+01
bard 3 8 8.21487730657899e−03 hatfldd 3 22 6.61511391864778e−08
bdqrtic 10 11 1.82811617535935e+01 hatflde 3 15 4.43440070723924e−07
beale 2 9 1.03537993810258e−30 helix 3 17 1.81767515239766e−28
biggs3 3 11 3.49751055496115e−25 hilberta 10 2 1.51145573593758e−20
biggs6 6 76 5.49981608181981e−16 himmelbf 4 9 3.18571748791125e+02
box2 2 7 3.32822794031215e−23 himmelbg 2 8 1.17043537660229e−27
box3 3 9 1.85236429640516e−20 jensmp 2 10 1.24362182355615e+02
brkmcc 2 4 1.69042679196450e−01 kowosb 4 19 3.07505603849238e−04
brownal 10 8 1.49563496755546e−16 mancino 10 4 1.24143266331958e−19
brownden 4 9 8.58222016263563e+04 maratosb 2 8 −1.00000006249999e+00
chebyquad 8 19 1.75843686283896e−03 mexhat 2 5 −4.01000000000000e−02
chrosen 15 19 1.21589148855346e−19 morebv 10 4 1.85746736253704e−24
cragglvy 10 15 1.88656589666311e+00 nasty 2 2 1.53409170790554e−72
cube 2 44 5.37959996529976e−25 osborneb 11 21 4.01377362935478e−02
denschnd 3 28 2.15818302178292e−04 palmer1c 8 2 9.75979912629838e−02
denschne 3 22 1.29096866601748e−18 palmer3c 8 2 1.95376385131058e−02
denschnf 2 7 6.51324621983021e−22 palmer5c 6 2 2.12808666605511e+00
dixmaanc 15 14 1.00000000000000e+00 palmer8c 8 2 1.59768063470262e−01
dixmaang 15 28 1.00000000000000e+00 power 10 2 6.03971630559837e−31
dixmaani 15 15 1.00000000000000e+00 rosenbr 2 29 3.74397564313947e−21
dixmaank 15 18 1.00000000000000e+00 sineval 2 68 7.09027697800298e−20
dixon3dq 10 2 2.95822839457879e−31 singular 4 20 6.66638187151797e−12
dqdrtic 10 2 5.91645678915759e−29 sisser 2 20 1.06051492721772e−12
engval1 2 8 0.00000000000000e+00 vardim 10 15 1.59507305257139e−26
engval2 3 21 0.00000000000000e+00 yfitu 3 46 6.66972048929030e−13
expfit 2 9 2.40510593999058e−01 zangwil2 2 2 −1.82000000000000e+01
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Optimization Methods & Software 149

Figure 1. Three digits of accuracy in final function value.

six significant figures, and we report results where all three algorithms converged to the same
objective value. The results are summarized in Figures 1 and 2 using the logarithmic performance
profiles described in [7]; they compare the number of function evaluations needed to achieve the
desired accuracy in f .

Note that the three algorithms perform similarly in these tests, both in terms of robustness and
in terms of number of function evaluations. This is surprising, as we expected Algorithm 1 to be
often slow (or even fail) due to a lack of control in the quality of the model.

Although the overall performance of Algorithm 1 is quite good, this does not mean that the
interpolation points generated during the iteration remain well poised. On the contrary, the inter-
polation system normally becomes ill-conditioned after only a few iterations; yet the algorithm is
able to make steady progress toward the solution. To illustrate the behaviour of the algorithm in
some detail, in the rest of the paper we provide data about the evolution of the condition number,
the quality of the gradient and the rate of success of the iteration.

Figure 2. Six digits of accuracy in final function value.
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150 G. Fasano et al.

3.1 Conditioning of the interpolation system

If we define dc = f (xc) in Equation (3), we remove one unknown and the interpolation
conditions (4) can be expressed as the (q − 1) × (q − 1) linear system

Mx = b, (7)

where x contains the elements of gc and Gc. M is a matrix whose lth row is given by

(
(s�)T, {s�

i s
�
j }i<j ,

{
1√
2
(s�

i )
2

}
i=1,...,n

)T

, � = 1, . . . , q − 1,

with s� = y� − xc, and the right-hand side vector b is given by [9]

b = [f (y1) − f (xc), . . . , f (yq−1) − f (xc)]T;
As discussed by Conn et al. [5], the matrix M should be scaled because its condition number

grows as the interpolation points cluster near xc – even if the interpolation set Yc is well poised.
The appropriate scaling matrix is given by

D =
[
rIn 0
0 r2Iq−n−1

]
,

where r is the radius of smallest ball centred at xc that contains all points in Yc.
When computing the model (3) in Algorithm 1, we replace Equation (7) by the scaled system

M̂x̂ = b, with M̂ = MD, x̂ = D−1x. (8)

In Figures 3–6 we plot the logarithm of the condition number of M̂ as a function of the iteration
number, for four representative problems in the test set. A circle indicates that the step gave a
reduction in the objective function, and a ‘+’ that it did not. The algorithms were terminated when
nine significant digits in f were obtained so that the complete run can be observed.

Note from these figures that the condition number of M̂ grows rapidly in the first few iterations,
but increases only modestly during the rest of the run (except sometimes towards the very end).

Figure 3. log10 cond (M̂) vs. number of iterations for problem arwhead.
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Optimization Methods & Software 151

Figure 4. log10 cond (M̂) vs. number of iterations for problem brownal.

Figure 5. log10 cond (M̂) vs. number of iterations for problem dixmaank.

Figure 6. log10 cond (M̂) vs. number of iterations for problem mancino.
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152 G. Fasano et al.

Observe also that there is a fairly regular oscillation in the condition number. Therefore, there
appears to be a self-regulating mechanism that prevents the condition number of M̂ from growing
steadily, but we have not been able to provide an analytical explanation for it.

An examination of the runs also shows that when a step yields a higher value of the objective
function, the trust region is typically reduced, which forces the interpolation points to cluster.
After a few unproductive steps, the conditioning of M̂ decreases slightly and the algorithm is
able to make progress. Therefore unproductive steps seem to play a role similar to the geometry
phase used in other methods, although it exerts a very weak control on the poisedness of the
interpolation set.

Let us compare the conditioning of the interpolation systems generated by Algorithm 1 and
by the WEDGE software package [9]. WEDGE implements a model-based method that ensures the
poisedness of the interpolation set by including an additional constraint in the step-generation
subproblem (5). Table 2 reports some statistics about the conditioning of the scaled interpolation
matrix M̂ for Algorithm 1 and WEDGE. We compare the two codes on the 60 test problems given
in Table 1, using the two levels of accuracy discussed in the previous section.

As expected, WEDGE controls the condition number of the interpolation system better than
Algorithm 1, and an examination of the results shows that WEDGE produces longer sequences of
accepted steps. However,Algorithm 1 consistently requires a lower number of function evaluations
because its successful steps are more productive. Table 2 gives cumulative results; performance
profiles [7] would also show a clear advantage of Algorithm I over WEDGE. This was another
unexpected finding of our experiments.

It is natural to ask whether the gradient estimates gc are highly inaccurate, given that for most
iterations of Algorithm 1 the points in the interpolation set Yc are not well poised. The analysis
given in [5] indicates that in this case the gradient and Hessian estimates gc, Gc in Equation (3) can
be expected to be poor, but to our knowledge their accuracy has not been reported in the literature.
We could try to use the analytical error bounds given in [5], but they depend on unknown Lipschitz
constants (and may not always be tight). Therefore we compute the error in the gradient estimate
(which plays a more important role than Gc) numerically. We compare our estimate gc with the
exact gradient g∗

c computed by AMPL [8].
We first test whether −gc is a descent direction. Figure 7 plots the cosine of the angle between

gc and the g∗
c , i.e.

cos θc ≡ gT
c g∗

c

‖gc‖2‖g∗
c ‖2

,

as a function of the iteration number, for problem arwhead. Note from this figure that although
the estimated gradient gc is a descent direction in the majority of the iterations, the descent property
is not achieved consistently since cos θc changes sign frequently.

We also recorded statistics about the relative error in the gradient,

ec = ‖gc − g∗
c ‖2/‖g∗

c ‖2.

In more than 50% of the iterations of a typical run, this error is greater than 1; often, much greater
than 1. These results confirm that poorly poised interpolation points normally lead to highly

Table 2. Total number of iterations in which the condition number of M̂

exceeded 1012 (first two columns) and total number of function evaluations
(last two columns) to achieve three and six digits of accuracy in f .

Digits in f 3 6 3 6

WEDGE 12 81 12086 17959
Algorithm 1 106 177 11609 13447
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Figure 7. cos θc vs. iteration number for problem arwhead.

inaccurate gradient approximations gc. This in turn leads to the generation of many unproductive
steps. We have observed that between 25% and 50% of the iterations are unsuccessful, in the sense
that they produce a function value that is larger than f (xc). This may seem highly inefficient, but
model-based methods invoke the geometry phase with a similar frequency.

4. Final remarks

The numerical experiments reported in this paper suggest that a model-based algorithm that
ignores the position of the interpolation points performs as good as two established methods
(NEWUOA and DFO) that include a geometry phase. Although the interpolation systems become
highly ill-conditioned during the course of the iteration, this ill-conditioning remains at tolerable
levels and the algorithm is able to make steady progress towards the solution.

Our experiments suggest that a self-correcting mechanism may be at play: if the interpolation
points are close to lying in a low-dimensional subspace of R

n, then the model becomes accurate
enough in that subspace and a point outside of it is generated. This cycle could then be repeated.
Although it may not be possible to prove that this cyclic behaviour always takes place, it may be
possible to show that there is a tendency for it – but this remains an open question.

The test problems used in this study are all smooth unconstrained optimization problems. Moré
and Wild [11] study the performance of derivative-free methods on noisy, smooth and piecewise-
smooth problems. They test an implementation of the Nelder–Mead method, a pattern search
method, and the model-based method in NEWUOA, and report that NEWUOA is overall the most
effective method – in many cases by a very wide margin. These results and the developments
reported by Powell [19] provide new impetus for further development of model-based methods.
In this paper, we have studied model-based algorithms that use (n + 1)(n + 2)/2 interpolation
points, whereas [11] implements NEWUOA with only 2n + 1 interpolation points. It remains to be
seen whether the observations made in this paper apply in that context too. In any case, our results
suggest that the role of the geometry phase should be re-examined. Perhaps it may be preferable
to employ it only as a method of last resort; not as an integral part of the algorithm. Or it may be
desirable to improve the geometry phase so that it exerts better control over the position of the
interpolation points and yields faster convergence than the simple algorithm studied in this paper.

Algorithm 1 has been implemented in MATLAB and can be obtained from the authors.
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