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We analyze the problem of agents’ interactions in a given population. The purpose of this paper is twofold.
Starting from a scheme proposed by Galam [Physica A 320, 571 (2003)], which is based on a majority rule to treat
the individuals’ interactions, we first study some of its relevant properties. Then, we introduce special individuals,
called opinion leaders, who play a key role in information spreading in several practical applications. Opinion
leaders have the special feature of strongly interfering with the process based on the majority rule, speeding up
the diffusion. We consider a model describing agents’ interactions, which encompasses Galam’s proposal, where
opinion leaders are included as special agents. Then we study its specific properties which significantly recast
and extend some conclusions drawn for the models given by Galam and Ellero, Fasano, and Sorato [Physica A
388, 3901 (2009)]. Finally, we provide theoretical and numerical results concerning the dynamics of our model,
showing that a small percentage of opinion leaders may both accelerate and/or even reverse the overall consensus
among all the agents.
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I. INTRODUCTION

Diffusion dynamics applied to social sciences has been
studied in a huge number of papers and books, covering a wide
range of perspectives, from marketing (see, e.g., Refs. [1–3]) to
agent-based modeling (see, e.g., Refs. [4,5]) and sociophysics
(see, e.g., Refs. [6,7]). As originally pointed out in Ref. [8],
some members of a social network are “likely to influence
other persons in their immediate environment” and enhance
diffusion processes. They affect the spreading of information
or the diffusion and adoption of a new product through different
communication channels [9]. In the literature, such special
people are called opinion leaders, influencers, mavens, or hubs,
depending on the kind of influence on the process they have,
and are usually convincing experts or have a large number of
social ties [10–13].

The interest in opinion leaders has been increasing in recent
years due to the rapid spread of social networks and the Web
2.0, where rather easily a small group of opinion leaders may
accelerate, or even stop, information circulation, especially in
the initial phase of the process [12,14]. As a result, influencer
marketing is nowadays a recognized form of communication,
which requires a specific toolbox to be fully exploited [15].

In this paper we focus on opinion leaders who are effec-
tive in modifying the dynamics of individuals’ interactions
due to their influencing skills, while their connectedness in the
social network plays a secondary role. As a practical example
of this kind of leader, consider the way some influential
doctors are able to push products of specific drug companies.
Pharmaceutical firms reward opinion leaders among doctors
to turn them into disguised salespersons [16], boosting in this
way the process of the drug’s diffusion on the doctors’ social
network [11].

The interaction of politicians with electorates provides
another real problem where opinion leaders may play a key
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role, in order to spread information and to influence final
decisions. One of the early examples in this regard is given
in Ref. [17].

Our idea of opinion leaders has also some relation with the
concept of inflexibles, special individuals introduced by Galam
[18], who never change their minds about some issues. On the
other hand, opinion leaders have a stronger and more active
role in the communication process with respect to inflexibles,
who have the effect of adding some inertia to the diffusion
process.

The underlying diffusion process we consider in this paper
relies on a stylized model proposed by Galam [6]. In Galam’s
model each member (agent) of an undifferentiated population
can have one of two opposite opinions about some topic, and
may change her mind in discussions with other individuals
of the population. Thus, each individual may impact opinion
diffusion by means of repeated discussions in groups.

In our proposal we suitably recast Galam’s model, in order
to introduce opinion-leader agents, i.e., differentiated agents
who are assumed to drive the opinion of the agents joining
the same discussion group. The opinion leaders we consider
are able to convince all the agents they meet in a group,
while keeping their own opinions unchanged. We provide
both theoretical and numerical results which show the role
of opinion leaders in the diffusion process.

The paper is organized as follows: Sec. II partially reviews
Galam’s model [6], detailing some of its peculiarities. Sec-
tion III is devoted to reporting some theoretical properties
of Galam’s model. In Sec. IV we describe our model, including
the definition of opinion leaders. Section V analyzes the
dynamics of the model with opinion leaders, also comparing
it with Galam’s model. Finally, a section of Conclusions
completes the paper, along with an Appendix of additional
results for relevant special cases.

In order to preserve fluent readability for uninterested
readers, all the proofs of theoretical results have been moved
to the Appendix. This helps both preserve a rigorous treatment
of the subject and allow a fast comprehension of the paper’s
contents.
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II. GALAM’s MODEL

This section briefly reviews Galam’s model [6,7] along
with some of its properties. Consider a set of N individuals
(agents) involved in a discussion, who may take one of two
opposite opinions (say, “+” or “−”) about a certain topic. At
each time step t (with t � 0) the N agents meet to discuss. Let
N+(t) [N−(t)] be the number of agents having opinion + (−);
obviously N = N+(t) + N−(t) at each time step t . When the
agents meet, the discussion takes place in subsets (groups) of
individuals, and they may change their minds.

More precisely, at time t , each of the N agents belongs
to a k-sized group with probability ak , where k denotes the
cardinality of the group, k = 1, . . . ,L. Thus, at each time step
there may be several groups of size k and

L∑
k=1

ak = 1 with ak � 0, k = 1, . . . ,L.

Then, after a discussion in each group, at the outset of the
next period t + 1, each individual can reverse their opinion
to the opposite one (+ becomes − or vice versa) according

to a majority rule, i.e., all agents of the group take the view
of the majority. The rule for reversing opinion is assumed by
Galam [6] to be slightly biased in favor of one of the two
opinions, namely, the negative opinion −: in the case of parity
the opinion − prevails over +, so that all the members of the
group will take opinion − at time t + 1.

Let us indicate by P+(t) the “estimated” probability that an
individual, among the N individuals of the population, thinks
+ at time t . Clearly the probability that an individual thinks −
at step t must be given by P−(t) = 1 − P+(t).

Galam [6] provides a model to be used to estimate the
dynamics of the probability P+(t) using the recursive formula

P+(t + 1) =
L∑

k=1

ak

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j , (1)

where the symbol �z� indicates the largest integer less than
or equal to z, and Ck

j is the binomial coefficient. In order to
explicitly consider the cases in which P+(t) is equal to 0 or 1
we extend (1) as follows:

P+(t + 1) = G[P+(t)] =
⎧⎨
⎩

0 if P+(t) = 0,∑L
k=1 ak

∑k

j=� k
2 +1� Ck

j P+(t)j {1 − P+(t)}k−j if 0 < P+(t) < 1,

1 if P+(t) = 1,

(2)

which defines the continuous function G on [0,1]. We set
the initial condition P+(0) = N+(0)/N , where N+(0) is the
number of agents thinking + at the beginning of the process.
For any t � 1 the quantity P+(t) is computed by (2), and
may possibly differ from the “actual” value N+(t)/N (which
represents the probability of having individuals thinking + at
time t , among the N individuals).

Note that model (2) is well posed and the quantity P+(t)
satisfies 0 � P+(t) � 1, for any t � 1. Indeed, except for the
trivial cases in which P+(t) is 0 or 1, in (2) for any choice of
a1, . . . ,aL we have P+(t + 1) < 1 if

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j < 1,

for any k = 1, . . . ,L. The latter inequality holds from the
binomial theorem, since

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j

<

k∑
j=0

Ck
j P+(t)j {1 − P+(t)}k−j

= {P+(t) + [1 − P+(t)]}k = 1.

Following Refs. [6,19,20] we define the killing point (or
tipping point) as the threshold value P̂+ such that

(a) if P+(0) > P̂+ then lim
t→∞ P+(t) = 1,

(b) if P+(0) = P̂+ then P+(t) = P+(0), ∀ t > 0,

(c) if P+(0) < P̂+ then lim
t→∞ P+(t) = 0.

In other words, the killing point P̂+ is an unstable fixed point
of the function G and also a threshold value such that, if the
probability of agents thinking + at the beginning of the process
lies above it, then all agents will definitely have opinion +.
Conversely, the opinion of the agents will be definitely − if
the starting probability of agents thinking + is less than P̂+.

We complete this section with a reformulation of (1), in
a way that will be useful when we recast Galam’s model in
Sec. IV. Observe that from the relation⌊

k

2
+ 1

⌋
=

⌊
k

2

⌋
+ 1,

and recalling that for the binomial distribution

k∑
j=0

Ck
j {P+(t)}j {1 − P+(t)}k−j = 1,

we have
L∑

k=1

ak

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j

= 1 −
L∑

k=1

ak

� k
2 �∑

j=0

Ck
j P+(t)j {1 − P+(t)}k−j .

Model (1) is therefore equivalent to

P+(t + 1) = 1 −
L∑

k=1

ak

� k
2 �∑

j=0

Ck
j P+(t)j {1 − P+(t)}k−j . (3)
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III. SOME TECHNICAL PROPERTIES
OF GALAM’s MODEL

In this section we consider some properties of the dynamics
of model (1). Most of the results in this section might be
rather technical for nonspecialist readers. However, we are
going to show that this preliminary analysis is useful, in order
to provide additional results relative to both Galam’s model
and its extension proposed in Sec. IV. To facilitate reading at
first glance all the proofs are reported in the Appendix. Some
extensions to the case when opinion leaders are taken into
account in the diffusion process are detailed in Sec. V.

Recalling (2), let us indicate by Gk , with 1 � k � L, the
function

Gk[P+(t)]

=
⎧⎨
⎩

0 if P+(t) = 0,∑k

j=� k
2 +1� Ck

j P+(t)j {1 − P+(t)}k−j if 0 < P+(t) < 1,

1 if P+(t) = 1,

(4)

which is model (2) with aj = 0, for all j �= k. Then we imme-
diately realize that G in (2) is given by the weighted sum

G =
L∑

k=1

akGk. (5)

Relation (5) suggests that in order to study some general
properties of Galam’s model (2), it might be useful to consider
what happens in the special cases in which all the groups have
the same size, i.e., we consider ak = 1 for some fixed value
of k.

With this view, let us rewrite the function Gk . Following
Ref. [21] we have

k∑
j=� k

2 �+1

Ck
j P+(t)j {1 − P+(t)}k−j
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FIG. 1. (Color online) P+(t + 1) vs P+(t) as given by Galam’s
formula (1) with ak = 1, and k ∈ {4,6,8}. Since k is even, in all the
three cases the killing point is larger than 0.5.

= BC

(
P+(t);

⌊
k
2

⌋ + 1,k − ⌊
k
2

⌋)

B
(⌊

k
2

⌋ + 1,k − ⌊
k
2

⌋) , (6)

where

BC

(
P+(t);

⌊
k

2

⌋
+ 1,k −

⌊
k

2

⌋)

=
∫ P+(t)

0
u� k

2 �(1 − u)k−� k
2 �−1du (7)

is the so-called complete beta function, and

B

(⌊
k

2

⌋
+ 1,k −

⌊
k

2

⌋)
=

⌊
k
2

⌋
!
(
k − ⌊

k
2

⌋ − 1
)
!

k!
(8)

is the beta function. In order to simplify the notation in the
following we define

βk =
⌊

k
2

⌋
!
(
k − ⌊

k
2

⌋ − 1
)
!

k!
.

Using (6)–(8) we have the following result.
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FIG. 2. A possible transformation of the groups of agents, in the
presence of opinion leaders, from the outset of time step t (a) to the
end of time step t (b), after discussion. With + we indicate agents
thinking +, with − agents thinking −, and o represents an opinion
leader. The agents are grouped into tables of discussion whose size is
indicated by K.
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TABLE I. The killing point P̂+ of Gk , for even k and 2 � k � 50.

k = 2 P̂+ = 1.0000 k = 4 P̂+ = 0.7676 k = 6 P̂+ = 0.6529 k = 8 P̂+ = 0.6045 k = 10 P̂+ = 0.5786
k = 12 P̂+ = 0.5626 k = 14 P̂+ = 0.5519 k = 16 P̂+ = 0.5442 k = 18 P̂+ = 0.5384 k = 20 P̂+ = 0.5340
k = 22 P̂+ = 0.5304 k = 24 P̂+ = 0.5275 k = 26 P̂+ = 0.5251 k = 28 P̂+ = 0.5231 k = 30 P̂+ = 0.5213
k = 32 P̂+ = 0.5198 k = 34 P̂+ = 0.5185 k = 36 P̂+ = 0.5174 k = 38 P̂+ = 0.5163 k = 40 P̂+ = 0.5154
k = 42 P̂+ = 0.5146 k = 44 P̂+ = 0.5139 k = 46 P̂+ = 0.5132 k = 48 P̂+ = 0.5126 k = 50 P̂+ = 0.5121

Proposition 3.1. Consider the function Gk in (4) for a fixed
value of k � 1. Then,

(1) Gk : [0,1] → [0,1].
(2) Gk is continuous in [0,1] and strictly increasing on (0,1).
(3) For k = 1 the function Gk is the identity.
(4) For k even and k � 2 the function Gk is strictly convex

if and only if P+(t) � k/[2(k − 1)].
(5) For k odd and k � 3 the function Gk is strictly convex if

and only if P+(t) � 1/2.
We then have also the next corollary.
Corollary 3.1. If k �= 1 then Gk has a unique fixed point

P̂+ ∈ (0,1), which is the killing point of Gk .
Considering relation (5), some properties of function Gk

can be extended to function G.
Corollary 3.2. Let us consider the function G in (5). Then
(i) G : [0,1] → [0,1].

(ii) G is continuous in [0,1] and strictly increasing on (0,1).
(iii) If a1 = 1 the function G is the identity.

(iv) If a1 �= 1 then G is strictly convex on [0,1/2].
(v) If a1 �= 1 and ak = 0 for any even k, then G is strictly

concave on [1/2,1].
(vi) If a1 �= 1 and ak = 0 for any k odd, then G is strictly

convex on {0,k̄/[2(k̄ − 1)]} where k̄ = max 2�k�L{k : ak �= 0,

and k is even}.
As regards the existence of fixed points for function G, we

have the next result.
Corollary 3.3. Consider the function G in (5). G has at least

one fixed point in (0,1).
When gathering only in odd-sized groups is allowed, then

we have the following special property.
Corollary 3.4. If ak = 0 for any even value of

k, 2 � k � L, and a1 < 1, then P̂+ = 1/2 is the killing point of
function G.

For a better understanding of the Corollary 3.4, in Fig. 4(a)
we report the graph of Gk , i.e., the scatter plot graphs of P+(t +
1) vs P+(t), choosing k ∈ {5,7,9} (i.e., for some odd values

TABLE II. Comparison between the model (10) and a simulation, where we set respectively L = 6, ak = 1/6, k = 1, . . . ,6 or L = 7,
ak = 1/7, k = 1, . . . ,7, and s ∈ {0,0.06} (similar results hold also for other values of s). The value σ 2(t) represents, at time step t (t step), the
average square error between the model (10) and the simulation, over 500 runs. The simulation is performed setting N = 1000; the results are
reported for ten steps of the simulation. We set N+(0) = 450 so that the initial percentage of + agents [i.e., P+(0) = 450/1000] was below the
killing point computed for s = 0. Finally, the results are averaged over 500 runs. The model and the simulation provide similar results, for both
L = 6 and L = 7. The numbers in square brackets indicate the power of 10.

L = 6, s = 0 L = 6, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)

0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3302 0.3298 0.670 − 07 1 0.4229 0.4230 0.390 − 06
2 0.1842 0.1851 0.572 − 06 2 0.3943 0.3945 0.313 − 06
3 0.0647 0.0660 0.969 − 07 3 0.3659 0.3666 0.607 − 06
4 0.0141 0.0145 0.606 − 07 4 0.3397 0.3420 0.499 − 07
5 0.0025 0.0026 0.138 − 07 5 0.3174 0.3214 0.550 − 06
6 0.0004 0.0004 0.383 − 09 6 0.3000 0.3034 0.485 − 06
7 0.0001 0.0001 0.147 − 10 7 0.2873 0.2882 0.929 − 08
8 0.0000 0.0000 0.288 − 12 8 0.2786 0.2792 0.207 − 06
9 0.0000 0.0000 0.320 − 13 9 0.2728 0.2716 0.110 − 06

L = 7, s = 0 L = 7, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)
0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3390 0.3388 0.664 − 06 1 0.4423 0.4400 0.580 − 06
2 0.1919 0.1910 0.114 − 05 2 0.4337 0.4301 0.144 − 05
3 0.0635 0.0647 0.820 − 06 3 0.4242 0.4212 0.202 − 05
4 0.0119 0.0123 0.227 − 06 4 0.4139 0.4115 0.110 − 05
5 0.0018 0.0019 0.239 − 08 5 0.4031 0.4037 0.138 − 06
6 0.0003 0.0003 0.104 − 08 6 0.3920 0.3970 0.320 − 05
7 0.0000 0.0000 0.156 − 11 7 0.3809 0.3886 0.706 − 05
8 0.0000 0.0000 0.320 − 13 8 0.3702 0.3817 0.656 − 05
9 0.0000 0.0000 0.800 − 14 9 0.3603 0.3764 0.656 − 05
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of k). The resulting graphs are summarized in Fig. 4(a), and
confirm Corollary 3.4.

Observe that Corollary 3.4 does not hold in the case ak = 0
for any odd value of k, due to the bias for − in the case of parity.
Similarly, Corollary 3.4 does not hold in the case ak �= 0, for
at least one even k. An example is given in Fig. 1, where we
set ak = 1 with k ∈ {4,6,8}. Observe that due to the bias of the
majority rule in favor of −, the killing point when k is even
cannot be smaller than 1/2. In particular, as Fig. 1 suggests
and in view of (5), we are able to provide lower and upper
bounds for the killing point in the general case. Indeed, the
value of the killing point of G is bounded from below by 1/2,
as mentioned before, and bounded from above by the killing
point of Gm, where

m = min
2�k�L

{k:k is even and ak �= 0}. (9)

Since the killing point of G4 is (1 + √
13)/6 ≈ 0.768, then

the latter value is an upper bound for the killing point of G,
provided that a2 = 0.1 We report in Table I the killing point of
Gk , for even values of k in the range [2,50]. Table I confirms the
bound (9), since the killing point P̂+ decreases as k increases.

In Appendix we explicitly compute the killing point of G
for the special cases L = 1,2,3,4 (see also Ref. [19]).

1In Appendix we prove that when L = 2 then P̂+ = 1.

From Fig. 4(a) and Fig. 1 there is also empirical evidence
that, given the value of probability P̄+ > 1/2, then Gk(P̄+)
increases with k (in Sec. V we address the latter issue more
precisely).

IV. A PERSPECTIVE INTRODUCING
OPINION LEADERS

We consider now the scenario that appears as a result of the
introduction, in the process defined by Galam [6], of special
agents which are opinion leaders and, in particular, we focus
on their effects on the opinion diffusion dynamics. To clarify
our approach we introduce the following definition of opinion
leader.

Definition IV.1. Given N agents, an agent is called an
opinion leader if

(1) Her opinion is +, for any t � 0.
(2) All agents in the group she is joining at time step t will

have opinion + at the beginning of time step t + 1.
The first requirement in the above definition means that

each opinion leader is one of the N+(t) agents who think + at
each time step t , while the second requirement assumes that an
opinion leader is able to convince all the members of her group
to think +, no matter the opinion they had before gathering.

Thus, from Definition 4.1 the role of the opinion leader
we have just introduced, to a large extent summarizes
some informal definitions given in the literature (see, e.g.,

TABLE III. Comparison between the model (10) and a simulation, where we set respectively L = 6, ak = 1/6, k = 1, . . . ,6 or L = 7,
ak = 1/7, k = 1, . . . ,7, and s ∈ {0,0.06} (similar results hold also for other values of s). The value σ 2(t) represents, at time step t , the average
square error between the model (10) and the simulation, over 500 runs. The simulation is performed setting N = 700; the results are reported
for ten steps of the simulation. We set N+(0) = 315 so that the initial percentage of + agents [i.e., P+(0) = 315/700] was below the killing
point computed for s = 0. Finally, the results are averaged over 500 runs. The model and the simulation provide similar results, both for L = 6
and L = 7. The numbers in square brackets indicate the power of 10.

L = 6, s = 0 L = 6, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)

0 0.4500 0.4500 0.0000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3302 0.3308 0.173 − 06 1 0.4229 0.4224 0.161 − 06
2 0.1842 0.1847 0.114 − 06 2 0.3943 0.3938 0.305 − 06
3 0.0647 0.0659 0.106 − 06 3 0.3659 0.3669 0.177 − 05
4 0.0141 0.0149 0.699 − 09 4 0.3397 0.3417 0.239 − 05
5 0.0025 0.0027 0.184 − 07 5 0.3174 0.3205 0.222 − 05
6 0.0004 0.0005 0.190 − 08 6 0.3000 0.3033 0.136 − 05
7 0.0001 0.0001 0.110 − 10 7 0.2873 0.2915 0.375 − 07
8 0.0000 0.0000 0.261 − 12 8 0.2786 0.2831 0.139 − 07
9 0.0000 0.0000 0.163 − 13 9 0.2728 0.2753 0.833 − 06

L = 7, s = 0 L = 7, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)
0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3390 0.3379 0.295 − 06 1 0.4423 0.4409 0.1300 − 06
2 0.1919 0.1907 0.107 − 08 2 0.4337 0.4323 0.854 − 07
3 0.0635 0.0644 0.341 − 07 3 0.4242 0.4235 0.512 − 05
4 0.0119 0.0129 0.363 − 08 4 0.4139 0.4133 0.153 − 04
5 0.0018 0.0020 0.659 − 09 5 0.4031 0.4072 0.368 − 04
6 0.0003 0.0003 0.132 − 09 6 0.3920 0.4011 0.300 − 04
7 0.0000 0.0000 0.163 − 11 7 0.3809 0.3959 0.255 − 04
8 0.0000 0.0000 0.163 − 13 8 0.3702 0.3907 0.130 − 04
9 0.0000 0.0000 0.000 + 00 9 0.3603 0.3856 0.650 − 05
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Refs. [8,10,11]). Moreover, the concept of the opinion leader
has some analogy with the idea of inflexible agent defined in
Ref. [18].

Following the ideas of Galam’s model we want to estimate
the probability P+(t + 1) of having individuals thinking + at
period t + 1 when opinion leaders take part in the diffusion
process. Defining, as for (1), the parameters L, a1, . . . ,aL, and
the probability P+(t), we consider a process in which exactly
Nop opinion leaders are activated, clearly with Nop � N+(t),
for any t . Keeping the behavior biased toward the opinion – in
the case of parity, we propose the following opinion leader
model which extends Galam’s idea as expressed in (3):

P+(t + 1) = 1 −
L∑

k=1

ak

� k
2 �∑

j=0

Ck
j {P+(t) − s}j {1 − P+(t)}k−j ,

(10)

where s = Nop/N is the probability for an agent to be
an opinion leader. Note that s is independent of t and,
obviously, since by definition each opinion leader thinks +,
we must have s � P+(t) � 1. In addition, the introduction of s

encompasses also those cases where possibly both N → ∞ (in
Definition 4.1) and Nop → ∞, but Nop/N is finite.

Observe that the quantity

Ck
j {P+(t) − s}j {1 − P+(t)}k−j (11)

represents the probability that, at time t , in a k-sized group,
exactly j agents think + without being opinion leaders and
the remaining k − j agents think −. Thus, the sum

� k
2 �∑

j=0

Ck
j {P+(t) − s}j {1 − P+(t)}k−j ,

which appears in (10), approximates the probability that an
individual in a k-sized group will think − at the end of the
period t of the diffusion process.

We also observe that the probability (11) is a special case
of a more general trinomial distribution, since it implicitly
considers three independent events: “the agent thinks +
without being an opinion leader”, “the agent thinks −,” and
“the agent is an opinion leader”. The probability to have, in a
group of size k, exactly j agents (not opinion leaders) thinking
+, h opinion leaders, and k − j − h agents thinking −, is
given by

Ck
j C

k−j

h {P+(t) − s}j (s)h{1 − P+(t)}k−j−h,

which indeed reduces to (11) when h = 0, i.e., in the k-sized
group there are no opinion leaders. The latter formula suggests
possible extensions of the model.

In order to clarify the behavior of opinion leaders in the
diffusion process, we report in Fig. 2 a possible transformation
of the groups of agents, in the presence of opinion leaders, from
time step t to time step t + 1.

TABLE IV. Comparison between the model (10) and a simulation, where we set respectively L = 6, ak = 1/6, k = 1, . . . ,6 or L = 7,
ak = 1/7, k = 1, . . . ,7, and s ∈ {0,0.06} (similar results hold also for other values of s). The value σ 2(t) represents, at time step t , the average
square error between the model (10) and the simulation, over 500 runs. The simulation is performed setting N = 400; the results are reported
for 10 steps of the simulation. We set N+(0) = 180 so that the initial percentage of + agents [i.e., P+(0) = 180/400] was below the killing
point computed for s = 0. Finally, the results are averaged over 500 runs. The model and the simulation provide similar results, for both L = 6
and L = 7.The numbers in square brackets indicate the power of 10.

L = 6, s = 0 L = 6, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)

0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3302 0.3294 0.192 − 07 1 0.4229 0.4217 0.168 − 06
2 0.1842 0.1839 0.258 − 06 2 0.3943 0.3905 0.842 − 06
3 0.0647 0.0656 0.852 − 06 3 0.3659 0.3647 0.356 − 05
4 0.0141 0.0156 0.186 − 07 4 0.3397 0.3407 0.219 − 05
5 0.0025 0.0028 0.981 − 08 5 0.3174 0.3204 0.831 − 06
6 0.0004 0.0004 0.361 − 09 6 0.3000 0.3057 0.999 − 05
7 0.0001 0.0000 0.500 − 11 7 0.2873 0.2942 0.761 − 05
8 0.0000 0.0000 0.000 + 00 8 0.2786 0.2857 0.799 − 05
9 0.0000 0.0000 0.000 + 00 9 0.2728 0.2800 0.180 − 05

L = 7, s = 0 L = 7, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)
0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3390 0.3383 0.123 − 08 1 0.4423 0.4410 0.725 − 06
2 0.1919 0.1942 0.402 − 06 2 0.4337 0.4309 0.115 − 05
3 0.0635 0.0677 0.126 − 05 3 0.4242 0.4216 0.360 − 06
4 0.0119 0.0141 0.881 − 07 4 0.4139 0.4120 0.128 − 06
5 0.0018 0.0023 0.105 − 07 5 0.4031 0.4062 0.380 − 06
6 0.0003 0.0004 0.245 − 09 6 0.3920 0.4025 0.361 − 05
7 0.0000 0.0000 0.245 − 11 7 0.3809 0.3982 0.644 − 05
8 0.0000 0.0000 0.450 − 12 8 0.3702 0.3953 0.277 − 05
9 0.0000 0.0000 0.000 + 00 9 0.3603 0.3950 0.311 − 06
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Furthermore, we have carried out a numerical comparison
between the model (10) and a simulation of the opinion
dynamics among agents (see also Ref. [20]). The simu-
lation is first performed considering a population of N ∈
{100,400,700,1000} agents (Tables II–V), and considering
P+(0) = 0.45. This means that the initial percentage of +
agents turns out to be below the killing point computed
for s = 0. The overall numerical experience included the
computation of ten steps of the simulation and the results were
averaged over 500 runs. Finally, the model and the simulation
were considered for both L = 6 and L = 7, with respectively
ak = 1/6, k = 1, . . . ,6 and ak = 1/7, k = 1, . . . ,7, and s ∈
{0,0.06}. To summarize the overall results, we can see from
Tables II–V that for larger values of N the model with opinion
leaders resembles the simulations rather precisely, regardless
of the values for s and L. For any t � 1, we adopted the value

σ 2(t)
.=

∑runs
i=1

[
P

simul(i)
+ (t) − P̄+(t)

]2

runs
(12)

(where runs = 500) in order to summarize the variance of
the results of our model (10), over the runs. In particular,
P

simul(i)
+ (t) is the value N+(t)/N provided by the ith run of the

simulation, and P̄+(t) is exactly the mean value of P+(t) over
the runs. Observe that for any t � 1 the values of σ 2(t) are
always quite small.

Figure 3 also reports the information in Tables II–V, with
a different perspective. Here we summarized the results of the
comparison between our model (10) and the simulation, by
considering in particular the case L = 7, s = 0.06, and time
step (t step) = 9, since it corresponds to the case of the largest
mismatch between our proposal and the simulation. Observe
that for larger values of N our proposal definitely improves
the matching with the simulation. The lower picture in Fig. 3
also reports a similar comparison for the case L = 6, s = 0.06,
t step = 9, and N = 100, . . . ,1000. Again, the performance
of our proposal improves when N increases. The latter results
were expected, since a similar behavior was observed in
Ref. [20] for the original Galam model (1).

We completed our simulations by also considering cases
with large groups. More precisely we chose N = 1000 agents,
setting L = 20, ak = 1/20 for each k = 1, . . . ,20, N+(0) =
510, and s = 25/1000 ≈ 0.025. It turned out that the latter
case was not specifically favorable to our model. Nonetheless,
for any t � 1 the value σ 2(t) never exceeded 0.125 × 10−4.

V. PROPERTIES OF THE OPINION LEADER MODEL

In this section we describe and prove specific results for
the opinion leader model (10). To a large extent the reported
properties encompass again some properties of model (1), as a
special case. Using the same setting of the parameters adopted
in Fig. 1, we begin by reporting in Fig. 4 (k is odd with

TABLE V. Comparison between the model (10) and a simulation, where we set respectively L = 6, ak = 1/6, k = 1, . . . ,6 or L = 7,
ak = 1/7, k = 1, . . . ,7, and s ∈ {0,0.06} (similar results hold also for other values of s). The value σ 2(t) represents, at time step t , the average
square error between the model (10) and the simulation, over 500 runs. The simulation is performed setting N = 100; the results are reported
for ten steps of the simulation. We set N+(0) = 45 so that the initial percentage of + agents [i.e., P+(0) = 45/100] was below the killing point
computed for s = 0. Finally, the results are averaged over 500 runs. The model provides satisfactory results, both for L = 6 and L = 7, even
though for larger values of N (see Table II) the results were more favorable.

L = 6, s = 0 L = 6, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)

0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3302 0.3273 0.321 − 06 1 0.4229 0.4189 0.694 − 05
2 0.1842 0.1840 0.715 − 07 2 0.3943 0.3931 0.370 − 05
3 0.0647 0.0720 0.816 − 08 3 0.3659 0.3721 0.525 − 04
4 0.0141 0.0206 0.672 − 09 4 0.3397 0.3502 0.392 − 04
5 0.0025 0.0048 0.464 − 07 5 0.3174 0.3426 0.465 − 04
6 0.0004 0.0007 0.871 − 09 6 0.3000 0.3258 0.549 − 04
7 0.0001 0.0001 0.392 − 10 7 0.2873 0.3197 0.286 − 04
8 0.0000 0.0000 0.320 − 11 8 0.2786 0.3183 0.193 − 04
9 0.0000 0.0000 0.000 + 00 9 0.2728 0.3153 0.410 − 05

L = 7, s = 0 L = 7, s = 0.06

t step Model (10) Simulation σ 2(t) t step Model (10) Simulation σ 2(t)
0 0.4500 0.4500 0.000 + 00 0 0.4500 0.4500 0.000 + 00
1 0.3390 0.3355 0.833 − 05 1 0.4423 0.4333 0.802 − 05
2 0.1919 0.1907 0.960 − 05 2 0.4337 0.4184 0.467 − 05
3 0.0635 0.0731 0.571 − 06 3 0.4242 0.4128 0.301 − 04
4 0.0119 0.0189 0.246 − 06 4 0.4139 0.4135 0.139 − 04
5 0.0018 0.0042 0.346 − 07 5 0.4031 0.4138 0.358 − 04
6 0.0003 0.0009 0.147 − 08 6 0.3920 0.4164 0.428 − 04
7 0.0000 0.0001 0.200 − 10 7 0.3809 0.4244 0.476 − 04
8 0.0000 0.0000 0.800 − 12 8 0.3702 0.4302 0.339 − 04
9 0.0000 0.0000 0.000 + 00 9 0.3603 0.4372 0.858 − 04
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L = 7,  s = 0.06,  N = 100 L = 7,  s = 0.06,  N = 400

L = 7,  s = 0.06,  N = 700 L = 7,  s = 0.06,  N = 1000
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FIG. 3. The top four panels refer to the data with L = 7 and s = 0.06 in Tables II–V, which correspond to the case of the largest mismatch
between model (10) and the simulations (simul). We can observe that when N increases model (10) improves its matching with the simulation.
The bottom panel represents the values of model (10) and the simulation at t step 9, for L = 6, s = 0.06, and N = 100, . . . ,1000. Again we
can observe that the performance of model (10) improves for larger values of N . A similar behavior was observed in Ref. [20] for the original
Galam model (1).

k ∈ {5,7,9}) and Fig. 5 (k is even with k ∈ {4,6,8}), the graphs
of P+(t + 1) vs P+(t) when ak = 1 and s ∈ {0,0.02,0.04,0.05}
(i.e., when no opinion leader is included and when the
probability of having opinion leaders is respectively raised
to 2%, 4%, and 5%). Note that the graphs corresponding to
s = 0 in Fig. 5 coincide with those in Fig. 1, and are reported
only to allow an easy comparison with the extended model.

Observe that when s �= 0 we do have to consider P+(t)
values such that P+(t) � s, since opinion leaders are a subset
of the agents thinking +. This explains why the latter graphs
are not defined for P+(t) < s. Also note that in Fig. 5, where
k is even, there is empirical evidence that when s increases the
killing point progressively decreases, as one could expect.

Note that in the case s = 0 (i.e., using Galam’s model),
then P+(t + 1) = P+(t) if P+(t) = 0. On the contrary (see
Figs. 4 and 5) in the case s �= 0 then we can have a stationary
point only if P+(t) > 0 (which recalls some similar results in
Ref. [22], where inflexible agents are considered).

Interestingly enough, the observation of Figs. 4(a), 4(b),
5(a), and 5(b) reveals also that there is a threshold value for s,

such that the graph of P+(t + 1) vs P+(t) becomes tangent
to the line P+(t + 1) = P+(t). When s is above the latter
threshold the graph lies above the line P+(t + 1) = P+(t) and
the only (stable) fixed point is P̂+ = 1, regardless of the choice
of the initial value P+(0). In particular, also observe that when
s is below this threshold then, near the origin, the graph has
a pair of fixed points (say, P 1 and P 2), corresponding to the
intersection of the graph with the line P+(t + 1) = P+(t). The
one which is closer to the origin (say P 1) is stable. Conversely,
the fixed point P 2, which is closer to the value P+(t) = 0.5, is
unstable. The latter observations are particularly remarkable,
and could be fruitfully applied in practice.

Finally, the effect of opinion leaders is clearly more evident
when k is large, i.e., when the discussions take place in large
groups. In Fig. 6 we report a simulation of the latter effect,
comparing the results when choosing, for example, the values
k = 5 and k = 21.

Hereafter we are going to report specific properties of
model (10), which play a key role. The proofs of the next
propositions are detailed in the Appendix. First of all we can
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FIG. 4. (Color online) P+(t + 1) vs P+(t) as given by model (10), where the values of k and s are reported. We have ak = 1, where k is
odd, k ∈ {5,7,9}. The effect of opinion leaders is more evident when k is large.

prove, under mild assumptions, that the probability P+(t + 1)
increases with P+(t).

Proposition 5.1. Given the model (10), if

0 � s � min
k = 2, . . . ,L

j = 1, . . . ,
⌊

k
2

⌋
{

kP+(t) − j

k − j

}
for P+(t) � 0.5

(13)

then

∂P+(t + 1)

∂P+(t)
� 0. (14)

Moreover, if a1 �= 0 then (14) is satisfied as a strict
inequality.

Observe that in Figs. 4 and 5 the curves have a horizontal
tangent. The latter fact is confirmed by (A2) in the Appendix
since, setting a1 = 0, we have

lim
P+(t)→1−

∂P+(t + 1)

∂P+(t)
= a1 = 0.

Moreover, note that (14) concurs with the property ii of
Corollary 3.2.

Proposition 5.2. Given the model (10), if P+(t) �= 1 we
have

∂P+(t + 1)

∂s
> 0, ∀ t � 0.

Moreover, we have

min
s�0

{
∂P+(t + 1)

∂s

}
= ∂P+(t + 1)

∂s

∣∣∣∣
s=P+(t)

=
L∑

k=2

akC
k
1 [1 − P+(t)]k−1, (15)

max
s�0

{
∂P+(t + 1)

∂s

}
= ∂P+(t + 1)

∂s

∣∣∣∣
s=0

.

The previous proposition substantially states that, as ex-
pected, the opinion leaders always tend to increase the proba-
bility to have agents who think + at the subsequent time step.
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FIG. 5. (Color online) P+(t + 1) vs P+(t) as given by model (10), where the values of k and s are reported. Similarly to Fig. 1 we have
ak = 1, where k is even, k ∈ {4,6,8}. The effect of opinion leaders is more evident when k is large.
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FIG. 6. (Color online) The effect of the number of opinion leaders
(on the abscissa) on diffusion speedup, using the model (10). The two
graphs represent the fraction of simulations (out of 200) where at
step t = 20 we have P+(20) > P+(0), estimating the fraction of runs
converging towards 1. The graphs correspond to the case of N = 1000
agents, selecting in (10) ak = 1, with k = 21 and k = 5, respectively.

Moreover, the least marginal effect corresponds to setting
s at its maximum value, while the largest marginal effect is
obtained on introducing the first opinion leader. Three simple
considerations arise from Proposition 5.2:

(i) First, observe that when aL = 1 and L increases, then
there are intervals in which the quantity

L∑
k=2

akC
k
1 [1 − P+(t)]k−1 = CL

1 [1 − P+(t)]L−1

in (15) decreases. In particular, it decreases when L >

1/| ln[1 − P+(t)]|, which is satisfied by any value of L when
P+(t) � 0.5. This means that when aL = 1 and L is large, i.e.,
we allow larger groups of individuals, the marginal effect of
opinion leaders is attenuated.

(ii) Second, since the minimum of ∂P+(t + 1)/∂s is at
s = P+(t) and the maximum is at s = 0, decreasing the value
of s will increase the partial derivative ∂P+(t + 1)/∂s. Thus,
a few opinion leaders are more “efficient” (although less
effective) than many, in order to speed up the information
exchange.
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FIG. 7. (Color online) P+(t + 1) vs L as given by model (10), where we set aL = 1, L ∈ {2, . . . ,50}, P+(t) = 0.2, with s ∈
{0,0.02,0.04,0.06}.

(iii) Third, increasing the value of s (starting from s = 0)
will decrease the value of a possible killing point of (10).
Indeed (see Figs. 4 and 5), since P+(t) − s is smaller than
P+(t) and ∂P+(t + 1)/∂s > 0, then increasing s will increase
P+(t + 1), so that the graphs in Figs. 4 and 5 move upwards.
Note that since P+(t) − s < P+(t), the same result can be
obtained by simple inspection of (3) and (10).
Let us now address more explicitly the relation between the
presence of opinion leaders, the maximum dimension L of
a group, and P+(t) in (10). For this purpose, let us consider
P+(t + 1) as a function of s, L, and P+(t), where s is possibly
a function of P+(t). We want to study the trade-off between
the value of s with P+(t) and keeping P+(t + 1) constant. In
particular, by using the implicit function theorem we have

ds

dP+(t)
= −

∂P+(t+1)
∂P+(t)

∂P+(t+1)
∂s

. (16)

Using (16) and Proposition 5.2 we conclude that[
ds

dP+(t)

] [
∂P+(t + 1)

∂P+(t)

]
< 0, (17)

which confirms the following reasoning: In order to leave
P+(t + 1) unchanged, if ∂P+(t + 1)/∂P+(t) is positive [i.e.,
an increase of P+(t) determines an increase of the probability
P+(t + 1)], a smaller number of opinion leaders will be
necessary. The latter consideration yields a trade-off between
the effects of the parameters s and P+(t) on P+(t + 1).

A conclusion similar to (16) and (17) does not follow
immediately when L is used in place of P+(t), since L

is a discrete parameter and some care is mandatory when
using generalizations of partial derivatives. Anyway, in order
to possibly estimate the effects on P+(t + 1) of increasing
values for the parameter L [while P+(t) remains constant],
in Figs. 7–10 we observe that the trends might be strongly
dependent on the value of s. In particular, also observe from
Figs. 7 and 8 that a slight increase of the percentage of opinion
leaders reverses the final consensus of the entire group of
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FIG. 8. (Color online) P+(t + 1) vs L as given by model (10), where we set aL = 1, L ∈ {2, . . . ,50}, P+(t) = 0.4, with s ∈
{0,0.02,0.04,0.06}.

agents. Moreover, convergence towards a positive consensus
is strongly accelerated.

VI. CONCLUSIONS AND FUTURE WORK

This paper is first devoted to analyzing some properties
of Galam’s model [6], and then it introduces another model
for agents’ interactions. In particular, in this model special
individuals, namely, opinion leaders, play a key role in
information spreading when the majority rule defined in [6]
holds.

We have described our model along with some remarkable
properties, and a partial numerical investigation. In particular,
the numerical tests highlight that the role of opinion leaders
can strongly affect the dynamics of information spreading.
We can summarize some relevant results for our proposal as
follows:

(i) A few opinion leaders (say, 2%–5% of the N agents)
may strongly accelerate the convergence towards the opinion
+ (see Figs. 4 and 5).

(ii) A few opinion leaders can possibly reverse the conver-
gence process of the entire group of agents, so that convergence
can be moved from opinion – to opinion + (see Fig. 8).

(iii) A few opinion leaders are more efficient (though less
effective) than many, in order to speed up the information
exchange (see Proposition 5.2).

(iv) Increasing the value of s (starting from s = 0) will
decrease the value of a possible killing point of model (10)
(see Figs. 4 and 5).

Possible generalizations of model (10) to the spreading of
more than two opinions in the population could be studied (see
also Ref. [23]).

Finally, we remark that the interest in agents’ interactions
and information spreading is motivated by their strategic
impact on real problems. We will consider in a future
work the application of (10), both to case studies from
the literature and to real life situations, where opinion
leaders may play an essential role. As an example, consider
the possible application to wine purchasing reported in
Ref. [19].
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FIG. 9. (Color online) P+(t + 1) vs L as given by model (10), where we set aL = 1, L ∈ {2, . . . ,50}, P+(t) = 0.6, with s ∈
{0,0.02,0.04,0.06}.

In addition, at least three generalizations of model (10) can
be considered. Indeed, we may consider the following cases:

(i) When the number N of agents is small model (10) might
be relatively inaccurate (see Fig. 3).

(ii) Besides opinion leaders whose opinion is +, opinion
leaders thinking − can also be introduced, in order to
generalize the model (see also Galam’s definition of inflexibles
in Ref. [18]).

(iii) The idea of opinion leaders who convince all the agents
joining the same group can be far too restrictive in some
practical applications. Indeed, a more general model may be
conceived where the opinion leaders convince the whole group,
provided that the latter is not too large.

ACKNOWLEDGMENTS

The authors wish to thank Serge Galam for his valuable
advice during his visit in Venice. The authors are also thankful
to Andrea Collevecchio for several useful discussions. G.F.

thanks the INSEAN CNR, Italian Ship Model Basin, for the
support received.

APPENDIX: (PROOFS OF RESULTS AND
SOME SPECIAL CASES)

1. Proof of Proposition 3.1

Item 1 easily follows from Eq. (4). As regards 2, observe
that Gk is a polynomial in P+(t), and by (8) and (4) we have

∂Gk[P+(t)]

∂P+(t)
= ∂

∂P+(t)

[
1

βk

∫ P+(t)

0
u� k

2 �(1 − u)k−� k
2 �−1du

]

= 1

βk

P+(t)�
k
2 �{1 − P+(t)}k−� k

2 �−1, (A1)

which implies

∂Gk[P+(t)]

∂P+(t)
> 0 for any P+(t) ∈ (0,1).
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FIG. 10. (Color online) P+(t + 1) vs L as given by model (10), where we set aL = 1, L ∈ {2, . . . ,50}, P+(t) = 0.8, with s ∈
{0,0.02,0.04,0.06}.

As regards 3, setting k = 1 in Eq. (4) we readily obtain the
result. Now, for items (4) and (5) we split the proof, setting k

either even or odd. We have for k � 2

∂2Gk[P+(t)]

∂P+(t)2

= 1

βk

∂

∂P+(t)

[
P+(t)�

k
2 �{1 − P+(t)}k−� k

2 �−1
]

= 1

βk

[ ⌊
k

2

⌋
P+(t)�

k
2 �−1{1 − P+(t)}k−� k

2 �−1

−P+(t)�
k
2 �(k − �k/2� − 1){1 − P+(t)}k−� k

2 �−2

]

so that for k even

∂2Gk[P+(t)]

∂P+(t)2
= 1

βk

P+(t)
k
2 −1{1 − P+(t)} k

2 −2

×
{

k

2
[1 − P+(t)] −

(
k

2
− 1

)
P+(t)

}

= k!(
k
2

)
!
(

k
2 − 1

)
!
P+(t)

k
2 −1{1 − P+(t)} k

2 −2

×
[
k

2
+ (1 − k)P+(t)

]
,

which yields item (4). On the other hand, for k � 3 and k odd
we obtain

∂2Gk[P+(t)]

∂P+(t)2
= 1

βk

P+(t)
k−3

2 {1 − P+(t)} k−3
2

×
{

k − 1

2
[1 − P+(t)] −

(
k − 1

2

)
P+(t)

}

= k!(
k−1

2

)
!
(

k−1
2

)
!
P+(t)

k−3
2 {1 − P+(t)} k−3

2

×
{

k − 1

2
[1 − 2P+(t)]

}
,

which yields item (5). �
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2. Proof of Corollary 3.1

If k �= 1 the existence of a fixed point in (0,1) follows
from (A1). In fact, considering the function h[P+(t)] =
Gk[P+(t)] − P+(t) we have that h(0) = h(1) = 0; moreover

lim
P+(t)→0+

∂h[P+(t)]

∂P+(t)
= lim

P+(t)→0+

∂Gk[P+(t)]

∂P+(t)
− 1 = −1,

and similarly limP+(t)→1− ∂h[P+(t)]/∂P+(t) = −1. Observing
that, by Proposition 3.1, h is continuous on [0,1], then h has
at least one zero in (0,1), which is unique due to items (4) and
(5) of Proposition 3.1, i.e., Gk has a unique fixed point P̂+. The
fixed point P̂+ is a killing point since, necessarily h′(P̂+) > 0,
and thus G ′

k(P̂+) > 1, i.e., P̂+ turns out to be an unstable point
while 0 and 1 are stable points of Gk . �

3. Proof of Corollary 3.2

Properties (i), (ii), and (iii) follow immediately from items
(1), (2), and (3) in Proposition 3.1 and the fact that ak � 0,
k = 1, . . . ,L. Items (iv), (v), and (vi) again follow from items
(4) and (5) of Proposition 3.1 and the fact that the convex
combination of convex functions is still convex. �

4. Proof of Corollary 3.3

If a1 = 1 then P+(t + 1) = P+(t) for any P+(t) ∈ (0,1) due
to item (iii) of Corollary 3.2. As in Corollary 3.1, if a1 < 1
we define the function H (P+(t)) = G(P+(t)) − P+(t) so that
H (0) = H (1) = 0. Moreover,

lim
P+(t)→0+

∂H [P+(t)]

∂P+(t)
= lim

P+(t)→0+

∂G[P+(t)]

∂P+(t)
− 1

=
L∑

k=1

ak lim
P+(t)→0+

∂Gk[P+(t)]

∂P+(t)
− 1

= a1 − 1 < 0;

similarly, we obtain limP+(t)→1− ∂H [P+(t)]/∂P+(t) < 0. Now,
H is continuous on [0,1] and therefore H has at least one zero
in (0,1), i.e., G has a fixed point in (0,1). �

5. Proof of Corollary 3.4

For any k and any j , if P+(t) = 1/2, then

{P+(t)}j {1 − P+(t)}k−j = 1

2k
.

Moreover, for any k odd, the binomial theorem yields

k∑
j=0

Ck
j = 2k,

� k
2 �∑

j=0

Ck
j = 2k−1,

and therefore Gk(1/2) = 1/2. In this way, since
∑L

k=1 ak = 1,
also G(1/2) = 1/2, i.e., 1/2 is a fixed point for G. Moreover,
by Corollary 3.1 P̂+ = 1/2 is the killing point of Gk , k odd;
thus 1/2 is also the killing point of G. �

6. Proof of Proposition 5.1

Since (10) is continuously differentiable with respect to
P+(t) we have for any s

∂P+(t + 1)

∂P+(t)
= − a1C

1
0 [1 − P+(t)]0(−1) −

L∑
k=2

ak

� k
2 �∑

j=1

Ck
j

×{j [P+(t) − s]j−1[1 − P+(t)]k−j

+ (k − j )[P+(t) − s]j [1 − P+(t)]k−j−1(−1)}

−
L∑

k=2

akC
k
0k[1 − P+(t)]k−1(−1),

or equivalently

∂P+(t + 1)

∂P+(t)
=

L∑
k=1

akC
k
0k[1 − P+(t)]k−1 +

L∑
k=2

ak

� k
2 �∑

j=1

Ck
j

×{−j [P+(t) − s]j−1[1 − P+(t)]k−j

+ (k − j )[P+(t) − s]j [1 − P+(t)]k−j−1},
(A2)

which is the sum of all non-negative terms as long as

(k − j )[P+(t) − s] � j [1 − P+(t)],

k = 2, . . . ,L, j = 1, . . . ,

⌊
k

2

⌋
,

i.e.,

s � kP+(t) − j

k − j
, k = 2, . . . ,L, j = 1, . . . ,

⌊
k

2

⌋
,

which yields the conditions (13).
Finally, if a1 �= 0 and (13) holds then (A2) satisfies (14) as

a strict inequality also when P+(t) = s or P+(t) = 1. �

7. Proof of Proposition 5.2

Observe that (10) is continuously differentiable with respect
to s and after a trivial computation we obtain for any P+(t) > s

∂P+(t + 1)

∂s
= −

L∑
k=2

ak

� k
2 �∑

j=1

jCk
j

× [P+(t) − s]j−1(−1)[1 − P+(t)]k−j ,

which is the sum of all non-negative terms and at least one
strictly positive term (corresponding to j = 1). Furthermore,
by simple inspection, ∂P+(t + 1)/∂s decreases when s in-
creases in the range [0,P+(t)], and thus relations (15) hold. �

Hereafter, in this section we compute the killing point of (1),
for the special cases in which the largest dimension of the
groups ranges from L = 1 to L = 4. The latter cases are very
frequent in practical applications and arise in a variety of real
situations (see, e.g., Refs. [18,19]).

For this purpose, let us consider the following expression
from the binomial theorem, where x ∈ IR and k � j , with k,j
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integers:

(1 − x)k−j =
k−j∑
h=0

(
k − j

h

)
1h(−x)k−j−h

=
k−j∑
h=0

(
k − j

h

)
(−1)k−j−hxk−j−h.

Hence, from (1) when 0 � P+(t) � 1 we have

G(P+(t)) =
L∑

k=1

ak

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j

=
L∑

k=1

k∑
j=� k

2 +1�

k−j∑
h=0

(−1)k−j−hak

×
(

k

j

)(
k − j

h

)
P+(t)k−h. (A3)

Lemma A.1. Given the positive integer L and the relation∑L
k=1 ak = 1, with ak � 0, k = 1, . . . ,L, for any L � 1 the

function G in (A3) has at least the two fixed points P+(t) = 0
and P+(t) = 1.

Proof. Equation (A3) is homogeneous with respect to P+(t)
so that P+(t) = 0 is clearly a solution. In addition, from (2)
and since

lim
P+(t)→1−

{1 − P+(t)}k−j =
{

0 if k �= j,

1 if k = j,

we have

lim
P+(t)→1−

L∑
k=1

ak

k∑
j=� k

2 +1�
Ck

j P+(t)j {1 − P+(t)}k−j = P+(t),

which proves that P+(t) = 1 is again another fixed point
of G. �

Now, setting L ∈ {1,2,3,4} in (A3) we want to compute
the killing point of function G. The cases where L = 1, . . . ,4
are important since practical problems, where small groups of
individuals are involved, are quite common.

Let us examine the trivial case L = 1. This implies that
the subsets of people have just one member; thus, each of the
individuals will preserve his or her initial opinion. The killing
point corresponds to P̂+ = 1.

Let now L = 2 (the dance hall problem). According to (A3)
with L = 2 we have

G(P+(t))

=
1∑

j=� 1
2 +1�

1−j∑
h=0

(−1)1−j−ha1

(
1
j

) (
1 − j

h

)
P+(t)1−h

+
2∑

j=� 2
2 +1�

2−j∑
h=0

(−1)2−j−ha2

(
2
j

)(
2 − j

h

)
P+(t)2−h

= a1P+(t) + a2P+(t)2.

The killing point may be determined using relation
∑L

i=0 ak =
1 and by solving the equation

P+(t) = a1P+(t) + a2P+(t)2.

If a2 = 0 we fall into the previous case where L = 1.
Otherwise, we have only the two stationary points 0 and 1
(see Lemma A.1), where only 1 is the killing point P̂+.

When L = 3 relation (A3) becomes

G(P+(t))

=
1∑

j=� 1
2 +1�

1−j∑
h=0

(−1)1−j−ha1

(
1

j

) (
1 − j

h

)
P+(t)1−h

+
2∑

j=� 2
2 +1�

2−j∑
h=0

(−1)2−j−ha2

(
2

j

) (
2 − j

h

)
P+(t)2−h

+
3∑

j=� 3
2 +1�

3−j∑
h=0

(−1)3−j−ha3

(
3

j

) (
3 − j

h

)
P+(t)3−h

= a1P+(t) + a2P+(t)2 − 3a3P+(t)3

+ 3a3P+(t)2 + a3P+(t)3

= a1P+(t) + (a2 + 3a3)P+(t)2 − 2a3P+(t)3.

As Lemma A.1 stated, we see that P+(t) = 0 is a fixed point of
G. Furthermore, if a3 �= 0 the other two fixed points are given
by

1

4a3

[
a2 + 3a3 + (

a2
3 − 2a2a3 + a2

2

)1/2]

= 1

4a3
[a2 + 3a3 + (a3 − a2)] = 1,

1

4a3

[
a2 + 3a3 − (

a2
3 − 2a2a3 + a2

2

)1/2]

= 1

4a3
[a2 + 3a3 − (a3 − a2)] = a2 + a3

2a3
� 1

2
.

The latter formulas confirm two obvious considerations. First,
they match the statement of Lemma A.1. Then, if the majority
rule is adopted within each subset of individuals (with a bias for
− in case of ties), then the killing point P̂+ = (a2 + a3)/(2a3)
is larger than 0.5. Note also that in the case a2 = 0 the results
of Corollary 3.4 trivially hold.

When L = 4 relation (A3) becomes

G(P+(t))

=
1∑

j=� 1
2 +1�

1−j∑
h=0

(−1)1−j−ha1

(
1

j

) (
1 − j

h

)
P+(t)1−h

+
2∑

j=� 2
2 +1�

2−j∑
h=0

(−1)2−j−ha2

(
2

j

) (
2 − j

h

)
P+(t)2−h
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+
3∑

j=� 3
2 +1�

3−j∑
h=0

(−1)3−j−ha3

(
3

j

) (
3 − j

h

)
P+(t)3−h

+
4∑

j=� 4
2 +1�

4−j∑
h=0

(−1)4−j−ha4

(
4
j

) (
4 − j

h

)
P+(t)4−h

= a1P+(t) + (a2 + 3a3)P+(t)2 + (4a4 − 2a3)P+(t)3

− 3a4P+(t)4.

In order to compute possible killing points for the case L = 4
we consider the solution of the equation

P+(t) = a1P+(t) + (a2 + 3a3)P+(t)2

+ (4a4 − 2a3)P+(t)3 − 3a4P+(t)4

or equivalently

(a1 − 1)P+(t) + (a2 + 3a3)P+(t)2 + (4a4 − 2a3)P+(t)3

− 3a4P+(t)4 = 0.

Again, as stated by Lemma A.1, we see that P+(t) = 0
is a solution. Furthermore, since P+(t) = 1 must also be

a fixed point of G, by a simple polynomial division we
obtain

(a1 − 1)P+(t) + (a2 + 3a3)P+(t)2

+ (4a4 − 2a3)P+(t)3 − 3a4P+(t)4

= P+(t)[P+(t) − 1][3a4P+(t)2

+ (2a3 − a4)P+(t) + (a1 − 1)],

whose zeros (i.e., possible killing points of G) are

1

6a4
{a4 − 2a3 + [(2a4 + 2a3)2 + 3a4(3a4 + 4a2)]1/2}

>
4a4

6a4
= 2

3
, (A4)

1

6a4
{a4 − 2a3 − [(2a4 + 2a3)2 + 3a4(3a4 + 4a2)]1/2} < 0.

Since the left-hand side of the last inequality is negative it can-
not be a killing point. Finally, also observe that in the case a4 =
1 (i.e., only groups with four individuals are allowed), then the
killing point is P̂+ = (1 + √

13)/6 ≈ 0.768 (as proven also in
Ref. [19]).
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