
Preconditioning Newton–Krylov methods in

nonconvex large scale optimization

Giovanni Fasano1,2 and Massimo Roma2

1 Università Ca’ Foscari di Venezia
Ca’ Dolfin Dorsoduro, 3825/E
30123 Venezia, ITALY
E-mail: fasano@unive.it

2 Dipartimento di Informatica e Sistemistica “A. Ruberti”
SAPIENZA, Università di Roma
via Ariosto, 25
00185 Roma, ITALY
E-mail: (fasano,roma)@dis.uniroma1.it

Abstract

We consider an iterative preconditioning technique for large
scale optimization, where the objective function is possibly
non-convex. First, we refer to the solution of a generic indef-
inite linear system by means of a Krylov subspace method,
and describe the iterative construction of the preconditioner
which does not involve matrices products or matrix stor-
age. The set of directions generated by the Krylov sub-
space method is also used, as by product, to provide an
approximate inverse of the system matrix. Then, we ex-
perience our method within Truncated Newton schemes for
large scale unconstrained optimization, in order to speed
up the solution of the Newton equation. Actually, we use a
Krylov subspace method to approximately solve the New-
ton equation at current iterate (where the Hessian matrix
is possibly indefinite) and to construct the preconditioner
to be used at the current outer iteration. An extensive nu-
merical experience show that the preconditioning strategy
proposed leads to a significant reduction of the overall inner
iterations on most of the test problems considered.

1

Keywords : Large Scale Optimization, Non–convex problems,
Krylov subspace methods, Newton–Krylov methods, Precondi-
tioning.

1 Introduction

In this paper we deal with a preconditioning strategy to be used
for the efficient solution of the large scale linear systems, which
arise very frequently in large scale nonlinear optimization. As
well known, there are many and different contexts of nonlinear
optimization in which the iterative solution of sequences of lin-
ear systems is required. Some examples are Truncated Newton
methods in unconstrained optimization, equality and/or inequal-
ity constrained problems, KKT systems, interior point methods,
PDE constrained optimization and many others.

Krylov subspace methods are usually used for iteratively solv-
ing such linear systems by means of “matrix–free” implementa-
tions. Some of the most commonly used are the Conjugate Gradi-
ent methods for symmetric positive definite systems, the Lanczos
algorithm for symmetric systems, GMRES, Bi-CGSTAB, QMR
methods for unsymmetric systems.

In this work we consider symmetric indefinite linear systems
and focus on the possibility of constructing good preconditioners
for Krylov subspace methods. In particular, our aim is to con-
struct a preconditioner by using an iterative decomposition of the
system matrix, commonly obtained as by product of the Krylov
subspace methods (see, e.g. [22, 10]) and without requiring a sig-
nificant additional computational effort. Firstly, we state the least
requirements that a Krylov subspace method must satisfy to be
suited to this aim. Then we define the preconditioner with refer-
ence to a generic Krylov subspace method and prove interesting
properties of such a preconditioner. Finally, we focus on a partic-
ular Krylov subspace method, a version of the planar Conjugate
Gradient (CG) method, which is an extension of the well known
standard CG method. In particular, we refer to the planar CG
algorithm FLR [6, 9]. We consider this algorithm since it pre-
vents from pivot breakdowns of the standard CG algorithm when

2

the system matrix is not positive definite. As a consequence we
perform a number of iterations enough to generate a good approx-
imation of the inverse of the system matrix, to be used for building
the preconditioner. We show how the construction of such a pre-
conditioner is performed without storing any n×n matrix (where
n is the dimension of the vector of the variables) or computing
matrices products or explicit matrices inverse. Actually, we as-
sume that the entries of the system matrix are not known and
the only information of the system matrix is gained by means of a
routine, which provides the product of the matrix times a vector.
This routine is available for free, since already required by any
implementation of a Krylov subspace method.

We use our preconditioner within a nonlinear optimization
framework, namely in solving nonconvex large scale unconstrained
problems. In particular, we focus on the so called Newton–Krylov
methods, also called Truncated Newton (TN) methods (see [18]
for a survey). TN methods are implementations of the Newton
methods, in which a Krylov subspace method is used for approx-
imately solving the linear system arising in computing the search
direction. In this context, all we need to compute our precondi-
tioner is already available, as by product of the inner iterations
performed for computing the search direction.

Notwithstanding Truncated Newton methods have been widely
studied and extensively tested, it is largely recognized (see, e.g.
[20]) that, especially in dealing with large scale problems, two key
aspects for the overall efficiency of the method can be still con-
sidered worthwhile to be investigated: the first one regards the
formulation and handling of a preconditioner which enables to ac-
celerate the convergence of the iterates. In fact, for Truncated
Newton methods, preconditioning is today considered an essential
tool for achieving a good efficiency and robustness, especially in
the large scale setting. The second one concerns the possibility
to tackle nonconvex problems and hence to handle the indefinite
case for Newton’s equation. In these paper we try to tackle both
these aspects in the large scale setting. As regards the first issue,
we embed our preconditioner within the inner iterations of the TN
methods, according to a suited strategy. Numerical results show

3

that this leads to an overall reduction of the number of CG inner
iterations, needed in most of the test problems considered. As
regards the possibility to handle nonconvex problems, we adopt
the planar CG method FRL for constructing the preconditioner,
instead of the standard CG methods, in order to avoid pivot break-
down. Moreover, drawing our inspirations from [12], in computing
the search direction by the preconditioned CG, we adopt a strat-
egy which allows us to overcome the usual drawbacks in dealing
with indefinite problems, namely the untimely termination of the
inner iterations.

The paper is organized as follows: in Section 2, we consider the
problem of constructing a preconditioner for an indefinite linear
system, by using a generic Krylov subspace method. In Section 3,
we focus on a particular Krylov subspace method which allow us
to tackle indefinite systems, the planar CG algorithm FLR, which
is first recalled for sake of completeness. In Section 4 an itera-
tive matrix decomposition is obtained for the preconditioned CG.
In Section 5, we focus on Truncated Newton methods for uncon-
strained optimization and define a new preconditioning strategy
for the class of preconditioned Truncated Newton methods. More-
over, we describe the strategy we adopt in order to efficiently tack-
ling large scale indefinite problems. Finally, in Section 6 we report
the results of an extensive numerical testing for the resulting Trun-
cated Newton method, on a selection of large scale unconstrained
test problems. We show that the approach we propose in this
paper is reliable and enables a significant reduction of the num-
ber of the inner iterations, in solving both convex and nonconvex
problems.

2 Iterative matrix decomposition and the

new preconditioner

In this section we consider a general symmetric linear system,
which is solved by using a Krylov subspace method. We describe
the conditions which should be satisfied by the Krylov subspace
method, in order to iteratively obtaining a decomposition of the
system matrix, for constructing the preconditioner we propose. To

4

this aim, consider the indefinite linear system

Ax = b, (2.1)

where A ∈ IRn×n is symmetric and nonsingular, n is large and
b ∈ IRn, and consider any Krylov subspace methods for the solu-
tion of such a system (see, e.g. [10]). Krylov subspace methods are
extensively used for the iterative solution of linear systems. The
Lanczos method and the Conjugate Gradient method are among
the most popular. They are equivalent as long as the matrix
A is positive definite, whereas the Conjugate Gradient, though
cheaper, does not cope with the indefinite case.

Our aim is to focus on those Krylov subspace methods which
enable to iteratively construct a preconditioner to be used in the
solution of the system (2.1). The next Assumption 2.1 summarizes
the least requirements for the Krylov subspace method we adopt.
Suppose to perform a finite number of iterations, say h ≪ n, of
an iterative Krylov subspace method.

Assumption 2.1 At the step h ≥ 1 of the Krylov method the
matrices Rh, Th, Lh and Bh are generated, such that

RT
h ARh = Th, (2.2)

Th = LhBhLT
h , (2.3)

where

Rh = (u1 · · ·uh), uT
i uj = 0, ‖ui‖ = 1, i = 1, . . . , h,

Th is symmetric tridiagonal and irreducible,

Lh is lower triangular with a “simple pattern” for its entries,

Bh is a non-singular block diagonal matrix whose inverse is
“easy-to-compute”.

On the basis of the latter assumption, we can now define the
preconditioning matrix and show its properties. First we ob-
serve that, since Th is symmetric and irreducible, the orthogo-
nal matrix Wh ∈ IRh×h exists such that Th = WhDhW T

h , with

5

Dh = diag1≤i≤h{di} non-singular. Then, we can define the matrix
|Dh| = diag1≤i≤h{|di|} and, accordingly, the matrix |Th|

|Th| = Wh|Dh|W T
h .

Let us now introduce the following matrix

Mh = (I − RhRT
h) + Rh|Th|RT

h , (2.4)

where Rh and Th satisfy relation (2.2).

Theorem 2.1 Consider any Krylov subspace method to solve (2.1)
and suppose it performs a number h ≪ n of iterations, and that
Assumption 2.1 holds. Then we have:

a) Mh is symmetric and nonsingular;

b) M−1
h = (I − RhRT

h) + Rh|Th|−1RT
h ;

c) Mh is positive definite and its spectrum Λ(Mh) is given by

Λ(Mh) = Λ(|Th|) ∪ Λ(In−h),

where Λ(In−h) is the set of the n− h unit eigenvalues of the
identity matrix In−h;

d) Λ(M−1
h A) = Λ(AM−1

h) and contains at least h eigenvalues
in the set {−1, +1}.

Proof: As regards a), the symmetry trivially follows from the
symmetry of Th. Moreover, since A in (2.1) is symmetric, the
matrix Rn,h exists such that RT

n,hRn,h = In−h and the columns of

the matrix [Rh
... Rn,h] are an orthogonal basis of IRn. Thus, for

any v ∈ IRn we can write v = Rhv1 + Rn,hv2, with v1 ∈ IRh and
v2 ∈ IRn−h. Now, to prove Mh is invertible, we show that Mhv = 0
implies v = 0. In fact,

Mhv = Rn,hv2 + Rh|Th|v1 =

[
Rh|Th|

... Rn,h

] [
v1

v2

]
= 0,

6

if and only of (vT
1 vT

2)T = 0, since from Assumption 2.1 the matrix
|Th| is nonsingular.

As regards b), recalling that RT
h Rh = I and |Th| is nonsingular

from Assumption 2.1, a direct computation yields the result.
As concerns item c), since I −RhRT

h = Rn,hRT
n,h, we can write

Mk = [Rh Rn,h]

[
|Th| 0
0 In−h

] [
RT

h

RT
n,h

]

which gives the results, since Th is irreducible and thus |Th| is
positive definite.

Item d) may be proved by considering that the matrices M−1
h A

and AM−1
h are similar to the matrix M

−1/2
h AM

−1/2
h and hence

Λ(M−1
h A) = Λ(M

−1/2
h AM

−1/2
h) = Λ(AM−1

h). Moreover, we have

M
−1/2
h =

[
Rh

... Rn,h

] [|Th|−1/2 0

0 In−h

] [
RT

h

RT
n,h

]
,

and hence
M

−1/2
h AM

−1/2
h =

=

[
Rh

... Rn,h

] [|Th|−1/2 0

0 In−h

] [
RT

h ARh RT
h ARn,h

RT
n,hARh RT

n,hARn,h

]

[
|Th|−1/2 0

0 In−h

] [
RT

h

RT
n,h

]
.

Recalling that ARh = RhTh, we have

RT
h ARn,h = (RT

n,hARh)T = (RT
n,hRhTh)T = 0,

and from (2.2) we obtain

M
−1/2
h AM

−1/2
h =

[
Rh

... Rn,h

] [
Ih 0

0 RT
n,hARn,h

] [
RT

h

RT
n,h

]
.

which proves that at least h eigenvalues of M
−1/2
h AM

−1/2
h are in

the set {−1, +1} and this completes the proof.

7

Our aim is to use the matrix Mh, with h ≪ n, as preconditioner,
as we will describe in the sequel, in order to use information gath-
ered during the iteration of the Krylov subspace method. Note
that this is not the first attempt in literature to use a precondi-
tioner of this form. In fact, a similar approach has been considered
in the context of GMRES methods (see [4, 1, 14]). However, it is
very important to note that GMRES information is given in the
form of Hessenberg decomposition of the matrix A, and not as a
tridiagonal one, as in our approach. However, the main distin-
guishing feature of the approach we propose consists of the choice
of the particular Krylov subspace method we adopt. Indeed our
choice allows us to construct and use the preconditioner without
storing any n×n matrix and without any explicit matrix inversion.
In particular, as described in Section 3, to perform the precondi-
tioned method it will suffice to store h ≪ n n-dimensional vectors,
the diagonal elements of a h×h diagonal matrix and the subdiago-
nal elements of a lower bidiagonal h×h matrix. All the entries are
available as by product from the iterates of the Krylov method.
In the next section we will describe the method we chose to adopt.

3 Computing the new preconditioner via

the Planar-CG algorithm FLR

The Krylov subspace method we propose to use in this paper is the
Conjugate Gradient-type method FLR introduced in [7]. Unlike
the Conjugate Gradient, it copes with the indefinite case too. It
is an iterative method for solving indefinite linear systems, and is
a modification of the standard CG algorithm [13]. Now we report
a scheme of this method.

8

Algorithm FLR

Step 1 : k = 1, s1 = 0, r1 = b. If r1 = 0 then STOP,
else compute p1 = r1.

Step k : Compute σk = pT
k Apk.

If | σk | ≥ ǫk‖pk‖2 then go to Step kA

else go to Step kB

– Step kA (standard CG step) :
Set sk+1 = sk + akpk, rk+1 = rk − akApk ,

where ak =
rT
k pk

σk
=

‖rk‖2

σk
.

If rk+1 = 0 then STOP
else compute pk+1 = rk+1 + βkpk

with βk =
−pT

k Ark+1

σk
=

‖rk+1‖2

‖rk‖2
.

Set k = k + 1 and go to Step k.

– Step kB (planar CG step) :
If k = 1 then compute the vector qk = Apk,
else compute the vector

qk =

Apk + bk−1pk−1, if the previous step is
Step (k − 1)A

Apk +
b̂k−2

∆k−2
(σk−2qk−2 − δk−2pk−2) ,

if the previous step is Step (k − 2)B

where bk−1 = −(Apk−1)
T Apk/σk−1 and

b̂k−2 = −(Aqk−2)
T Apk.

9

Compute ck = rT
k pk, δk = pT

k Aqk, ek = qT
k Aqk,

∆k = σkek − δ2
k and ĉk = (ckek − δkq

T
k rk)/∆k,

σ̂k = (σkq
T
k rk − δkck)/∆k.

Set sk+2 = sk + ĉkpk + σ̂kqk and
rk+2 = rk − ĉkApk − σ̂kAqk.

If rk+2 = 0 then STOP

else compute pk+2 = rk+2 +
β̂k

∆k
(σkqk − δkpk),

with β̂k = −qT
k Ark+2.

Set k = k + 2 and go to Step k.

Further details on the FLR algorithm can be found in [7, 6]; here
we simply consider some relevant results, which are used in order
to obtain relations (2.2)-(2.3).

First observe that as long as at Step k the planar CG Step kB is
not performed, the FLR algorithm reduces to the standard CG and
hence, at Step kA the algorithm detects the solution of (2.1) along
the conjugate direction pk. On the contrary, if a pivot breakdown
occurs at Step k (i.e. pT

k Apk ≈ 0), the FLR algorithm generates
another direction at Step kB (namely qk). Then, it performs a
search for the system solution on the 2-dimensional linear manifold
sk + span{pk, qk}, and generates the new point sk+2. In addition
it can be easily proved (see [7]) that, if the indefinite matrix A is
nonsingular and at Step k we have rk 6= 0, then the FLR algorithm
can always perform either Step kA or Step kB. As concerns the
assessment of the parameter ǫk at the Step k, some proposals
where considered in [8, 9], in order to avoid possible instabilities.

For sake of completeness, now we report the tridiagonalization
procedure proposed in the paper [9], which will be at the basis of
the construction of the matrices Rh, Th and Bh mentioned in the
Assumption 2.1.

10

Let us consider the Algorithm FLR at a generic Step k and
let us introduce the following notation: if at Step k of the FLR

algorithm the condition |pT
k Apk| ≥ ǫk‖pk‖2 is satisfied, then we set

wk = pk (standard CG step); otherwise we set wk = pk and wk+1 =
qk (planar CG step). According with the latter positions, the
sequence {wi} represents the sequence of directions generated by
the Algorithms FLR which contains, at most, pairs of consecutive
non–conjugate directions.

As regards the sequence {ri} of the residuals generated by the
algorithm FLR up to Step k, if a planar CG Step kB occurs, we
have two directions (wk and wk+1) and only one residual rk. To
overcome this drawback, if the Step k is the planar Step kB, we
introduce a “dummy” residual rk+1, which completes the sequence
of orthogonal vectors {r1, . . . , rk, rk+1} [2, 5]. The possible choices
for rk+1 in order to satisfy the conditions rk+1 ∈ Kk(A, r1) and
rk+1 6∈ Kk−1(A, r1) and to preserve the orthogonality conditions
rT
k+1pk = rT

k+1rk are:

rk+1 = ± [α̂krk + (1 + α̂k) sgn(σk)Apk] , (3.1)

with α̂k = − |σk|
‖rk‖2 + |σk|

.

Therefore, after h ≤ n steps of the FLR algorithm the following
matrices can be defined:

Rh =

(
r1

‖r1‖
· · · rh

‖rh‖

)
∈ IRn×h, Ph =

(
w1

‖r1‖
· · · wh

‖rh‖

)
∈ IRn×h.

In the remainder of this section we give evidence that the Al-
gorithm FLR can also provide the matrices Lh and Bh mentioned
in the Assumption 2.1, such that (2.2) and (2.3) hold. To this aim
we report the statement of Theorem 2.1 in [9].

Theorem 3.1 Consider the FLR algorithm where A is symmetric,
indefinite and nonsingular. Suppose ǫk > 0 and let ‖ri‖ 6= 0,
i ≤ h. Assume the only one planar CG step performed by the FLR

11

algorithm is Step kB < h. Then the following relations hold:

PhL̃T
h = Rh, (3.2)

APh =

(
Rh

...
rh+1

‖rh+1‖

)(
L̄h

l̄h+1,heT
h

)
Dh, h < n, (3.3)

ARh =

(
Rh

...
rh+1

‖rh+1‖

)(
Th

th+1,heT
h

)
, h < n, (3.4)

where

L̃h =

1

−
√

β1 ·

· 1

−
√

βk−1 1 0

α̃1 α̃2

α̃3 α̃4 1

0 −
√

βk+2 ·

· 1

−
√

βh−1 1

(3.5)
with (βk = ‖rk+1‖2/‖rk‖2, βk+1 = ‖rk+2‖2/‖rk+1‖2)

α̃1 =
α̂k√
βk

, α̃2 = (1 + α̂k) sgn(σk),

α̃3 =
β̂kδk

∆k

√
βk+1βk

, α̃4 = − β̂k σk

∆k

√
βk+1

,
(3.6)

12

Dh =

1

a1
·

1

ak−1
0

1

ξk
1

ξk+1

0
1

ak+2

·
1

ah

, (3.7)

L̄h =

1

−
√

β1 ·

· 1 0

−
√

βk−1 ᾱ1 ᾱ3

ᾱ2 ᾱ4

ᾱ5 1

0 −
√

βk+2 ·

· 1

−
√

βh−1 1

.

(3.8)

The coefficients ξk and ξk+1 are independent arbitrary non-zero

13

parameters, and ᾱi, i = 1, . . . , 5, have the following values:

ᾱ1 =
σk

‖rk‖2
ξk, ᾱ2 =

√
βk

[
sgn(σk) +

σk

‖rk‖2

]
ξk,

ᾱ3 =
ξk+1√
βkσ̂k

[
1 − σk

‖rk‖2
ĉk

]
, ᾱ4 = − ĉkξk+1

σ̂k(1 + α̂k) sgn(σk)
,

ᾱ5 = −ξk+1

σ̂k

√
βk+1.

Finally, Th is an irreducible symmetric tridiagonal matrix defined
by (

Th

0 · · · 0 th+1,h

)
=

(
L̄h

0 · · · 0 l̄h+1,h

)
DhL̃T

h , (3.9)

where l̄h+1,h and th+1,h are the element (h + 1, h) of the matrix
L̄h+1 and Th+1, respectively.

Moreover, since both L̄h and L̃h are nonsingular from Theo-
rem 3.1 the following result can be obtained (see [9]).

Proposition 3.2 Consider the FLR algorithm where ǫk > 0 and
let ‖ri‖ 6= 0, i ≤ h. Suppose the only one planar CG step per-
formed by the FLR Algorithm is Step kB < h. Then, the nonsin-
gular matrix Qh ∈ IRh×h exists such that

L̄h = L̃hQh, (3.10)

where

Qh =

1
. . . 0

1
πk,k πk,k+1

πk+1,k πk+1,k+1

1

0
. . .

1

, (3.11)

14

with

πk,k = ᾱ1, πk,k+1 = ᾱ3,

πk+1,k =
ᾱ2 − ᾱ1α̃1

α̃2
, πk+1,k+1 =

ᾱ4 − ᾱ3α̃1

α̃2
.

(3.12)

Hence, by (3.9) and (3.10) we obtain

Th = L̃h(QhDh)L̃T
h = L̃hBhL̃T

h , (3.13)

and iterating (3.10) in case many planar CG steps are performed,
it can be proved that the matrix Bh is nonsingular, indefinite
and 2 × 2 block diagonal. Relation (3.13) proves that the FLR

Algorithm allows to construct matrices satisfying relation (2.3) of
Assumption 2.1. On the other hand, considering the orthogonality
conditions of the residuals, relation (3.4) immediately yields (2.2).

Therefore the application of Theorem 3.1 and Proposition 3.2
shows that by means of the Algorithm FLR the matrices Rh, Th, Lh

satisfying Assumption 2.1 can be iteratively constructed. There-
fore we are now able to build the preconditioner defined in (2.4).
In fact, the orthogonal matrix W exists such that Bh = WDW T ,
where D = diag1≤i≤h{µi}, and µi is the i-th nonzero eigenvalue1

of matrix Bh, and from the latter consideration and relation (3.13)
we can build the matrices |D|, |Bh| and |Th| such that

|D| = diag1≤i≤h {|µi|} , |Bh| = W |D|W T ,

|Th| = L̃h|Bh|L̃T
h ,

(3.14)

which can be used to construct the preconditioner Mh in (2.4).
Moreover, from relations (2.4), (3.2) and (3.13), we obtain

M−1
h = (I − PhL̃T

h L̃hP T
h) + PhL̃T

h |Th|−1L̃hP T
h (3.15)

= (I − PhL̃T
h L̃hP T

h) + Ph|Bh|−1P T
h . (3.16)

1Observe that since Bh is 2 × 2 block diagonal, the computation of the

matrix W and the eigenvalues µ1, . . . , µh is straightforward.

15

It is fundamental to notice that the construction of the precondi-
tioner by the Algorithm FLR does not require any matrix inversion
(apart from |Bh|−1 which is a 2×2 block diagonal matrix). In par-
ticular, relation (3.16) reveals that the storage of the matrices Ph

(in place of the matrix Rh) and Lh suffices to compute the precon-
ditioned residual M−1

h rk. Finally, observe that Ph should be fully
stored, however L̃h is sparse and has the very simple structure in
(3.5).

An alternative way to construct the preconditioner could be
based on the use of the Lanczos algorithm. It is well known that,
in the positive definite case, the standard CG and the Lanczos
methods are equivalent (see, e.g., [22]). Moreover, as regards the
Assumption 2.1, at step h, the Lanczos method provides the matri-
ces Rh and Th such that the equality (2.2) holds. Indeed it suffices
to take as matrix Rh the matrix whose columns are the Lanczos
vectors ui, i = 1, . . . , h, i.e. the matrix Uh = (u1 · · · uh). More-

over if we denote by T
(L)
h the tridiagonal matrix generated by the

Lanczos algorithm, if A is positive definite, the matrix T
(L)
h is pos-

itive definite too and can be stably decomposed in the form (2.3),
where Lh is a unit lower bidiagonal matrix and Bh is simply diag-
onal. Moreover the Lanczos algorithm can be used also in dealing
with the indefinite case, thus overcoming the drawback of the stan-
dard CG due to possible pivot breakdown. Moreover, the relations
between standard CG and Lanczos algorithm in the definite case
are well known (see. e.g. [22]). The correspondence between the
planar-CG FLR method and the Lanczos method in the indefinite
case has been studied in [8] (see, in particular Theorem 4.3 in [8]).

Now we show how the Lanczos algorithm can be used to deter-
mine the matrix Mh in (2.4). However, at the same time here we
show that the Algorithm FLR should be preferred not only for its
competitive computational burden, but also because it yields for-
mulae (3.15)–(3.16) which avoid the computation of the inverse of
a tridiagonal matrix. In fact, the construction of the matrix (2.4)
via the Lanczos algorithm, can be immediately derived similarly
to the description in [1, 14], as a particular case of the Arnoldi

16

decomposition used therein, i.e. it results

Mh = (I − UhUT
h) + Uh

∣∣∣T (L)
h

∣∣∣UT
h .

Here, the tridiagonal matrix
∣∣∣T (L)

h

∣∣∣ is defined analogously to |Th|
in (2.4). Moreover,

M−1
h = (I − UhUT

h) + Uh

∣∣∣T (L)
h

∣∣∣
−1

UT
h . (3.17)

Thus, Mh may be obtained either by the Algorithm FLR or the
Lanczos algorithm, without formally modifying its expression in
(2.4). However, the implementation of the preconditioned iterative
method in hand, for solving system (2.1), claims for an efficient
computation, at each iteration i, of the preconditioned residual,
i.e. of the product M−1

h ri. Thus, the computational cost of the
preconditioner cannot include the full inversion of the tridiagonal
matrix |Th|−1. The latter drawback may be overcome by using
the Algorithm FLR by means of (3.15)-(3.16). The latter result is
not immediately available for the Lanczos algorithm, i.e. the com-
putation of the preconditioned residual by means of the Lanczos

algorithm requires the calculation of the dense matrix |T (L)
h |−1.

4 Iterative matrix decomposition for

preconditioned CG

In this section we analyze some properties of the preconditioned
CG algorithm. We aim at carrying out formulae similar to (3.2)-
(3.4) of Section 3, which were obtained with the unpreconditioned
CG algorithm FLR. For sake of completeness, we now report the
scheme of the algorithm Prec-CG which is a standard precondi-
tioned CG scheme. Our aim is to obtain suitable formulae in
order to exploit a decomposition of the matrix A.

17

Algorithm Prec-CG

Step 1 : Set k = 1; s1 = 0; r1 = b; M−1 ∈ IRn×n;
z1 = M−1r1.

If r1 = 0 then STOP, else compute p1 = z1.

Step k : Set sk+1 = sk + ãkpk, rk+1 = rk − ãkApk,

where ãk =
rT
k zk

pT
k Apk

.

If rk+1 = 0 then STOP
else compute zk+1 = M−1rk+1, pk+1 = zk+1+ β̃kpk,

where β̃k =
rT
k+1zk+1

rT
k zk

.

Set k = k + 1 and go to Step k.

With a similar computation which yielded the results in Theo-
rem 3.1, we have the following result concerning the Algorithm
Prec-CG.

Theorem 4.1 Consider the Algorithm Prec-CG where A is sym-
metric and positive definite. Suppose ‖ri‖ 6= 0, i ≤ h+1. Suppose
the preconditioner M is given, where M is symmetric positive def-
inite. Then, the following relations hold:

P̃h

[
L

(2)
h

]T
= Zh, (4.1)

M−1AP̃h =

(
Zh

...
zh+1

‖zh+1‖

)(
L

(1)
h

lh+1,heT
h

)
D̃h, h < n, (4.2)

M−1AZh =

(
Zh

...
zh+1

‖zh+1‖

)(
T̃hCT

h

t̃h+1,heT
h

)
, h < n, (4.3)

18

where P̃h = (p1/‖z1‖ · · · ph/‖zk‖) and Zh = (z1/‖z1‖ · · · zh/‖zh‖),

L
(2)
h =

1

−β̃1
‖z1‖
‖z2‖

1

· 1

· 1

−β̃h−1
‖zh−1‖
‖zh‖

1

, (4.4)

D̃h =

1

ã1
·

·
·

1

ãh

, (4.5)

L
(1)
h =

1

−‖z2‖
‖z1‖

1

· 1

· 1

− ‖zh‖
‖zh−1‖

1

, (4.6)

and Ch = {ch
i,j} is given by

19

ch
i,j =

0, i < j,

(−1)i+j−1
Πh

k=jγk

Πh
l=i−1γl

(
β̃i−1

γi−1
− γi−1

)
, i > j,

1, i = j
(4.7)

with γi = −‖zi+1‖/‖zi‖. Finally, T̃h is an irreducible symmetric
tridiagonal matrix defined by

T̃h = L
(1)
h D̃h

[
L

(1)
h

]T
, (4.8)

and

t̃h+1,h = − 1

ãh

‖zh+1‖
‖zh‖

.

Proof: Relation (4.1) follows observing that by the precondi-
tioned CG we have

p1

‖z1‖
=

z1

‖z1‖
p2

‖z2‖
=

z2

‖z2‖
+

β̃1

‖z2‖
‖z1‖

p1

‖z1‖
...

ph

‖zh‖
=

zh

‖zh‖
+

β̃h−1

‖zh‖
‖zh−1‖

ph−1

‖zh−1‖
.

Similarly, if zh+1 = 0 we obtain

M−1A
p1

‖z1‖
=

1

α̃1

(
z1

‖z1‖
− ‖z2‖

‖z1‖
z2

‖z2‖

)

M−1A
p2

‖z2‖
=

1

α̃2

(
z2

‖z2‖
− ‖z3‖

‖z2‖
z3

‖z3‖

)

...

M−1A
ph

‖zh‖
=

1

α̃h

(
zh

‖zh‖

)
,

20

which yield relation M−1AP̃h = ZhL
(1)
h D̃h. On the other hand,

if zh+1 6= 0, the latter relation yields M−1AP̃h = Zh+1L
(1)
h+1D̃h,

where

L
(1)
h+1 =

L
(1)
h

−‖zh+1‖
‖zh‖

eT
h

.

Thus, (4.2) holds with lh+1,h = −‖zh+1‖/‖zh‖ and

Zh+1 = (Zh
... zh+1/‖zh+1‖).

Finally, after some manipulations from (4.7) it follows

L
(2)
h = ChL

(1)
h . (4.9)

Then, by multiplying relation APh = Zh+1L
(1)
h+1D̃h by the non-

singular matrix [L
(2)
h+1]

T , and recalling relations (4.1) and (4.9) we
obtain (4.3).

Now, we consider a preconditioned version of the algorithm
FLR planar CG algorithm. We soon realize that, unfortunately, in
this case the full storage of the preconditioner is required. Indeed,
unlike the coefficients in the Algorithm Prec-CG, in a precondi-
tioned version of the Algorithm FLR, the coefficients ‘bk−1’ and
‘b̂k−2’ at Step kB still depend on the preconditioner, which implies
that a preconditioned Algorithm FLR may be hardly obtained for
large scale problems.
This implies that the Algorithm FLR may be used only for building
and providing the preconditioner, as described previously.

21

5 Preconditioning Truncated Newton

methods

In the previous sections we described how to iteratively construct
a preconditioner. Even if this preconditioner can be exploited in
different contexts involving the solution of large scale linear sys-
tems, our main interest is to fruitfully use it within the framework
of Truncated Newton methods, for large scale optimization. Of
course, both unconstrained and constrained nonlinear optimiza-
tion problems are of interest. Here we investigate the use of
the preconditioner within Truncated Newton methods for uncon-
strained optimization, namely for solving the problem

min
x∈IRn

f(x),

where f : IRn → IR is a twice continuously differentiable function
and n is large. In particular we aim at defining some precondi-
tioning strategies based on the preconditioner we introduced in
the previous sections, which lead an improvement of the overall
efficiency of the method.

The structure of any Truncated Newton method for uncon-
strained optimization is well known (see e.g. [18]). It is based
on two nested loops: the iterations of the Newton method (outer
iterations) and the iterations of the solvers used, at each outer
iteration j, to approximately solving the Newton system (inner
iterations)

Hj s = −gj , (5.1)

where Hj = ∇2f(xj) and gj = ∇f(xj). Thus, since a sequence of
linear systems must be solved, in many cases, it is crucial to have
at one’s disposal a preconditioning strategy, which should enable
a considerable computational saving in terms of number of inner
iterations. This motives the fact that to define general purpose
preconditioning strategies within Truncated Newton methods is
usually still considered one the main issues which is worthwhile
investigating, especially in dealing with large scale problems. As
well known, the main difficulty in this context relies on the fact
that, in the large scale setting, the Hessian matrix can not be

22

stored or handled. Hence, any Truncated Newton implementation
gains information on the Hessian matrix by means of a routine,
which provides the product of the Hessian matrix times a vec-
tor. This prevents from using any preconditioner based on the
knowledge of the actual elements of the Hessian matrix. Unfortu-
nately, few preconditioners have been proposed up to now which
do not require the full Hessian matrix. The first proposal of such a
preconditioner is in [17], where a diagonal scaling which uses a di-
agonal approximation of the Hessian obtained by means of BFGS
updating is introduced. Afterwards, in [15, 16] an automatic pre-
conditioning based on m–step limited memory quasi–Newton up-
dating has been proposed without requiring the knowledge of the
Hessian matrix. More recently, a preconditioning strategy based
on a diagonal scaling, which only gains the information of the
Hessian matrix by means of the product of the Hessian times a
vector has been proposed in [21]. The other preconditioners up to
now proposed, usually require the knowledge of the entries of the
Hessian matrix and hence are not suited to be used in large scale
setting.

The preconditioner we defined in Section 2, actually is gener-
ated during the iterations of the solver, gaining the information
on the Hessian matrix as by product of the iterates of the method.
Moreover, as already noticed in Section 3, its application does not
require to store any n × n matrix.

5.1 Our preconditioning strategy

The strategy we adopt in solving the sequence of the linear systems
(5.1) is based on an adaptive rule for deciding when the application
of the preconditioner is fruitful, that is the preconditioned method
should be effective, or not. In fact, it is well known that the
effectiveness of a preconditioner is problem dependent. Hence,
whenever the application of a preconditioner is expected to led
to a worsening of the performance, it should be desirable to use
an unpreconditioned method. Of course, the key point is how to
formulate an adaptive rule for deciding that. The adaptive scheme
we adopt at each outer iteration can be summarized as follows:

23

1. Perform a number h ≤ 10 of iterations of the unprecon-
ditioned algorithm FLR and store Ph, L̃h and Bh.

2. Restart the CG iterations and perform h iterations of the
preconditioned CG method.

3. On the basis of the information gained decide how to
proceed:

– if the preconditioner should be used, continue the
preconditioned CG iterations,

– otherwise continue the unpreconditioned iterates.

Observe that, if during the first h iterations of the algorithm FLR

at point 1 the termination criterion is satisfied before performing
h iterations, of course the inner iterations are stopped and no
preconditioner is considered. Analogously, while performing the
preconditioned CG iterates at point 2, if the termination criterion
is satisfied before performing h iterations, the inner iterates are
stopped.

Whenever the selection rule indicates to proceed with the un-
preconditioned iterates, the standard unpreconditioned CG me-
thod FLR is simply continued until a termination criterion is sat-
isfied. Otherwise, the standard preconditioned CG algorithm is
used. Note that the planar CG algorithm FLR can not be precon-
ditioned since a preconditioned version of this algorithm would
need the storage of the full matrix Mh. This is due to the fact
that in the Step kB of the FLR algorithm, the coefficients bk−1 and
bk−2 depend on Mh.

Remark 5.1 One of the most relevant point of such a strategy
is the fact that, at the j-th outer iteration (i.e. when we are
solving the j-th system of the sequence (5.1)) the preconditioner

24

is computed on the basis of the information on the actual Hessian
matrix Hj . On the opposite, the strategies usually adopted (see,
e.g. [15]) compute the preconditioner, to be used in the j-th outer
iteration, during the inner CG iterations used at the previous outer
iteration. This means that the preconditioner is computed on the
basis of Hj−1, that is on the Hessian matrix at the previous outer
iteration and in general, this could be a serious drawback in case
the Hessian matrix should drastically change from xj−1 to xj .

5.2 The search direction

In this section we describe how the search direction is computed
at each outer iteration of the Truncated Newton method. We refer
to the application of the algorithm Prec-CG to solve the Newton
system (5.1), assuming that the preconditioner Mh was already
been computed after h planar CG iterates (of course this also
applies to the case when unpreconditioned CG is used, setting
Mh = I). We recall that we are dealing with the indefinite case,
so that particular safeguard is needed in computing the search
direction whenever a negative curvature is encountered, namely a
direction p such that pT Hjp < 0. Getting our inspiration from
the strategy proposed in [12], we do not terminate the CG inner
iterations whenever a negative curvature direction is encountered,
provided that

|pT
k Hjpk| > ǫ‖pk‖2,

where ǫ > 0 is a suitable parameter. Observe that, if pT
k Hjpk < 0

for some k, the approximate solution sk+1 generated at the k-
th CG iteration, could be no longer a descent direction for the
quadratic model

Qj(s) =
1

2
sT Hjs + gT

j s.

To overcome this drawback, which arises in dealing with non-
convex problems, we proceed as follows. Let us consider a generic
k-th iteration of the preconditioned CG, and define the following
index sets

25

I+
k =

{
i ∈ {1, k} : pT

i Hjpi > ǫi‖pi‖2
}

,

I−k =
{
i ∈ {1, k} : pT

i Hjpi < −ǫi‖pi‖2
}

where |I+
k |+ |I−k | = k, (|C| is the cardinality of the set C) and the

following vectors

sP
k =

∑

i∈I+

k

ãipi =
∑

i∈I+

k

rT
i M−1

h ri

pT
i Hjpi

pi,

sN
k = −

∑

i∈I−
k

ãipi = −
∑

i∈I−
k

riM
−1
h ri

pT
i Hjpi

pi.

The direction sP
k can be viewed as the minimizer of Qj(s) over the

(positive) subspace generated by the vectors pi with i ∈ I+
k , and

sN
k is a negative curvature direction. Then, at each preconditioned

CG iterate we define the vector sk = sP
k + sN

k . With this choice
we guarantee the monotonic decrease of {Qj(sk)} as k increase.
In fact the following result holds.

Proposition 5.1 Suppose that the preconditioned CG algorithm
(Prec-CG) is applied for solving the system (5.1). At each iteration
k consider the following vector

sk = sP
k + sN

k .

Then the sequence {Qj(sk)}k=1,2,... is strictly decreasing, i.e.

Qj(sk+1) < Qj(sk), k = 1, 2,

Proof: By definition, we have

sk = sP
k + sN

k =
k∑

i=1

|ãi|pi = sk−1 + |ãk|pk.

Now, using the fact that r1 = −gj and rT
1 pk = rT

k M−1rk we obtain

Qj(sk)=
1

2
[sk−1 + |ãk|pk]

T Hj [sk−1 + |ãk|pk] + gT
j [sk−1 + |ãk|pk]

26

=
1

2

[
sT
k−1Hjsk−1 + ã2

hpT
k Hjpk

]
+ |ãk|pT

k Hjsk−1

+ gT
j sk−1 + |ãk|gT

j pk

= Q(sk−1) +
1

2
sgn(pT

k Hjpk)
(rT

k M−1
h rk)

2

|pT
k Hjpk|

− rT
k M−1

h rk

|pT
k Hjpk|

rT
1 pk

= Qj(sk−1) +

(
1

2
sgn(pT

k Hjpk) − 1

)
(rT

k M−1
h rk)

2

|pT
k Hjpk|

< Qj(sk−1).

The property stated in Proposition 5.1 plays a fundamental rule
concerning the choice of the stopping criterion for the precondi-
tioned CG iterates. In fact, this property allows us to use, also in
the preconditioned CG iterates, the standard stopping rule based
on the comparison of the reduction in the quadratic model with
the average reduction per iteration [19]. Therefore, at the outer
iteration j, the inner preconditioned CG iterations are terminated
whenever

Qj(sk) − Qj(sk−1)

Qj(sk)/k
≤ α (5.2)

where α is a suited parameter. Observe that setting Mh = I,
i.e. in the unpreconditioned case, sk coincides with the choice
of the Newton–type direction in [12]. Note that Proposition 5.1,
ensuring the monotonic decrease of the quadratic model, enables
to extend the use of the stopping criterion (5.2) to the nonconvex
cases. Hence, criterion (5.2) may be fruitfully used alternatively
to the residual–based standard criterion ‖rj‖/‖gj‖ ≤ ηj , where
ηj → 0 as j → ∞.

5.3 Preconditioned Newton step

Now we aim at proving that the application of the preconditioner
defined in Section 3 leads to an interesting property. In the follow-
ing proposition, we prove that one iteration of the preconditioned
CG improves the quadratic model not less than h iterations of the
algorithm FLR. For sake of simplicity we assume that no planar

27

steps are performed in the h unpreconditioned iterations needed
for computing the preconditioner.

Proposition 5.2 Let Mh be the preconditioner in (2.4), computed
after h iterations of the FLR algorithm where no planar steps
are performed. Let p1, . . . , ph the CG directions generated, with
pT

ℓ Hjpm = 0, 1 ≤ ℓ 6= m ≤ h, and p1 = −gj. Consider the vectors

sUN
h = s1 +

h∑

i=1

aipi =
h∑

i=1

aipi

sPR
2 = s1 + |ã1|p1 = |ã1|M−1

h r1

then we have
Q(sPR

2) ≤ Q(sh) ≤ Q(sUN
h).

Proof: From the definition of M−1
h , we have

M−1
h r1 =

[
(I − RhRT

h) + Rh|T |−1RT
h

]
r1

= r1 − Rh

‖r1‖
0
...
0

+ Rh[Lh|Dh|LT
h]−1

‖r1‖
0
...
0

= RhL−T
h |Dh|−1L−1

h

‖r1‖
0
...
0

= RhL−T
h diag1≤i≤h{|ai|}

1√
β1
...√

β1 · · · ·βh−1

‖r1‖

= Phdiag1≤i≤h

{
‖ri‖2

|pT
i Hjpi|

}

‖r1‖
‖r2‖

...
‖rh‖

28

=

(
p1

‖r1‖
p2

‖r2‖
· · · ph

‖rh‖

)

|a1|
. . .

|ah|

‖r1‖
‖r2‖

...
‖rh‖

=
h∑

i=1

|ai|pi. (5.3)

The latter relation proves that if ã1 = 1, the directions sh and sPR
2

coincide. Now, by definition we have

Q(sUN
h) =

1

2

(
sUN
h

)T
Hj

(
sUN
h

)
+ gT sUN

h

=
1

2

(
h∑

i=1

aipi

)T

Hj

(
h∑

i=1

aipi

)
− rT

1

(
h∑

i=1

aipi

)

=
1

2

h∑

i=1

a2
i p

T
i Hjpi −

h∑

i=1

ai‖ri‖2

=
h∑

i=1

[
1

2
ai‖ri‖2 − ai‖ri‖2

]

= −1

2

h∑

i=1

ai‖ri‖2. (5.4)

Q(sh) =
1

2
sT
h Hjsh + gT sh

=
1

2

(
h∑

i=1

|ai|pi

)T

Hj

(
h∑

i=1

|ai|pi

)
− rT

1

(
h∑

i=1

|ai|pi

)

=
1

2

h∑

i=1

a2
i p

T
i Hjpi −

h∑

i=1

|ai|‖ri‖2

=
h∑

i=1

[
1

2
ai‖ri‖2 − |ai|‖ri‖2

]

=
h∑

i=1

[
1

2
sgn(pT

i Hjpi) − 1

]
|ai|‖ri‖2. (5.5)

29

Moreover, from (5.3)

|ã1| =

∣∣∣∣∣
rT
1 z1

p̃T
1 Hj p̃1

∣∣∣∣∣ =

∣∣∣∣∣
rT
1 M−1

h r1

zT
1 Hjz1

∣∣∣∣∣

=

∣∣∣∣∣∣∣

rT
1

(∑h
i=1 |ai|pi

)

(∑h
i=1 |ai|pi

)T
Hj

(∑h
i=1 |ai|pi

)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

h∑

i=1

|ai|‖ri‖2

h∑

i=1

a2
i p

T
i Hpi

∣∣∣∣∣∣∣∣∣∣∣

=

∑h
i=1 |ai|‖ri‖2

∣∣∣
∑h

i=1 a2
i p

T
i Hjpi

∣∣∣
;

thus, we have also

Q(sPR
2) =

1

2

(∑h
i=1 |ai|‖ri‖2

∑h
i=1 a2

i p
T
i Hjpi

)2(h∑

i=1

|ai|pi

)T

Hj

(
h∑

i=1

|ai|pi

)

−
∑h

i=1 |ai|‖ri‖2

∣∣∣
∑h

i=1 a2
i p

T
i Hjpi

∣∣∣
rT
1

(
h∑

i=1

|ai|pi

)

=
1

2

[∑h
i=1 |ai|‖ri‖2

]2

∑h
i=1 a2

i p
T
i Hjpi

−

[∑h
i=1 |ai|‖ri‖2

]2
∣∣∣
∑h

i=1 a2
i p

T
i Hjpi

∣∣∣

=
1

2

[∑h
i=1 |ai|‖ri‖2

]2

∑h
i=1 ai‖ri‖2

−

[∑h
i=1 |ai|‖ri‖2

]2
∣∣∣
∑h

i=1 ai‖ri‖2
∣∣∣

. (5.6)

From (5.4) and (5.5), considering that

h∑

i=1

[
−1

2
sgn(pT

i Hjpi) −
(

1

2
sgn(pT

i Hjpi) − 1

)]
|ai|‖ri‖2 ≥ 0

we easily obtain
Q(sh) ≤ Q(sUN

h).

Moreover, observe that Q(sPR
2) ≤ Q(sh) if and only if

1

2

[∑h
i=1 |ai|‖ri‖2

]2

∑h
i=1 ai‖ri‖2

−

[∑h
i=1 |ai|‖ri‖2

]2
∣∣∣
∑h

i=1 ai‖ri‖2
∣∣∣

≤ 1

2

h∑

i=1

ai‖ri‖2−
h∑

i=1

|ai|‖ri‖2,

30

or equivalently

1
2

[∑h
i=1 |ai|‖ri‖2

]2
− sgn

(∑h
i=1 ai‖ri‖2

) [∑h
i=1 |ai|‖ri‖2

]2

∑h
i=1 ai‖ri‖2

≤ 1

2

h∑

i=1

ai‖ri‖2 −
h∑

i=1

|ai|‖ri‖2. (5.7)

To prove the latter relation we separately consider two cases: the
case

∑h
i=1 ai‖ri‖2 > 0 and the case

∑h
i=1 ai‖ri‖2 < 0. In the first

case the relation (5.7) holds if and only if

1

2

[
h∑

i=1

|ai|‖ri‖2

]2

− sgn

(
h∑

i=1

ai‖ri‖2

)[
h∑

i=1

|ai|‖ri‖2

]2

≤ 1

2

[
h∑

i=1

ai‖ri‖2

]2

−
[

h∑

i=1

|ai|‖ri‖2

]
h∑

i=1

ai‖ri‖2

or equivalently if and only if

−1

2

[
h∑

i=1

|ai|‖ri‖2

]2

≤
[
1

2

h∑

i=1

ai‖ri‖2 −
h∑

i=1

|ai|‖ri‖2

]
h∑

i=1

ai‖ri‖2,

and the latter inequality holds since

−1

2

(

h∑

i=1

|ai|‖ri‖2

)2

+

(
h∑

i=1

ai‖ri‖2

)2

+

h∑

i=1

|ai|‖ri‖2
h∑

i=1

ai‖ri‖2 ≤ 0.

In the second case the relation (5.7) is equivalent to

3

2

[
h∑

i=1

|ai|‖ri‖2

]2

≥ 1

2

[
h∑

i=1

ai‖ri‖2

]2

+

∣∣∣∣∣

h∑

i=1

ai‖ri‖2

∣∣∣∣∣

h∑

i=1

|ai|‖ri‖2,

which holds since

3

2

[
h∑

i=1

|ai|‖ri‖2

]2

=
1

2

[
h∑

i=1

|ai|‖ri‖2

]2

+

∣∣∣∣∣

h∑

i=1

|ai|‖ri‖2

∣∣∣∣∣

h∑

i=1

|ai|‖ri‖2

≥ 1

2

[
h∑

i=1

ai‖ri‖2

]2

+

∣∣∣∣∣

h∑

i=1

ai‖ri‖2

∣∣∣∣∣

h∑

i=1

|ai|‖ri‖2.

31

This proves that

Q(sPR
2) ≤ Q(sh) ≤ Q(sUN

h).

6 Numerical Results

In this section we report the results of a preliminar numerical
investigation obtained by embedding the new preconditioner in
a linesearch based Truncated Newton method for unconstrained
optimization. In particular, we performed a standard implemen-
tation of a Truncated Newton method which uses the planar CG
algorithm FLR as a tool for constructing the preconditioner. Then
the standard preconditioned CG algorithm is used as precondi-
tioned scheme for the inner iteration.

The aim of our numerical investigation is, firstly, to assess if
the preconditioning strategy proposed is reliable. The key point
is to check if the use of the preconditioner leads to a computa-
tional savings in terms of overall inner iterations, with respect to
the unpreconditioned case. Therefore, to this aim, in this prelim-
inary testing we do not use any adaptive criterion for choosing if
the preconditioner should be used or not at each outer iteration
of the method. We simply always use the preconditioned CG for
solving the sequence of Newton systems (5.1) whenever the pre-
conditioner has been computed. We recall that the preconditioner
is computed whenever at least h iterations of the unpreconditioned
FLR algorithm have been performed.

As regards the test problems, we used all the unconstrained
large problems contained in the CUTEr collection [11]. All the
algorithms were coded in FORTRAN 90 compiled under Compaq
Visual Fortran 6.6. All the runs were performed on a PC Pen-
tium 4 – 3.2GHz with 1Gb RAM. The results are reported in terms
of number of iterations, number of function evaluations, number of
CG-inner iterations and CPU time needed to solve each problem.
In Tables 6.1, 6.2 and 6.3 we report the complete results for the
unpreconditioned Truncated Newton method. In Tables 6.4, 6.5

32

and 6.6 we report the complete results for the preconditioned ver-
sion of the same algorithm. As regards the parameter h, we tried
different values ranging from 5 to 10 and h = 7 is a value which
seems to be a good trade–off between the computational burden
required to compute the preconditioner and its effectiveness.

By comparing these results obtained by means of the precondi-
tioned algorithm with respect to those obtained without using any
preconditioner, it is very clear that in most cases the use of the
preconditioner is beneficial, since it enables a significant reduction
of the inner iterations needed to solve the problems. In particular,
in terms of number of inner iterations, on 36 test problems the pre-
conditioned algorithm performs better than the unpreconditioned
one, and only on 10 problems it performs worse. On the remaining
test problems the two algorithms led to the same results or (on 8
problems) they converge to different minimizers.

The performances of the two algorithms, in terms of number of
inner iterations, are also compared by means of the performance
profiles [3]. In particular, in Figure 6.1 we drew the performance
profiles relative to the results reported in the previous tables. Also
from these figures it is clear that the preconditioned algorithm
performs the best in terms of number of inner iterations. However,
it is important to note that the preconditioned algorithm leads to
6 additional failures with respect to the unpreconditioned one, due
to an excessive number of outer iterations (> 10000) of CPU time
(> 900 seconds). This evidences the fact that, in some cases, the
application of the preconditioner is not beneficial and even leads
to a severe worsening. Hence the necessity to define an adaptive
criterion which enables to assess whenever it is fruitful to use the
preconditioner or not.

33

7 Conclusions

In this paper we propose a new preconditioning technique for effi-
ciently solving symmetric indefinite linear systems arising in large
scale optimization, within the framework of Newton–type meth-
ods. Krylov subspace methods are considered for the iterative
solution of the linear systems, and the construction of the precon-
ditioner is obtained as by product of the Krylov methods iterates.
In fact, the preconditioner is built by means of an iterative matrix
decomposition of the system matrix, without requiring to store or
handle the system matrix. The only information on this matrix is
gained by means of a routine which computes the product of the
matrix times a vector. The use of a planar version of the Con-
jugate Gradient algorithm also enables to tackle indefinite linear
systems arising from nonconvex optimization problems. In order
to assess if the preconditioning strategy proposed is reliable, we
embed it within a linesearch based Truncated Newton method for
unconstrained optimization. The results obtained showed that
the proposed strategy is efficient, enabling a significant computa-
tional saving in terms of number of inner iterations need to solve
the problems. Unfortunately, few additional failures are obtained
by using the preconditioned algorithm. This should be due to the
necessity of an adaptive criterion, which enables to decide when-
ever the preconditioner is beneficial and hence worthwhile to be
applied or not. This will be the subject of future work.

Acknowledgement

The first author wishes to thank the “Programma Ricerche IN-
SEAN 2007-2009”.

34

1 1.2 1.4 1.6 1.8 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Unpreconditioned
Preconditioned

τ

1 1.5 2 2.5 3 3.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Unpreconditioned
Preconditioned

τ

Figure 6.1: Performance Profile w.r.t. inner iterations.

35

References

[1] J. Baglama, D. Calvetti, G. Golub, and L. Reichel,
Adaptively preconditioned GMRES algorithms, SIAM Journal
on Scientific Computing, 20 (1998), pp. 243–269.

[2] R. Bank and T. Chan, A composite step bi-conjugate gra-
dient algorithm for nonsymmetric linear systems, Numerical
Algorithms, 7 (1994), pp. 1–16.

[3] E. D. Dolan and J. Moré, Benchmarking optimization
software with performance profiles, Mathematical Program-
ming, 91 (2002), pp. 201–213.

[4] J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES
preconditioned by deflation, Journal of Computational and
Applied Mathematics, 69 (1996), pp. 303–318.

[5] G. Fasano, Use of conjugate directions inside Newton–type
algorithms for large scale unconstrained optimization, PhD
thesis, Università di Roma “La Sapienza”, Rome, Italy, 2001.

[6] G. Fasano, Planar–conjugate gradient algorithm for large–
scale unconstrained optimization, Part 2: Application, Jour-
nal of Optimization Theory and Applications, 125 (2005),
pp. 543–558.

[7] G. Fasano, Planar–conjugate gradient algorithm for large–
scale unconstrained optimization, Part 1: Theory, Journal of
Optimization Theory and Applications, 125 (2005), pp. 523–
541.

[8] G. Fasano, Lanczos-conjugate gradient method and pseu-
doinverse computation, in unconstrained optimization, Jour-
nal of Optimization Theory and Applications, 132 (2006),
pp. 267–285.

[9] G. Fasano and M. Roma, Iterative computation of nega-
tive curvature directions in large scale optimization, Compu-
tational Optimization and Applications, 38 (2007), pp. 81–
104.

36

[10] G. Golub and C. Van Loan, Matrix Computations, The
John Hopkins Press, Baltimore, 1996. Third edition.

[11] N. I. M. Gould, D. Orban, and P. L. Toint, CUTE

(and sifdec), a constrained and unconstrained testing environ-
ment, revised, ACM Transaction on Mathematical Software,
29 (2003), pp. 373–394.

[12] L. Grippo, F. Lampariello, and S. Lucidi, A trun-
cated Newton method with nonmonotone linesearch for uncon-
strained optimization, Journal of Optimization Theory and
Applications, 60 (1989), pp. 401–419.

[13] M. Hestenes, Conjugate Direction Methods in Optimiza-
tion, Springer Verlag, New York, 1980.

[14] L. Loghin, D. Ruiz, and A. Touhami, Adaptive precondi-
tioners for nonlinear systems of equations, Journal of Compu-
tational and Applied Mathematics, 189 (2006), pp. 362–374.

[15] J. Morales and J. Nocedal, Automatic preconditioning
by limited memory quasi–Newton updating, SIAM Journal on
Optimization, 10 (2000), pp. 1079–1096.

[16] J. L. Morales and J. Nocedal, Algorithm PREQN: For-
tran 77 subroutine for preconditioning the conjugate gradi-
ent method, ACM Transaction on Mathematical Software, 27
(2001), pp. 83–91.

[17] S. Nash, Preconditioning of truncated-Newton methods,
SIAM Journal on Scientific and Statistical Computing, 6
(1985), pp. 599–616.

[18] S. Nash, A survey of truncated-Newton methods, Journal
of Computational and Applied Mathematics, 124 (2000),
pp. 45–59.

[19] S. Nash and A. Sofer, Assessing a search direction within
a truncated-Newton method, Operations Research Letter, 9
(1990), pp. 219–221.

37

[20] J. Nocedal, Large scale unconstrained optimization, in The
state of the art in Numerical Analysis, A. Watson and I. Duff,
eds., Oxford, 1997, Oxford University Press, pp. 311–338.

[21] M. Roma, A dynamic scaling based preconditioning for trun-
cated newton methods in large scale unconstrained optimiza-
tion, Optimization Methods and Software, 20 (2005), pp. 693–
713.

[22] J. Stoer, Solution of large linear systems of equations by
conjugate gradient type methods, in Mathematical Program-
ming. The State of the Art, A. Bachem, M.Grötschel, and
B. Korte, eds., Berlin Heidelberg, 1983, Springer-Verlag,
pp. 540–565.

38

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
ARWHEAD 1000 34 364 37 0.000000D+00 0.08
ARWHEAD 10000 10 102 11 1.332134D-11 0.22
BDQRTIC 1000 50 297 103 3.983818D+03 0.11
BDQRTIC 10000 461 **** 2244 4.003431D+04 41.27
BROYDN7D 1000 449 1972 2686 3.823419D+00 2.52
BROYDN7D 10000 884 4058 4575 3.711778D+03 54.77
BRYBND 1000 21 65 29 9.588198D-14 0.02
BRYBND 10000 21 65 29 8.686026D-14 0.42
CHAINWOO 1000 262 440 1004 1.000000D+00 0.64
CHAINWOO 10000 287 823 911 1.000000D+00 8.78
COSINE 1000 22 64 40 -9.990000D+02 0.03
COSINE 10000 19 65 32 -9.999000D+03 0.27
CRAGGLVY 1000 46 213 110 3.364231D+02 0.14
CRAGGLVY 10000 115 775 177 3.377956D+03 3.45
CURLY10 1000 151 438 7638 -1.003163D+05 2.94
CURLY10 10000 135 1295 55801 -1.003163D+06 318.88
CURLY20 1000 267 470 7670 -1.001379D+05 4.91
CURLY20 10000 162 994 64081 -1.001313D+06 510.39
CURLY30 1000 >10000 - - - -
DIXMAANA 1500 8 13 9 1.000000D+00 0.00
DIXMAANA 3000 8 14 8 1.000000D+00 0.02
DIXMAANB 1500 5 10 6 1.000000D+00 0.02
DIXMAANB 3000 5 10 6 1.000000D+00 0.02
DIXMAANC 1500 5 11 6 1.000000D+00 0.00
DIXMAANC 3000 5 11 6 1.000000D+00 0.05
DIXMAAND 1500 5 8 5 1.000000D+00 0.00
DIXMAAND 3000 5 8 5 1.000000D+00 0.00
DIXMAANE 1500 63 66 204 1.000000D+00 0.23
DIXMAANE 3000 88 91 277 1.000000D+00 0.70
DIXMAANF 1500 33 38 198 1.000000D+00 0.23
DIXMAANF 3000 32 37 238 1.000000D+00 0.58
DIXMAANG 1500 41 80 223 1.000000D+00 0.25
DIXMAANG 3000 65 133 400 1.000000D+00 1.09
DIXMAANH 1500 26 28 194 1.000000D+00 0.19
DIXMAANH 3000 28 30 256 1.000000D+00 0.66
DIXMAANI 1500 60 63 1997 1.000000D+00 1.81
DIXMAANI 3000 83 86 2585 1.000000D+00 5.23
DIXMAANJ 1500 58 118 213 1.089260D+00 0.22
DIXMAANJ 3000 63 135 291 1.176995D+00 0.75
DIXMAANK 1500 24 38 335 1.000000D+00 0.34
DIXMAANK 3000 28 41 333 1.000000D+00 0.78
DIXMAANL 1500 34 36 1648 1.000000D+00 1.59
DIXMAANL 3000 30 32 282 1.000000D+00 0.67

Table 6.1: The results for the unpreconditioned Truncated Newton
method. Part A

39

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
DQDRTIC 1000 33 274 34 7.461713D-26 0.06
DQDRTIC 10000 102 868 103 2.426640D-27 2.02
DQRTIC 1000 22 81 40 2.784985D-02 0.00
DQRTIC 10000 31 111 60 4.932478D-01 0.28
EDENSCH 1000 21 89 27 6.003285D+03 0.00
EDENSCH 10000 18 85 23 6.000328D+04 0.42
ENGVAL1 1000 11 34 16 1.108195D+03 0.02
ENGVAL1 10000 12 36 19 1.109926D+04 0.22
FLETCBV2 1000 1 1 1 -5.013384D-01 0.00
FLETCBV2 10000 1 1 1 -5.001341D-01 0.02
FLETCBV3 1000 11 11 33 -4.050270D+04 0.02
FLETCBV3 10000 183 183 398 -3.519402D+09 5.34
FLETCHCR 1000 50 342 116 6.392434D-10 0.14
FLETCHCR 10000 116 1085 179 3.525524D-11 3.81
FMINSURF 1024 32 88 1193 1.000000D+00 1.44
FMINSURF 5625 29 122 5062 1.000000D+00 32.72
FREUROTH 1000 38 300 50 1.214697D+05 0.08
FREUROTH 10000 107 1052 119 1.216521D+06 3.89
GENHUMPS 1000 829 3041 5090 6.634813D-11 6.06
GENHUMPS 10000 4682 20484 37195 2.053170D-10 422.52
GENROSE 1000 838 2978 6209 1.000000D+00 4.11
GENROSE 10000 8114 28447 62732 1.000000D+00 569.25
LIARWHD 1000 42 251 61 8.352643D-19 0.08
LIARWHD 10000 112 1107 133 1.455368D-20 2.78
MOREBV 1000 6 6 70 9.088088D-09 0.03
MOREBV 10000 2 2 7 2.428066D-09 0.06
MSQRTALS 1024 178 549 6074 3.676555D-07 52.75
MSQRTBLS 1024 176 560 4545 1.281827D-07 39.78
NONCVXUN 1000 180 664 6040 2.325913D+03 5.27
NONCVXUN 10000 2173 10978 16270 2.323860D+04 185.31
NONCVXU2 1000 191 878 2028 2.317579D+03 1.98
NONCVXU2 10000 1869 9496 11198 2.316937D+04 131.89
NONDIA 1000 22 256 27 6.680969D-21 0.11
NONDIA 10000 78 1515 82 5.507180D-13 7.19
NONDQUAR 1000 43 112 215 1.135243D-04 0.08
NONDQUAR 10000 50 182 208 1.745194D-04 1.06
PENALTY1 1000 31 32 59 9.686175D-03 0.03
PENALTY1 10000 54 81 121 9.900151D-02 0.95
POWELLSG 1000 46 257 86 1.992056D-08 0.06
POWELLSG 10000 114 783 151 7.735314D-08 1.09
POWER 1000 56 180 221 2.472989D-09 0.08
POWER 10000 139 797 683 2.426355D-09 3.22
QUARTC 1000 22 81 40 2.784985D-02 0.03
QUARTC 10000 31 111 60 4.932478D-01 0.36
SCHMVETT 1000 14 35 37 -2.994000D+03 0.08
SCHMVETT 10000 19 69 38 -2.999400D+04 0.91

Table 6.2: The results for the unpreconditioned Truncated Newton
method. Part B

40

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
SINQUAD 1000 37 310 49 -2.942505D+05 0.06
SINQUAD 10000 104 1517 111 -2.642315D+07 3.61
SPARSINE 1000 110 586 2942 2.759912D-04 3.02
SPARSINE 10000 412 2303 52888 3.740182D-03 739.14
SPARSQUR 1000 22 66 34 6.266490D-09 0.05
SPARSQUR 10000 22 67 39 1.069594D-08 0.91
SPMSRTLS 1000 56 219 211 6.219291D+00 0.20
SPMSRTLS 10000 5333 5796 62357 5.697109D+01 809.02
SROSENBR 1000 35 309 40 2.842418D-22 0.03
SROSENBR 10000 104 920 108 9.421397D-12 1.20
TESTQUAD 1000 174 723 2823 7.538349D-13 1.06
TOINTGSS 1000 2 3 1 1.001002D+01 0.00
TOINTGSS 10000 2 3 1 1.000100D+01 0.03
TQUARTIC 1000 21 185 27 3.767509D-10 0.03
TQUARTIC 10000 14 144 18 1.145916D-11 0.27
TRIDIA 1000 68 459 927 1.141528D-13 0.34
TRIDIA 10000 176 1803 3756 7.993474D-14 14.91
VARDIM 1000 37 37 72 1.058565D-20 0.05
VARDIM 10000 >10000 - - - -
VAREIGVL 1000 20 45 167 3.903597D-10 0.17
VAREIGVL 10000 21 179 22 3.924839D-16 1.05
WOODS 1000 64 377 141 3.857513D-08 0.12
WOODS 10000 139 1095 223 5.031534D-08 2.67

Table 6.3: The results for the unpreconditioned Truncated Newton
method. Part C

41

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
ARWHEAD 1000 34 364 37 0.000000D+00 0.09
ARWHEAD 10000 10 102 11 1.332134D-11 0.22
BDQRTIC 1000 50 297 103 3.983818D+03 0.11
BDQRTIC 10000 461 12751 2244 4.003431D+04 38.89
BROYDN7D 1000 459 1756 1702 3.823419D+00 2.31
BROYDN7D 10000 892 4285 3408 3.661974D+03 55.88
BRYBND 1000 21 65 29 9.588198D-14 0.05
BRYBND 10000 21 65 29 8.686026D-14 0.41
CHAINWOO 1000 154 331 507 1.000000D+00 0.42
CHAINWOO 10000 297 824 883 1.000000D+00 9.27
COSINE 1000 22 64 40 -9.990000D+02 0.03
COSINE 10000 19 65 32 -9.999000D+03 0.27
CRAGGLVY 1000 49 216 94 3.364231D+02 0.14
CRAGGLVY 10000 116 776 173 3.377956D+03 3.52
CURLY10 1000 >10000 - - - -
CURLY10 10000 >10000 - - - -
CURLY20 1000 >10000 - - - -
CURLY20 10000 >10000 - - - -
CURLY30 1000 >10000 - - - -
DIXMAANA 1500 8 13 9 1.000000D+00 0.02
DIXMAANA 3000 8 14 8 1.000000D+00 0.03
DIXMAANB 1500 5 10 6 1.000000D+00 0.02
DIXMAANB 3000 5 10 6 1.000000D+00 0.02
DIXMAANC 1500 5 11 6 1.000000D+00 0.03
DIXMAANC 3000 5 11 6 1.000000D+00 0.03
DIXMAAND 1500 5 8 5 1.000000D+00 0.00
DIXMAAND 3000 5 8 5 1.000000D+00 0.02
DIXMAANE 1500 76 79 168 1.000000D+00 0.30
DIXMAANE 3000 114 117 258 1.000000D+00 1.11
DIXMAANF 1500 52 57 136 1.000000D+00 0.31
DIXMAANF 3000 54 59 143 1.000000D+00 0.78
DIXMAANG 1500 43 86 121 1.000000D+00 0.30
DIXMAANG 3000 75 146 251 1.000000D+00 1.20
DIXMAANH 1500 54 56 134 1.000000D+00 0.42
DIXMAANH 3000 74 76 209 1.000000D+00 1.22
DIXMAANI 1500 235 238 762 1.000001D+00 1.92
DIXMAANI 3000 218 221 686 1.000002D+00 3.50
DIXMAANJ 1500 64 117 164 1.086254D+00 0.36
DIXMAANJ 3000 78 171 224 1.165166D+00 1.69
DIXMAANK 1500 60 74 173 1.000000D+00 0.52
DIXMAANK 3000 62 75 199 1.000000D+00 1.05
DIXMAANL 1500 53 55 130 1.000001D+00 0.38
DIXMAANL 3000 55 57 149 1.000000D+00 0.88

Table 6.4: The results for the preconditioned Truncated Newton
method. Part A

42

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
DQDRTIC 1000 33 274 34 7.461713D-26 0.05
DQDRTIC 10000 102 868 103 2.426640D-27 1.98
DQRTIC 1000 22 81 40 2.784985D-02 0.02
DQRTIC 10000 31 111 60 4.932478D-01 0.34
EDENSCH 1000 21 89 27 6.003285D+03 0.05
EDENSCH 10000 18 85 23 6.000328D+04 0.41
ENGVAL1 1000 11 34 16 1.108195D+03 0.02
ENGVAL1 10000 12 36 19 1.109926D+04 0.28
FLETCBV2 1000 1 1 1 -5.013384D-01 0.00
FLETCBV2 10000 1 1 1 -5.001341D-01 0.00
FLETCBV3 1000 9 9 22 -8.470587D+04 0.02
FLETCBV3 10000 111 111 132 -6.590391D+09 1.39
FLETCHCR 1000 58 350 105 1.153703D-09 0.14
FLETCHCR 10000 123 1091 161 2.483558D-08 3.16
FMINSURF 1024 68 172 210 1.000000D+00 0.56
FMINSURF 5625 209 556 664 1.000000D+00 11.98
FREUROTH 1000 38 300 50 1.214697D+05 0.08
FREUROTH 10000 107 1052 119 1.216521D+06 3.27
GENHUMPS 1000 801 2848 2894 1.715389D-11 5.61
GENHUMPS 10000 5318 9264 15635 1.282590D-13 390.52
GENROSE 1000 849 2596 2608 1.000000D+00 4.38
GENROSE 10000 8090 24307 24913 1.000000D+00 524.05
LIARWHD 1000 42 251 61 8.352643D-19 0.09
LIARWHD 10000 112 1107 133 1.455368D-20 2.55
MOREBV 1000 8 8 28 2.148161D-08 0.03
MOREBV 10000 2 2 7 2.428066D-09 0.06
MSQRTALS 1024 4726 4955 16550 3.407724D-05 342.20
MSQRTBLS 1024 3110 3337 10724 1.119480D-05 229.73
NONCVXUN 1000 676 1245 2279 2.327300D+03 5.22
NONCVXUN 10000 2765 12132 11297 2.330632D+04 195.00
NONCVXU2 1000 462 1176 1674 2.319022D+03 3.34
NONCVXU2 10000 2176 10275 8905 2.319615D+04 146.28
NONDIA 1000 22 256 27 6.680969D-21 0.12
NONDIA 10000 78 1515 82 5.507180D-13 6.62
NONDQUAR 1000 45 111 111 1.425631D-04 0.08
NONDQUAR 10000 46 175 98 3.744366D-04 0.94
PENALTY1 1000 31 32 59 9.686175D-03 0.05
PENALTY1 10000 54 81 121 9.900151D-02 0.94
POWELLSG 1000 46 257 86 1.992056D-08 0.05
POWELLSG 10000 114 783 151 7.735314D-08 1.17
POWER 1000 65 189 142 5.912729D-09 0.16
POWER 10000 243 901 616 7.784205D-09 6.06
QUARTC 1000 22 81 40 2.784985D-02 0.03
QUARTC 10000 31 111 60 4.932478D-01 0.36
SCHMVETT 1000 14 35 37 -2.994000D+03 0.06
SCHMVETT 10000 19 69 38 -2.999400D+04 0.86

Table 6.5: The results for the preconditioned Truncated Newton
method. Part B

43

PROBLEM n ITER FUNCT CG-it F. VALUE TIME
SINQUAD 1000 37 310 49 -2.942505D+05 0.11
SINQUAD 10000 104 1517 111 -2.642315D+07 3.55
SPARSINE 1000 2718 3138 9243 1.271332D-02 27.39
SPARSINE 10000 - - - - >900
SPARSQUR 1000 22 66 34 6.266490D-09 0.06
SPARSQUR 10000 22 67 39 1.069594D-08 0.89
SPMSRTLS 1000 62 218 132 6.219291D+00 0.25
SPMSRTLS 10000 - - - - >900
SROSENBR 1000 35 309 40 2.842418D-22 0.03
SROSENBR 10000 104 920 108 9.421397D-12 1.38
TESTQUAD 1000 >10000 - - - -
TOINTGSS 1000 2 3 1 1.001002D+01 0.00
TOINTGSS 10000 2 3 1 1.000100D+01 0.05
TQUARTIC 1000 21 185 27 3.767509D-10 0.03
TQUARTIC 10000 14 144 18 1.145916D-11 0.28
TRIDIA 1000 431 822 1416 8.189019D-12 1.55
TRIDIA 10000 3618 5245 12146 1.026049D-11 142.69
VARDIM 1000 37 37 72 1.058565D-20 0.06
VARDIM 10000 >10000 - - - -
VAREIGVL 1000 39 64 127 1.491460D-09 0.30
VAREIGVL 10000 21 179 22 3.924839D-16 1.09
WOODS 1000 64 377 141 3.857513D-08 0.16
WOODS 10000 139 1095 223 5.031534D-08 2.81

Table 6.6: The results for the preconditioned Truncated Newton
method. Part C

44

