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Abstract: The focus of this paper is on analyzing the role and the choice of parameters in sociophysics 1

diffusion models, by leveraging the potentialities of sociophysics from a mathematical programming 2

perspective. We first present a generalised version of Galam’s opinion diffusion model (see, e.g. 3

[8,10]). For a given selection of the coefficients in our model, this proposal yields the original Galam’s 4

model. The generalised model suggests guidelines for possible alternative selection of its parameters 5

that allow to foster diffusion. Examples of the parameters selection process as steered by numerical 6

optimisation, taking into account various objectives, are provided. 7

Keywords: Sociophysics; Stochastic Models; Galam’s Diffusion Model; Mathematical Programming; 8

Parameter Optimisation 9

1. Introduction 10

Opinion diffusion is a fundamental aspect of human interaction, playing a pivotal role 11

in the spread of innovations, and the emergence of consensus. Understanding how opinions 12

spread and evolve within social networks is crucial for comprehending the emergence of 13

collective behavior, the formation of public opinion, and the polarization of societies. 14

Social sciences provide plenty of applications, where the importance of diffusion 15

dynamics is studied and witnessed, like in marketing (see e.g. [2,12,13]), agent-based 16

modeling (see e.g. [14]) and sociophysics, where the papers of Serge Galam serve as a guide 17

for researchers (see e.g. [9]). 18

Galam’s opinion diffusion model (see [8]) provides a framework for investigating 19

and understanding the dynamics of opinion formation in social systems. Galam’s model 20

sheds light into the mechanisms that drive opinion dynamics. In particular, Galam’s 21

model describes the formation of collective opinion convergence processes using concepts 22

from statistical physics. To analyze them, along with several generalisations of the model, 23

the authors of the current paper have proposed the alternatives in [4] (showing some 24

drawbacks when applying Galam’s model with a relatively small number of agents), and 25

in [5] (where a novel subset of agents, namely the opinion leaders, are introduced, to duly 26

represent a possible communication bias). Furthermore, additional literature covering a 27

number of keynote issues can be found in [9] [10] [11] and therein references. 28

The standard Galam’s model in [8] assumes that individuals in a group influence and 29

are influenced by their peers. After several iterations within repeated group discussions, 30

each agent may consequently influence the opinion diffusion. Galam’s stylized model 31

simplifies the complexity of opinions by considering a binary state, where individuals 32

can adopt either of two possible opinions, thus allowing a straightforward mathematical 33

analysis of the diffusion process. 34

We suggest a generalisation of Galam’s model and then offer evidence in an optimisa- 35

tion framework that some of the diffusion parameters can be successfully adjusted in order 36
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to steer the diffusion process. Combining Galam’s model with specific Linear Programming 37

(LP) formulations, we take into account both theoretical and numerical results concerning 38

the role of the model’s parameters, in order to better control the dynamics of the diffusion: 39

namely we aim at maximizing the probability that an opinion can spread among agents. 40

The paper is organised as follows: the essential characteristics of Galam’s model [8] are 41

recapped in Section 2. Then, in Section 3, we present and discuss a generalisation of Galam’s 42

model. The optimisation of the parameters of the new model via linear programming allows 43

to speed up opinion diffusion at a fixed step of the process: the optimisation problem is 44

discussed in Section 4 while Section 5 provides numerical examples of its resolution. Section 45

6 discusses a dynamic programming extension of the optimisation problem that optimizes 46

the values of the parameters along the whole diffusion process, till convergence. Section 7 47

contains final remarks and concludes the paper. 48

2. Recap of Galam’s model 49

This section reviews the foundational elements of Galam’s model in [8]. Think of a 50

group of N people (agents), each of whom may hold one of two opposing views (let’s say, 51

‘+’ or ‘−’), regarding a specific issue. These agents meet, during several repeated rounds, 52

within subgroups of smaller cardinality, to converse and possibly change one another’s 53

minds. 54

Each agent at round (time) t has a probability ak of being a member of a subgroup of
size k, being L the maximum allowed size of groups. In the original formulation of Galam’s
model the values a1, . . . , aL are exogenous parameters such that

L

∑
k=1

ak = 1, ak ≥ 0, k = 1, . . . , L.

Joining a group discussion at time t, any agent may, at the beginning of the subsequent 55

time t + 1, modify their position (e.g. ‘+’ becomes ‘−’ or viceversa) in accordance with 56

a unique law: the majority rule. Indeed, all agents in a subgroup take the position of the 57

majority in that group in the end of time t. The rule for reversing opinion is slightly biased 58

in favor of the negative opinion ‘−’, since tie breaks in favor of ‘−’. This may lead to a 59

substantial bias in case the subgroup has an even number of members. 60

Calling P+(t) the probability that an agent opinion is ‘+’ at time t, the probability of 61

opinion ‘−’ is then P−(t) = 1− P+(t). The probability P+(t + 1) is estimated in [8] as 62

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=b k

2+1c
Ck

j P+(t)j{1− P+(t)}k−j, (1)

where bzc is the largest integer less or equal to z, and Ck
j is the binomial coefficient (k

j). 63

Let N+(t) (N−(t) = N − N+(t)) be the number of agents who at time step t have
opinion ‘+’ (‘−’). Observe that for small values of N, setting P+(0) = N+(0)/N, where
N+(0) is the number of agents thinking ‘+’ at time t = 0, for any t ≥ 1 the quantity P+(t)
may possibly differ from the ‘actual’ frequency of ‘+’, i.e. N+(t)/N (see [4]). Nevertheless,
the estimated probability P+(t + 1) always lies in the interval [0, 1] being

k

∑
j=b k

2+1c
Ck

j P+(t)j{1− P+(t)}k−j <
k

∑
j=0

Ck
j P+(t)j{1− P+(t)}k−j = 1.

A relevant role in the model is taken by the value P̂+ such that 64

when P+(0) > P̂+ then lim
t→∞

P+(t) = 1, 65

when P+(0) < P̂+ then lim
t→∞

P+(t) = 0, 66

when P+(0) = P̂+ then P+(t) = P+(0), ∀ t > 0. 67
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Figure 1. Dynamic curves described by relation (1), when the largest cardinality L of the subgroups
takes integer values in the interval [3, 20] and ak = 1/L, for any k.

P̂+ constitutes the threshold value such that when N+(0)/N is greater than P̂+, then all 68

agents will eventually have opinion ‘+’. Conversely, when t → ∞ all the agents will 69

definitely think ‘−’ if N+(0)/N < P̂+. The value P̂+ is addressed as the killing point of the 70

model. In Figure 1 we can observe the dynamics described by relation (1), when the largest 71

cardinality L of the subgroups takes integer values in the interval [3, 20] and ak = 1/L, for 72

any k: for each of the 18 curves, the killing point is identified by the intersection with the 73

bisector line other than the extreme points (0, 0) and (1, 1). Observe that for small values 74

of L no killing point appears (or equivalently it coincides with the extreme point (1, 1)). 75

Figure 2 reports a zoom perspective of Figure 1. 76

3. Capturing additional dynamics using a generalised Galam’s model 77

According to model (1), a strict majority of members with positive opinion is a necessary 78

and sufficient condition to have opinion + for all the subgroup members. 79

Since the ultimate choice in a group is frequently the product of a discussion, rather 80

than a simple tally of the two opposing viewpoints in the group, a rule that is so rigorous 81

yet so straightforward could not correctly reflect the actual opinion dynamics in practice. 82

As an illustration, think about the propagation of political opinions. The probability that 83

everyone in the group would share the same view (e.g. +) at the close of a conversation 84

may rise smoothly with the number of members who had that opinion prior to the meeting. 85

As a second application, the reader may consider the audience of social networks, where 86

the dynamics of information spreading was widely investigated in a dedicated literature 87

(see, e.g. [1]). 88

Accordingly, we suggest to generalise Galam’s model (1) taking into account a softer 89

dynamics of opinion change, i.e., without using rigid majority as a necessary and sufficient 90

condition to shift the entire group to the same view. In particular, we assume that after 91

the conversations, all agents in a group will have opinion + with a probability αk
j that is 92

dependent on the size k of the group and the number j of agents that had opinion + before 93

the discussion. We use the following definition to model the relationship between the 94
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Figure 2. Dynamic curves described by relation (1), when the largest cardinality L of the subgroups
takes integer values in the interval [3, 20] and ak = 1/L, for any k: zoom of the area of intersections
among curves.

probabilities of having an opinion + before (i.e. P+(t)) and after (i.e. P+(t + 1)) discussion 95

(see [3] for a preliminary version of the model): 96

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=0

αk
j Ck

j P+(t)j{1− P+(t)}k−j. (2)

Model (2) generalises (1), since it is possible to select indeed the probabilities {αk
j } that 97

exactly replicate model (1) (see also Figure 3): 98

αk
j =


0 if j <

⌊ k
2
+ 1
⌋

1 if j ≥
⌊ k

2
+ 1
⌋ (3)

As mentioned, probabilities {αk
j } should reasonably increase with the number j of + in 99

a subgroup, and decrease with respect to the size of the group k. In this regard, it is 100

reasonable to expect for the probability αk
j to become negligible when the number j of + in a 101

subgroup is relatively small (i.e., much lower than the strict majority), and to become close 102

to 1 as the number of + noticeably increases (i.e., higher than strict majority). In general, 103

the probability that all agents in the subgroup will adopt the opinion + is conceivably a 104

function rising from zero to one as j increases. If we assume that this function of j is linear, 105

we may precisely define the probabilities αk
j as (see Figure 4) 106

αk
j =



0 , if j <
⌊ k

2
+ 1
⌋
+ zk

j − h

1
2
+

[
j−
(⌊

k
2 + 1

⌋
+ zk

j

)]
2h

, if
⌊ k

2
+ 1
⌋
+ zk

j − h ≤ j <
⌊ k

2
+ 1
⌋
+ zk

j + h

1 , if j ≥
⌊ k

2
+ 1
⌋
+ zk

j + h

(4)
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Figure 3. For a given 1 ≤ k ≤ L the model (3) considers the above step-shaped choice for the coefficients
{αk

j }. In particular, if j < bk/2 + 1c then αk
j = 0, otherwise αk

j = 1, so that this choice corresponds
exactly to obtain the original Galam’s model (1).

Figure 4. For a given 1 ≤ k ≤ L the model (4) considers the above piecewise-linear choice for the
coefficients {αk

j }, where zk
j represents a shift with respect to the abscissa bk/2 + 1c, and 1/(2h) is the

slope of the ramp.

When zk
j = h = 0, the probabilities defined in (4) are exactly the same as in (3) . The value 107

of zk
j in (4) represents a shift (either positive or negative) from the value b k

2 + 1c, while the 108

slope of the ramp in Figure 4 is 1/(2h). 109

To better grasp the geometric insight behind the choice of the parameters in (4), 110

let us consider the simple numerical example reported in [8], where L = 4, a1 = 0, 111

a2 = a3 = a4 = 1/3 (and h = zk
j = 0 for all j and k). As reported in [8] the killing point 112

(KP) lies in between 0.84 and 0.87 (see Figure 5). Then, we also have in Figure 6 the model 113

(2) with the choice (4), after setting h = zk
j = 0.5 for any j and k. We can immediately infer 114

that the dynamics of Galam’s model in [8] is definitely spoiled when the choice for the 115

coefficients {αk
j } in (3) is replaced by (4). Equivalently, even in case P+(t) = 1 (complete 116

consensus among agents to think +) then the choice (4) imposes a regression towards the 117

stable point given by the origin. 118

Hence, the presence of a killing point for Galam’s model seems to be strictly related to 119

the expression (1), and introducing the coefficients {αk
j } definitely spoils also the killing 120

point. Moreover, we observe that, in case the majority rule is not explicitly applied in (1), 121

then the dynamics of the model is strongly altered. 122
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Figure 5. The simple numerical example reported in [8], where L = 4, a1 = 0, a2 = a3 = a4 = 1/3.

Figure 6. The simple numerical example reported in [8], where L = 4, a1 = 0, a2 = a3 = a4 = 1/3,
and now the choice (3) is replaced by the selection (4).
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Nevertheless, the model (2) retains a number of properties and can suggest fruitful 123

results, following both the next guidelines: 124

• it provides clues on the perspective for studying the process of diffusion of information; 125

• it may suggest proper ways to control information spreading among agents. 126

At least a couple of intriguing issues in applications can steer the choice of the coefficients 127

{αk
j }, ranging from small–medium to large scale (number of agents) applications: 128

• (One Period Analysis) we may assess values for {αk
j } so that, considering at time t the 129

probability P+(t), we maximize the probability P+(t + 1) at time t + 1. In this regard, 130

the values {αk
j } represent costs for steering the information among agents and fostering 131

the positive opinion: the larger {αk
j } (i.e. higher costs) the larger the probability to 132

convey a group to opinion ‘+’. Of course the combination of the proper values for 133

each of the coefficients {αk
j } is strongly related to the value P+(t), the probabilities 134

{ak} and the binomial coefficients Ck
j ; 135

• (Multi-Period Analysis) similarly to the previous item we may decide to select {αk
j } 136

such that, considering again at time t the probability P+(t), we maximize the prob- 137

ability P+(T) at time T > t, and compute the entire sequence P+(t + 1), P+(t + 138

2), . . . , P+(T) of intermediate probabilities. 139

The last two scenarios can be declined in a variety of contexts, including production and 140

Marketing, where consumers play the role of agents and the aforementioned perspectives 141

may be the answer to the question: what is (if any) the necessary extra effort in terms of 142

advertising campaign, in order to promote a certain spread of the products or customers’ 143

expectations on items ? In this regard the quantities {αk
j } summarise the resulting effort, 144

while from a mathematical programming perspective they represent unknowns to be 145

assessed. This also suggest that a number of additional questions may arise adopting 146

the model (2), mapping relevant practical instances where a tentative forecast is sought 147

in order to plan the use of (possibly scarce) resources to control the process of diffusion 148

of the information. For the sake of brevity, we itemize below some proposals that are 149

representative but not exhaustive: 150

• (Feasibility Problem) given the value of P+(t) and the target value P̄, we may deter- 151

mine a set of values for the coefficients {αk
j } such that, starting at t from P+(t), at time 152

T > t we will have P+(T) ≥ P̄; 153

• (Focus Group Problem) given the value of P+(t) and the target value P̄ and the time 154

T > t, we may be interested to determine a set of values for the coefficients {αk
j } 155

such that α
(k)
m ≤ αk

j ≤ α
(k)
M , where αm, αM are possible bounds, and P+(T) ≥ P̄. This 156

scenario models a specific interest on those subgroups of cardinality k. 157
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4. Single period maximization of diffusion 158

As from the analysis in Section 3, one of the possible proposals to couple the dynamics 159

described through the model (2) with a single period optimization framework, is given by 160

the following LP scheme: 161

max
α

L

∑
k=1

ak

k

∑
j=0

αk
j Ck

j P+(t)j{1− P+(t)}k−j, (5)

αk
j ≤ αk

j+1 j = 0, 1, . . . , k− 1; k = 1, . . . , L, (6)

αk
j ≥ αk+1

j j = 0, 1, . . . , k; k = 1, . . . , L− 1, (7)

L

∑
k=1

k

∑
j=0

αk
j ≤ b(t) (8)

0 ≤ αk
j ≤ 1 j = 0, 1, . . . , k; k = 1, . . . , L. (9)

The last optimization problem assumes that the value P+(t) is given, so that both the objec- 162

tive function and the constraints are linear in the set {αk
j }. Though the meaning associated 163

with the objective function is relatively clear, for the constraints some clarifications seem 164

necessary, indeed: 165

• the constraints (6) state that for a given dimension k of a subset, larger values of the 166

number of agents thinking + imply a larger probability αk
j ; 167

• similarly in the constraints (7), when the number of agents thinking + remains con- 168

stant, the larger the set cardinality (i.e. k) the smaller the probability αk
j ; 169

• the constraint (8) expresses the overall cost (i.e. it is a budget constraint) allowed to 170

assess the probabilities {αk
j }, at time t; 171

• since the quantities {αk
j } need to represent probabilities, they are required to fulfill also 172

the constraint (9). 173

In order to avoid either infeasible or straightforward solutions for the optimization problem 174

(5)–(9), the next lemmas gives some indications on the choice of the parameter b(t), for any 175

t (for a proof see [3]). 176

Lemma 1. Let be given the linear program (5)–(9) with the choice (1 ≤ k ≤ L and 0 ≤ j ≤ k) 177

αk
j =


0, f or any j <

⌊
k
2 + 1

⌋
,

1, f or any j ≥
⌊

k
2 + 1

⌋
.

(10)

Then, relations (10) satisfy the constraints (6)–(7) and (9). Moreover, if (10) also satisfies (8), then 178

the value of the objective function in (5) coincides with P+(t + 1) in (1). 179

Note that Lemma 1 gives a clear idea of the fact that the solution of the linear program 180

(5)–(9) is substantially nothing else but a generalization of (1). Furthermore, the next result 181

will give a precise indication on the possible values for the budget b(t) in (8). 182
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Lemma 2. Let be given the optimization problem (5)–(9) and let {αk
j } be assigned as in (10), for 183

any 1 ≤ k ≤ L and 0 ≤ j ≤ k. Then 184

L

∑
k=1

k

∑
j=0

αk
j =



(
L
2

)2
+

L
2

, when L is even,

(
L− 1

2

)2
+ L, when L is odd.

(11)

Note that the right sides of (11) explicitly give some hints for the selection of the 185

parameter b(t) in (8), both either in case L is even or it is odd. 186

As regards some technicalities associated with the solution of the optimization problem 187

(5)–(9), we observe that it is a continuously differentiable problem, where all the functions 188

are linear. Hence, it is a convex problem, so that the set of all its solutions (possibly an empty 189

set or a singleton) is a convex set. This implies that for any given pair of its solutions, all the 190

points in the segment joining them will be solutions, too. Moreover, being a linear program, 191

all its (possible) solutions will lie on vertices of the feasible set, and not in the interior of the 192

feasible set. As well known, this makes its solution relatively simple (throughout any solver 193

based on the Simplex method) and achievable in a polynomial time. Hence, large scale 194

instances are easily tractable and allow for a scalable solution in a number of applications 195

with a great number of agents (e.g. problems involving social media or large social groups). 196

We complete this section highlighting that one further generalization of the linear
program (5)–(9) suggests to disaggregate the budget constraint and to replace the inequality
(8) by the set of constraints

k

∑
j=0

αk
j ≤ bk(t), k = 1, . . . , L.

Observe that the value bk(t), for any k, represents a budget devoted to possibly affect the 197

solution after working uniquely on the subsets of cardinality k. This increases the flexibility 198

of the model without compromising its overall complexity (being the resulting model yet a 199

linear program). 200

5. Preliminary numerical experience 201

This section is devoted to provide a numerical experience where the potentialities of 202

the formulation (5)–(9) are exploited. In this regard, we limit our investigation to a couple 203

of meaningful instances, being the first one a small scale (number of unknowns) problem, 204

while the second one attempts to scale the first one scale by 100. 205

5.1. Small scale instance 206

As regards the value of the coefficients in (5)–(9), we consider for the small scale
instance the following setting:

L = 10
{ak} = {0.1, 0, 0.15, 0, 0.3, 0, 0.3, 0, 0.15, 0}
P+(t) = 0.65.

The above choice corresponds to possibly allow only subgroups of dimension 1, 3, 5, 7 and 207

9, with probabilities that include null values and possibly repeated values. Furthermore, 208

we set the initial percentage of the population thinking ‘+’ to P+(t) = 65%. Finally, in order 209

to avoid an empty feasible set in (5)–(9) we also selected respectively the values b(t) = 5 210

and b(t) = 10, based on Lemma 2. The outcomes of our numerical experience are obtained 211

using the solver CPLEX 20.1.0.0 available on the platform https://neos-server.org/neos. 212

We remark that CPLEX is definitely among the best and faster solvers for LP, along with 213
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the alternative solver BARON. Our numerical experience on the above two instances is 214

summarized as follows: 215

• b(t) = 5: the problem (5)–(9) was coded using AMPL (A Mathematical Programming
Language, see [6] and [7]). The presolve tool in CPLEX eliminated 65 constraints from
the formulation, so that the simplified problem reduced to 65 variables and 110 linear
inequality constraints. As regards the final solution, CPLEX performed 13 dual simplex
iterations (i.e. iterations of a method for LP which represents the counterpart of the
Simplex method, after exploiting the duality theory), with an overall time for the
solution not larger than a couple of seconds. Finally, the value of P+(t + 1) found by
the solver was

P+(t + 1) = 0.245428625

with the set of variables (αk
j )
∗ given by 216

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
j=0 0 0 0 0 0 0 0 0 0 0
j=1 1 0 0 0 0 0 0 0 0 0
j=2 . 0 0 0 0 0 0 0 0 0
j=3 . . 2/3 2/3 2/3 0 0 0 0 0
j=4 . . . 2/3 2/3 0 0 0 0 0
j=5 . . . . 2/3 0 0 0 0 0
j=6 . . . . . 0 0 0 0 0
j=7 . . . . . . 0 0 0 0
j=8 . . . . . . . 0 0 0
j=9 . . . . . . . . 0 0
j=10 . . . . . . . . . 0

217

• b(t) = 10: again the problem (5)–(9) was coded using AMPL and the presolve tool in
CPLEX eliminated 65 constraints from the formulation, so that again the simplified
problem reduced to 65 variables and 110 linear inequality constraints. CPLEX per-
formed 18 dual simplex iterations with an overall time for computation similar to the
case where it was b(t) = 5. Finally, the value of P+(t + 1) found by the solver was

P+(t + 1) = 0.4392275888

with the set of variables (αk
j )
∗ given by the matrix 218

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
j=0 1 0 0 0 0 0 0 0 0 0
j=1 1 0 0 0 0 0 0 0 0 0
j=2 . 0 0 0 0 0 0 0 0 0
j=3 . . 1 1 1 0 0 0 0 0
j=4 . . . 1 1 0.285714 0.285714 0 0 0
j=5 . . . . 1 0.285714 0.285714 0 0 0
j=6 . . . . . 0.285714 0.285714 0 0 0
j=7 . . . . . . 0.285714 0 0 0
j=8 . . . . . . . 0 0 0
j=9 . . . . . . . . 0 0
j=10 . . . . . . . . . 0

219

Note that allowing a larger value of the budget (say b(t) = 10), the solver was able 220

to select a larger number of nonzero unknowns, so that the final value of P+(t + 1) 221

was almost doubled with respect to the case b(t) = 5. In real applications this turns 222

to imply that, in order to obtain almost twice the effect of the previous case, on this 223

instance twice the value of the budget must be allowed. 224
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5.2. Large scale instance 225

Here we focus on the same instance of Section 5.1, where conversely a larger number
of unknowns is considered. The novel setting of the parameters for the solver are given as
follows: 

L = 1000
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65.

The above choice corresponds to possibly allow all the subgroups with the same probability, 226

and again the initial percentage of the population thinking ‘+’ is equal to P+(t) = 65%. 227

Similarly to the small scale instance, we considered two values for the budget, being 228

b(t) = 50 and b(t) = 100. The computation is again performed adopting the solver CPLEX 229

20.1.0.0 on the Neos Server. The outcomes of the resulting two instances are summarized 230

as follows: 231

• b(t) = 50: the problem (5)–(9) was coded using AMPL and the presolve tool in CPLEX
eliminated 501500 constraints from the formulation. The overall simplified problem
contained 501500 variables and 1001000 linear inequality constraints. CPLEX per-
formed 192 dual simplex iterations with a time of computation smaller than 20 seconds,
showing that the linear model can easily scale the time of computation. The final value
of P+(t + 1) found by the solver was

P+(t + 1) = 0.01061571566

with the set of variables (αk
j )
∗ given by 232

233

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k≥13
j=0 1 0 0 0 0 0 0 0 0 0 0 0 0
j=1 1 1 1 0 0 0 0 0 0 0 0 0 0
j=2 . 1 1 1 1 0 0 0 0 0 0 0 0
j=3 . . 1 1 1 1 1 0 0 0 0 0 0
j=4 . . . 1 1 1 1 1 0 0 0 0 0
j=5 . . . . 1 1 1 1 1 1 0 0 0
j=6 . . . . . 1 1 1 1 1 1 0 0
j=7 . . . . . . 1 1 1 1 1 0.8333 0
j=8 . . . . . . . 1 1 1 1 0.8333 0
j=9 . . . . . . . . 1 1 1 0.8333 0
j=10 . . . . . . . . . 1 1 0.8333 0
j=11 . . . . . . . . . . 1 0.8333 0
j=12 . . . . . . . . . . . 0.8333 0
j=13 . . . . . . . . . . . . 0
j=14 . . . . . . . . . . . . 0
j>14 . . . . . . . . . . . . 0

234

• b(t) = 200: the outcomes have been much similar to the case where b(t) = 50, being
501500 the overall number of variables and 1001000 the linear inequality constraints.
CPLEX performed 30854 simplex iterations with a time of computation smaller than 20
seconds, showing again that the linear model can easily scale the time of computation.
The final value of P+(t + 1) found by the solver was now

P+(t + 1) = 0.0242061448

and we do not report the value of the unknowns for the sake of simplicity. 235

Observe that in both the last two examples, given that subgroups are allowed to be very 236

large, despite relatively high budget values, the levels reached by the probabilities P+(t+ 1) 237

are very low. 238

As a general achievement, we can easily describe the pattern of the nonzero unknowns 239

which was respected in all the four numerical tests reported above. In particular, we can 240
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easily prove that the solution of the formulation (5)–(9) only fills the principal submatrix of 241

unknowns of order h× h, depending h on the value of the budget parameter along with the 242

number of possible subgroups L. In the end, this also allows to easily assess a number of 243

null unknowns, and possibly reduce the complexity of the overall formulation. 244

6. A Multi-Period Model 245

This section considers a multi-period reformulation of the Linear Program (5)-(9), in 246

order to further generalize the model (2). In particular, in place of the single-period model 247

(5)-(9), where at time step t the quantity P+(t + 1) is maximized starting from P+(t), we 248

can consider a multi-period approach with the ultimate goal of maximizing P+(T + 1), being 249

T the time horizon. The latter approach is summarized in the next Nonlinear Program: 250

max
α

P+(T + 1), (12)

P+(t + 1) =
L

∑
k=1

ak

k

∑
j=0

αk
j (t)C

k
j P+(t)j(1− P+(t))k−j, t = 1, . . . , T, (13)

αk
j (t) ≤ αk

j+1(t) t = 1, . . . , T; j = 0, 1, . . . , k− 1; k = 1, . . . , L, (14)

αk
j (t) ≥ αk+1

j (t) t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L− 1, (15)

L

∑
k=1

αk
j (t) ≤ bj(t) t = 1, . . . , T; j = 0, 1, . . . , k, (16)

0 ≤ αk
j (t) ≤ 1 t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L. (17)

251

252

The previous Nonlinear Program includes the unknowns

αk
j (t), t = 1, . . . , T; j = 0, 1, . . . , k; k = 1, . . . , L,

which represent a larger number of variables with respect to (5)-(9). This implies that the 253

larger the time horizon T, the larger the number of unknowns of the resulting problem 254

formulation. Moreover, as already remarked, (12)-(17) is a Nonlinear Program, which in 255

general increases the difficulty of its solution. In particular, the nonlinearities in (13) might 256

yield a nonconcave overall maximization problem, which implies that a certain number of 257

local maxima (which are not global) might arise. In addition, unlike (5)-(9), the feasible set 258

of (12)-(17) is no more a polyhedron, so that the final solutions not necessarily are located 259

on the boundary of the feasible set. As a consequence, the choice of the starting value P+(1) 260

in (13) becomes a key factor for at least a couple of reasons: 261

• the sequence {P+(t)} strongly depends on P+(1), in a similar fashion of the single- 262

period formulation (5)-(9); 263

• the choice of {P+(t)} strongly affects the local maximum provided by the solver 264

adopted for (12)-(17). 265

As regards the constraints (13), observe that they simply state a recursion for the function in 266

(2), at each time step. Moreover, the constraints (14), (15) and (17) have a similar meaning 267

of the constraints (6), (7) and (9), for the single-period formulation. Finally, the budget 268

constraints (16) have a possible double formulation, due to the multi-period scheme. 269

Proposition 1. Let the sequence {αk
j (t)} be a global solution of (5)-(9), for any t = 1, . . . , T. 270

Then, {αk
j (t)}t=1,...,T is a global solution of (12)-(17). 271
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Proof. Observe that from relation (2) we have the following equalities 272

P+(t + 1)− P+(t) =

T+1

∑
t=2

[
L

∑
k=1

ak

k

∑
j=0

αk
j (t)C

k
j P+(t)j(1− P+(t))k−j −

L

∑
k=1

ak

k

∑
j=0

αk
j (t− 1)Ck

j P+(t− 1)j(1− P+(t− 1))k−j

]
=

T+1

∑
t=2

∆P+(t).

Thus, considering that P+(1) ∈ < is a constant value, the maximization in (12) is equivalent 273

to the maximization 274

max
T+1

∑
t=2

∆P+(t). (18)

Moreover, observe that if P+(t) is given, ∆P+(t + 1) depends only on the unknowns

αk
j (t), j = 0, . . . , k; k = 1, . . . , L,

and the maximization in (5) is equivalent to

max
α

∆P+(t + 1).

Now, suppose the sequence {αk
j (t)}j=0,...,k; k=1,...,L is a solution of (5)-(9); then, it also satisfies 275

(13) for t, as well as (14), (15), (16) and (17). Thus, if the sequences 276{
αk

j (t)
}

j=0,...,k; k=1,...,L
t = 1, . . . , T (19)

solve the problem (5)-(9), for t = 1, . . . , T, then by (18) the values (19) are a feasible point of 277

(12)-(17), satisfying also (18), i.e. (19) is a solution of (12)-(17). 278

Lemma 3. Let
{

αk
j (t)

}
be a global solution of (5)-(9), for any t ∈ {1, 2, . . . , T}, where the

inequality (8) is replaced by the nonlinear inequality

φt

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), φt : <

(L+1)(L+2)
2 −1 → <.

Then,
{

αk
j (t)

}
t=1,...,T

is also a global solution of (12)-(17), with (16) replaced by 279

φt

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), t = 1, . . . , T; j = 0, . . . , k. (20)

Proof. The proof trivially follows the guidelines of the proof for Proposition 1. 280

Lemma 4. Let
{

αk
j (t)

}
be a global solution of (5)-(9), for any t ∈ {1, 2, . . . , T}, where the

inequality (8) is replaced by the nonlinear inequality

Φ

[
L

∑
k=1

αk
j (t)

]
≤ bj(t), Φ : <

(L+1)(L+2)
2 −1 → <,
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and Φ is any convex function. Then,
{

αk
j (t)

}
t=1,...,T

is also a feasible solution of (12)-(17), with 281

(16) replaced by 282

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤ bj(t), j = 0, . . . , k; 0 ≤ λt ≤ 1;

T

∑
t=1

λt = 1, (21)

being bj ≥ ∑T
t=1 λtbj(t). 283

Proof. The convexity of Φ and the hypotheses imply

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤

T

∑
t=1

λtΦ

[
L

∑
k=1

αk
j (t)

]
≤

T

∑
t=1

λtbj(t) ≤ bj,

so that
{

αk
j (t)

}
t=1,...,T

also satisfy (21). The rest of the proof follows the guidelines of the 284

proof for Proposition 1. 285

Remark 1. Note that from Lemma 4, if the sequences
{

αk
j (t)

}
, t = 1, . . . , T, are global solutions

of (5)-(9) for t = 1, . . . , T, then the sequence
{

αk
j (t)

}
t=1,...,T

is a feasible solution but possibly not

a global solution of (12)-(17), with (16) replaced by

Φ

[
T

∑
t=1

λt

L

∑
k=1

αk
j (t)

]
≤ bj(t), j = 0, . . . , k; 0 ≤ λt ≤ 1;

T

∑
t=1

λt = 1,

and bj ≥ ∑T
t=1 λtbj(t). 286

6.1. A Numerical example 287

We provide here a very preliminary numerical example where the solution of the
formulation (12)–(17) is considered, and the budget constraints (16) are replaced by the
unique one (which aggregates possible different budgets at the epoches 1, . . . , T)

L

∑
k=1

k

∑
j=0

T

∑
t=1

αk
j (t) ≤ budget.

Since the multi-period formulation is indeed nonlinear and possibly nonconvex, we pre-
ferred to preliminarily investigate its solutions through a renowned nonlinear (NLP) solver
from the literature. In particular, we adopted Knitro 13.2.0 from the NEOS serve. Neverthe-
less, we are aware that since the problem might be nonconvex (unless the last property is
explicitly proved to hold for (12)–(17)), the choice of the starting point by the NLP solver
may be crucial, to both outreach an accurate final solution and to reduce the overall compu-
tational burden. The parameters of the two instances we considered are summarized as
follows (respectively): 

L = 10
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65,
T = 6,
budget = 20,
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and 
L = 10,
ak = 1/L, k = 1, . . . , L,
P+(t) = 0.65,
T = 6,
budget = 100.

We will briefly show that due to the smaller budget (i.e. 20 < 100) in the first scenario, it
yields worse results (i.e. a smaller value of P+(T)) with respect to the second one. Indeed,
adopting the first set of parameters for our multi-period formulation, Knitro presolver
was able to eliminate 403 constraints and 1 variable, so that the final formulation included
395 variables and 660 constraints. Moreover, for the probabilities {P+(t)} we obtained the
following nonmonotone sequence (due to the nonlinearity of the multi-period model)

P+(1) 0.65
P+(2) 9.21406e− 05
P+(3) 1.51607e− 05
P+(4) 2.37203e− 05
P+(5) 2.06585e− 05
P+(6) 0.499547.

Conversely, adopting the second set of parameters for our multi-period formulation,
Knitro presolver was again able to eliminate 403 constraints and 1 variable, yielding for the
probabilities the values

P+(1) 0.65
P+(2) 0.140855
P+(3) 0.0613564
P+(4) 0.0521609
P+(5) 0.0573217
P+(6) 1.

Again we observe a nonmonotone behaviour for the sequence {P+(t)}, due to nonlinearities 288

of the multi-period model. For the sake of completeness we remark that the solution of the 289

last two nonlinear instances by Knitro required no more than 10 seconds each. 290

7. Conclusions 291

We studied the problem of possibly enhancing a standard dynamics from sociophysics 292

(namely the model (1)), using a mathematical programming perspective. We were interested 293

about following a couple of lines of research. First we coupled the model (1) with a LP 294

scheme, in order to possibly control the probability P+(t + 1) for a given probability 295

P+(t), after leveraging the unknowns αk
j in (2). The final value of these variables gives a 296

measure of the effort which is required to steer the diffusion process of the opinion + for 297

the subgroups of cardinality k. The dynamics is strongly based on the idea of possibly 298

maximizing P+(t + 1). A numerical experience is also reported in this regard, showing 299

that the computational effort for solving LPs associated with this first proposal is definitely 300

modest, even in case the solution of large instances is sought. 301

As a second task, we also extended the (one period) LP formulations to a more 302

general multi-period formulation, being in this case necessary to compute the sequence 303

{P+(t + 1), P+(t + 2), . . . , P+(T)} for a given value of P(t) and for a given time horizon 304

T. Some theoretical properties showing a connection between the solutions of both our 305

proposals have been given, though much work yet requires to be carried on, including a 306

wide numerical experience also in the multi-period case. 307
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