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Abstract: This paper focuses on the solution of difficult multidisciplinary 
optimisation formulations arising in ship design. The latter schemes are by 
nature the result of the interaction among several optimisation problems.  
Each optimisation problem summarises the issues related to a specific  
aspect (discipline) of the formulation, and it may be hardly solved by  
stand-alone methods which ignore the other disciplines. This usually  
yields very challenging numerical optimisation problems, due to the 
simultaneous solution of different schemes. In particular, in our ship design 
applications we stress the strong interaction between fluid-dynamics  
and optimisation, in order to get remarkable achievements. The ordinary  
stand-alone methods from mathematical programming prove to be often 
unsatisfactory on the latter multidisciplinary problems. This scenario  
requires a specific integration of both fluid-dynamics and optimisation,  
where constrained optimisation schemes frequently arise. We give  
evidence that the proper use of penalty methods, combined with global 
optimisation techniques, may both be a theoretically correct approach,  
and may yield a fruitful class of techniques for the solution of  
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multidisciplinary problems. We provide numerical results with different 
penalty functions, over difficult multidisciplinary formulations from ship 
design. Here, the introduction of penalty methods proved to be a valuable tool 
since feasibility issues strongly affect the formulation. 
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1 Introduction

Efficient solvers for computational fluid-dynamics (CFD) play a key-role in ship
design problems, where both the number and length of experiments is a crucial issue
(Peri et al., 2001). In addition, CFD analysis has been recently used in a larger
context, where different CFD solvers are combined in an optimisation framework.
Indeed, traditional approaches to shape design often required only feasibility, rather
than focusing on the solution of a full optimisation problem. As a consequence, in
case different disciplines were involved in the design problem, heuristic approaches
were applied to achieve each individual disciplinary feasibility (Alexandrov and
Hussaini, 1997; Raymer, 2002). However, the application of heuristics risks to be
unsatisfactory, since it may be based more on human skills and experience, rather than
on quantitative methods.

The latter facts motivate our interest for the systematic approach to numerical MDO.
In our problems the multidisciplinarity refers to the design of a ship, and includes
physical phenomena where hydrodynamics is coupled with structural mechanics, and
control. Furthermore, the coupling among disciplines might be essential, in order to
provide the convergence properties of the numerical techniques adopted. Thus, typical
issues from non-linear programming as feasibility, optimality conditions, sensitivity
analysis, duality theory, require a suitable adaptation in our MDO framework.

In particular we want to solve an MDO formulation of a sailing yacht keel fin design
problem, where the derivatives of the objective function and constraints are unavailable.
This problem is a hydroelastic design optimisation problem for an America’s Cup
race yacht. The fin is used to hold the bulb, so that yacht stability increases during
a competition.

The keel fin design is both affected by the weight and the shape of the bulb
(structure), as well as the hydrodynamic forces arising during the competitions
(hydrodynamics). The interaction between the two disciplines yields an optimisation
formulation, which is solved with a combined approach including penalty methods and
derivative-free techniques. We remark that, as in several MDO problems, the derivatives
are unavailable, since the functions involved are essentially obtained by solving coupled
PDE systems, by black-box tools. As a result, automatic differentiation or adjoint
methods may not be adopted. Moreover, each function evaluation may be really time
consuming, requiring up to one day of computation on a parallel machine.

In particular, we apply an approach which encompasses the use of suitable penalty
methods and global optimisation algorithms. The paper is organised as follows.
Section 2 describes some generalities of MDO. Then, in Section 3 we detail our keel
fin design problem. Section 4 addresses, with specific emphasis, the use of suitable
algorithms from non-linear programming (NLP), in order to solve our MDO formulation.
Finally, Section 6 provides a numerical experience.

2 Generalities on MDO

In this section, we introduce a formal description of a general MDO problem,
which includes several approaches from the literature (Alexandrov and Hussaini, 1997;
Alexandrov and Lewis, 1999, 2000a, 2000b). The section details the optimisation
framework and the difficulties related to our fin design problem.
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Let us consider the r disciplines D1, . . . , Dr, along with the vectors of design
variables xi ∈ IRni and state variables si ∈ IRmi , associated with the discipline Di. With
the latter positions, and introducing also the vector x0 ∈ IRn0 (design variables shared
by the r disciplines), we want to model a general MDO ship design problem. On this
purpose, let us consider the quantities

x =
(
xT
0 xT

1 · · · xT
r

)T ∈ IRn, n = n0 + n1 + · · ·+ nr,

s =
(
sT1 · · · sTr

)T ∈ IRm, m = m1 + · · ·+mr,

and the following position (see also Alexandrov and Hussaini, 1997; Alexandrov and
Lewis, 1999, 2000b).

Assumption 2.1: Suppose the MDO problem involves the r disciplines Di, i = 1, . . . , r.
Consider the vectors x ∈ IRn and s ∈ IRm; assume that for each discipline Di:

1 we can describe the feasible set Bi ⊆ IRn0×ni×m (possibly empty), through
equalities and inequalities, i.e.,

Bi = {(x0, xi, s), x0 ∈ IRn0 , xi ∈ IRni , s ∈ IRm :
gi(x0, xi, s) ≥ 0, Ai(x0, xi, s) = 0},

where gi : IRn0 × IRni × IRm → IRini , with ini ≥ 1, and
Ai : IRn0 × IRni × IRm → IReqi , with eqi ≥ 1;

2 there exists the non-linear function fi(x0, xi, s), with fi : IRn0 × IRni × IRm → IR,
such that the formulation associated with the discipline Di is

min
(x0,xi,s)∈Bi

fi(x0, xi, s)

3 there exist the set B = B(x, s) = {(x, s), x ∈ IRn, s ∈ IRm : g0(x, s) ≥
0, (x0, xi, s) ∈ Bi, i = 1, . . . , r}, and the functions f(x, s) = φ[f1(x0, x1, s), . . . ,
fr(x0, xr, s)] and g0(x, s) (either explicitly or implicitly defined), with
f : IRn × IRm → IR and g0 : IRn × IRm → IRin0 , with in0 ≥ 1, such that the ship
design problem becomes

min
(x,s)∈B

f(x, s). (1)

Definition 2.1: Let the Assumption 2.1 hold; then, we say that (1) is a non-linear MDO
formulation for the MDO problem.

In our ship design MDO problems the Assumption 2.1 holds; moreover, box constraints
on a subset of the design variables may be also included. The latter constraints may
be included in the block of inequalities g0(x, s) ≥ 0. The formulation (1) is aimed to
distinguish between tractable MDO problems (for which we say that at least a non-linear
MDO formulation exists), and intractable MDO problems (whose formulation is hardly
described, either explicitly or implicitly, by a NLP formulation).

We observe that though (1) is formally a non-linear programme, standard techniques
from numerical optimisation are not immediately applicable for its solution. Indeed,
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the main difficulty of solving (1) is often the fact that B includes the so called
multidisciplinary analysis (MDA)

MDA =


A1(x0, x1, s) = 0

...
Ar(x0, xr, s) = 0.

Apparently MDA is a system of non-linear equations. However, in practice the ith block
of non-linear equalities Ai(x0, xi, s) = 0 is often a black-box, which only implicitly
defines a map among x0, xi and s. Moreover, in ship design problems the block
of non-linear equalities Ai(x0, xi, s) = 0 frequently corresponds to a discretised PDE
system. Thus, the implicit function theorem cannot be exploited to retrieve s = s(x)
from MDA, in order to solve (1) as

min
x∈B(x,s(x))

f(x, s(x)). (2)

As a consequence, (1) may be hardly solved as a non-linear programme all at once.
Moreover, optimisation techniques based on Karush-Kuhn-Tucker (KKT) conditions for
(1) may be of difficult application, since constraint qualification conditions often do
not hold. This proves the intrinsic difficulty to develop complete convergence analysis
along with effective algorithms for our ship design problem, formulated as (1).

3 Our keel fin design problem

The MDO application we selected to apply our approach is the optimisation of a keel fin
of a race sailing yacht. A sailing yacht is a ship which travels using the wind power only.
As a consequence, we have not a complete control of our propulsive system, since the
speed and direction of the wind are unpredictable to a large extent. Thus, the yacht often
travels in a different direction than the wind, and this causes lateral forces acting on the
ship (see also Peri and Mandolesi, 2005). This generates the following two effects: the
lateral forces tend both to roll the ship along the longitudinal axis, and to shift it along
the side direction. In order not to capsize, an heavy body (usually called bulb, due to its
streamlined shape) is placed in depth: it is particularly heavy, since it is used to contrast
the heeling moment generated by the wind. The bulb is connected with the yacht by a
thin fin, usually called keel fin. When the wind comes from one side, the yacht tends to
roll around the longitudinal axis, as soon as an equilibrium position between the heeling
moment generated by the wind and the moment caused by the weight of the bulb is
obtained. As a consequence, the keel fin is subject to a strong bending moment due to
the large weight of the bulb. On the other hand, the keel fin also provides the lateral
forces contrasting the lateral forces produced by the wind: for this purpose, it is shaped
as a wing. A second equilibrium condition is required for these forces. The shape of
the keel fin is important because we need to obtain an high side force with a moderate
induced resistance. The shape of the keel is dynamically influenced by the system of
forces acting on it, and the hydrodynamic characteristics as well. This is an example
in which the solution of a multidisciplinary design optimisation problem is claimed. In
Figure 1, a perspective view of a sailing yacht with a keel fin and bulb is presented.
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Figure 1 Fisheye view of a typical sailing yacht with keel fin and bulb: global perspective view
and detail view (see online version for colours)

Since our objective is the design of a keel fin for a race sailing yacht, the performances
of the yacht are our primary goal. What we need to design is a keel fin which is able
to induce a side force, with a minimum expense in terms of resistance. In fact, when a
wing generates a lift force, this is payed by an induced drag. A correct shaping of the
keel fin is expected to reduce the induced drag without loosing lifting force. We want
to solve the formulation (1), where our objective function F is the cost of side force in
terms of induced drag, say the ratio

F =
Fside

Fforw
. (3)

In (3), ‘side’ indicates the lateral direction and ‘forw’ the advancing direction. The
overall formulation will be detailed more widely in Section 6.

4 NLP for ship design MDO

In this section, we consider some generalities for the solution of the following
constrained optimisation problem

min
(x,s)∈B

f(x, s), (4)

which arises in several MDO formulations of ship design, as described in Section 2.
The feasible set B ⊆ IRn × IRm is defined throughout equalities and inequalities, i.e.,

B :

hj(x, s) = 0, j = 1, . . . , p,

gi(x, s) ≤ 0, i = 1, . . . ,m.
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Observe that (4) has a very general structure, where no specific assumption is
considered, e.g., any convexity/concavity assumption on f(x, s), or the feasible set B.
In particular, we also assume that the functions f(x, s), hj(x, s) = 0, j = 1, . . . , p,
gi(x, s) ≤ 0, i = 1 . . . ,m, are continuously differentiable over an open set containing B
(though the derivatives are unavailable).

Further information on the feasible set B, as the convexity, allows for the use of
specific and efficient methods for the solution of problem (4) (e.g., feasible direction
methods; Bazaraa et al., 1993; Bertsekas, 1995). In the latter case, if f(x, s) is also
convex over B, then an interesting amenity holds: every local minimum of f(x, s) over
B is also a global minimum of f(x, s) over B. This would simplify the search of global
minima over B, since most of the gradient-based algorithms for local optimisation could
be fruitfully used.

In principle the solution of (4) requires the simultaneous solution of two separate
problems: the minimisation of f(x, s) and the feasibility of the solution found (if
any exists).

Excluding the use of specific methods to solve (4), general approaches adopted
in the literature of numerical optimisation may be essentially reduced to the following
categories (see Bertsekas, 1995; Nocedal and Wright, 2006; Fiacco and McCormick,
1968; Bertsekas, 1982):

• Methods which solve a sequence of constrained subproblems, each of which must
be simpler than (4). In this class we find the well known sequential quadratic
programming (SQP) methods, which basically represent the natural extension of
Newton’s method to the constrained problem (4).

• Methods which solve a sequence K (possibly containing just one element) of
unconstrained subproblems. Under specific assumptions, the sequence {x∗

k}K,
where x∗

k solves the kth unconstrained subproblem, converges to a solution x∗

of (4).

In the latter class of methods we include the following subclasses:

1 Penalty methods: where at once the sum of f(x) and a penalty term measuring
the infeasibility (constraints violation), is minimised. Thus, the minimisation of
f(x) and the feasibility of the solution are simultaneously sought. The penalty
term always depends on a parameter µ ∈ IR, which is often crucial for the
efficiency of the overall method. Depending on the nature of the penalty function,
we distinguish between two different approaches.

• Exact penalty methods: the sequence of subproblems for (4) includes a unique
unconstrained subproblem UN . There exists a value µ̄ for the parameter,
such that if µ ∈ (0, µ̄], then a solution x∗ of UN is also a solution of (4).

• (Sequential) penalty methods: we have an infinite sequence {UNk} of
subproblems, where the subproblem UNk corresponds to a different value µk

of the parameter µ. Convergence may be proved when µk → 0.

2 Barrier methods: here a sequence {x∗
k} of points in the interior of B is generated.

Under suitable assumptions {x∗
k} → x∗, where x∗ is a solution of (4).
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3 Augmented Lagrangian methods: in this class of algorithms, which may be both
exact and sequential, the idea of a penalty function is essentially combined with
the Lagrangian function associated with (4).

The next section will be devoted to describe and motivate the use of a proper algorithm
to solve (4), among the approaches described in this section.

4.1 The proper NLP method for our ship design problem

Consider our ship design problem (1) in Section 2. A careful modelling of that problem
yields a formulation as in (4), where in particular we obtain for the feasible set B the
modified expression1

B̄ :


hH(x, s̄x) = 0,

hS(x, s̄x) = 0,

gi(x) ≤ 0, i = 1, . . . ,m.

(5)

The set of equality constraints hH(x, s) = 0 is obtained by discretisation of a PDE
system, associated with the hydrodynamic properties of the fin. Similarly, the set of
equality constraints hS(x, s) = 0 is obtained by discretisation of another PDE system,
associated with the structural properties of the fin. In the constraints hH(x, s) = 0
and hS(x, s) = 0 we distinguish between the design variables x (which affect the
optimisation) and the state variables s (which are shared just by the equalities of the
hydrodynamic and the structural blocks). Moreover, with s̄x we indicate a specific
value of the state variables, depending on ‘x’ obtained after coupling the structural and
hydrodynamic disciplines, as detailed in Section 2. Our NLP formulation of the MDO
problem becomes

min
x∈B̄

f(x, s̄x) (6)

with

B̄ :

 h̄(x, s̄x) = 0

gi(x) ≤ 0, i = 1, . . . ,m,
h̄(x, s̄x) = 0 :

hH(x, s̄x) = 0,

hS(x, s̄x) = 0,

and the optimisation is performed only with respect to the design variables x. Now we
motivate the choice of the NLP techniques to be used for solving (6), according with
the description in Section 4. In particular, we describe both advantages and drawbacks
we met for each class of optimisation methods listed in the previous section. The latter
analysis will motivate and support our choice for the penalty methods.

We remark that since the source codes of PDE solvers are usually black-box
solvers, automatic differentiation cannot be adopted for computing derivatives (see also
Griewank, 2000).
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4.1.1 SQP methods

SQP methods are iterative methods introduced since ‘63 (Wilson, 1963), and widely
studied in the ‘70s and ‘80s (Powell, 1978; Garcia-Palomares and Mangasarian, 1976;
Powell and Yuan, 1986). They solve (6) by generating the sequence of iterates {xk}.
At the kth iteration they compute the direction dk which solves the (simpler) quadratic
constrained problem

min
d

1

2
dT∇2

xxL (xk, s̄xk
, λk, σk) d+∇xf (xk, s̄xk

)
T
d

Wx (xk, s̄xk
) d+ h̄ (xk, s̄xk

) = 0
Zx (xk, s̄xk

) d+ g (xk) ≤ 0,

(7)

where L (xk, s̄xk
, λk, σk) is the Lagrangian function2

L (xk, s̄xk
, λk, σk) = f (xk, s̄xk

) + λT
k h̄ (xk, s̄xk

) + σT
k g (xk) ,

of the problem (6), λk ∈ IRp is the vector of multipliers associated with the equality
constraints h̄(x, s̄xk

) = 0, σk ∈ IRm is the vector of multipliers associated with the
inequality constraints g(x) ≤ 0, and Wx(xk, s̄xk

), Zx(xk, s̄xk
) are the Jacobians of

the constraints at xk. Then, the direction dk is used to compute the new iterate
xk+1 = xk + dk. The main advantage of SQP methods is undoubtedly their appealing
rate of convergence, which is under mild assumptions quadratic or at least superlinear
for the sequence {xk} (see Nocedal and Wright, 2006). On the other hand, several
disadvantages discourage us from the application of these methods.

First, the derivatives of both f(x, s̄x) and the constraints are required in (7), and
since we compute f(x, s̄x) along with the constraints by simulations, derivatives are
in general unavailable. Even when we tried to compute them by finite differences, we
faced other two problems:

1 In case f(x, s̄x), h̄j(x, s̄x) and gi(x, s̄x) are noisy functions (the usual case), finite
differences suffered from serious inaccuracy and instability in the computation.

2 The quadratic subproblem (7) may be infeasible or even unbounded from below.
This represents the main serious drawback of SQP, and may require the
introduction of additional trust region constraints to formulation (7).

4.1.2 Barrier methods

Barrier methods, which are also addressed as Interior Point methods, are parameter
dependent techniques which generate a sequence of iterates {xk} in the interior
of the feasible set B̄. These methods are usually attractive for their simplicity
and easy implementation, along with their efficiency (primal-dual methods with the
predictor-corrector variant by Mehrotra). However, apart from possible instabilities
which may arise when convergence comes up, these methods require that the interior of
B̄ is non-empty. Moreover, at least the starting feasible point x0 should be provided by
the user, which is often very difficult to generate.
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4.1.3 (Sequential) penalty functions

Penalty functions were introduced for the first time by Courant (1943), then extended
by Fiacco and McCormick (1968). Given the problem (6), they consider the solution of
the unconstrained problem

min
x∈IRn

P (x, s̄x; ε), ε > 0, (8)

where

P (x, s̄x; ε) = f(x, s̄x) +
1

ε
p(x), p(x) :

= 0, ∀x ∈ B̄,

> 0, ∀x ̸∈ B̄.

P (x, s̄x; ε) is usually addressed as a Penalty Function, and the term p(x) substantially
measures the violation of the constraints by the vector x. Moreover, when both f(x, s̄x)
and p(x) are convex over IRn, then P (x, s̄x; ε) is also convex, so that its local minima
coincide with its global minima.

To solve (6) we iteratively considered in (8) the sequence {εk} of the parameter
ε, with εk → 0; then, for any εk the solution xk of (8) was computed. The function
P (x, s̄x; ε) is also known as an exterior penalty function for (6), since its minimiser x̂
is often infeasible for (6), i.e., x̂ ̸∈ B̄. Among the simplest penalty functions proposed
in the literature, to solve our ship design problems we have considered the quadratic
penalty function for (6):

P (x, s̄x; ε) = f(x, s̄x) +
1

ε

{
∥h̄(x, s̄x)∥2 + ∥max{0, g(x)}∥2

}
, (9)

where

max{0, g(x)} .
=

 max{0, g1(x)}
...

max{0, gm(x)}

 ∈ IRm, (10)

and ∥ · ∥ is the Euclidean norm. We sketch in Table 1 the algorithm we used to
implement the quadratic penalty function approach. As regards the scheme in Table 1,
the following comments apply:

• In the scheme Alg Quadratic Penalty we test if the KKT conditions are
satisfied for (6), at the current minimiser yk of P (x, s̄x; εk). However, since the
Lagrangian function for (6) is hardly available in our ship design problems, in the
practical implementation of scheme Alg Quadratic Penalty we stopped when
either no significant progress was obtained, or a fixed maximum number of
iterations was performed.

• The parameter εk is updated so that if the condition ∥∇xP (yk, s̄x; εk)∥ ≤ ρk is
hardly met (which usually occurs when illconditioning arises, too), then εk+1 is
set according with εk+1 ≈ εk. Otherwise, when the condition
∥∇xP (yk, s̄x; εk)∥ ≤ ρk is easily met [i.e., (12) is easily solved], then εk+1 ≪ εk.



Penalty function approaches for ship multidisciplinary design optimisation 775

• Illconditioning may arise when we try to satisfy ∥∇xP (yk, s̄x; εk)∥ ≤ ρk (i.e.,
when we minimise the penalty function P (x, s̄x; εk)). As a consequence, the
efficiency of methods based on penalty functions relies on the proper technique
we adopt to minimise P (x, s̄x; εk). These techniques should avoid to use the
illconditioned matrix ∇2

xxP (x, s̄x; εk) (e.g., Newton’s method, or even the
Gradient method whose progress depends on the ratio λM/λm, where λM [λm] is
the absolute value of the largest [smallest] eigenvalue of ∇2

xxP (x, s̄x; εk)).
In our optimisation problem (6), first and second order derivatives are unavailable
as recalled above. Furthermore, exact derivative-free methods as pattern search,
model-based or linesearch-based techniques (see Moré and Wild, 2007 for a
comparison) are definitely too expensive for our problems (we recall that on our
problems one function evaluation may take even one day of computation). Thus,
penalty functions combined with heuristics to solve (12), are to us appealing, since

1 they yield unconstrained formulations (which require simpler algorithms)

2 they do not suffer from infeasibility (unlike barrier methods or SQP)

3 when εk → 0 we can deflate the illconditioning of ∇2
xxP (x, s̄x; εk) by

choosing a derivative-free method to minimise P (x, s̄x; εk).

• In order to further reduce the effects of illconditioning, in
Alg Quadratic Penalty we ‘set xk from yk’ by means of extrapolation
techniques, which generate xk from the trajectory described by the iterates
{x0, x1, . . . , xk−1}.

We decided to mainly focus on penalty methods for ship design, also for the following
appealing result (see also Fletcher, 1987).

Table 1 Our algorithm for the quadratic penalty function: Alg Quadratic Penalty

Given {εk} → 0, εk+1 < εk, {ρk}, ρk > 0, ∀k ≥ 1.
Choose x0 ∈ IRn

FOR k = 1, 2, . . .

start from xk−1 and find
yk = argmin P (x, s̄x; εk) (12)

x ∈ IRn

such that ∥∇xP (yk, s̄x; εk)∥ ≤ ρk.
IF (yk satisfies KKT for (6)).OR.(a stopping rule holds) THEN

set xk = yk, STOP.
ELSE

choose εk+1 ∈ (0, εk)
set xk from yk (possibly xk = yk)

ENDIF
END FOR

Proposition 4.1: Consider the problem (6), with f , h and g continuous on IRn; consider
the quadratic penalty function (9), where εk → 0. Let xk be a global minimum of
P (x, s̄x; εk) on IRn. Then, every limit point x̄ of the sequence {xk} generated by
Alg Quadratic Penalty, is also a global minimum for the problem (6).
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The latter proposition substantially suggests that the global minima of (6), may be
detected by iteratively computing the global minima of (9), for εk → 0. To the latter
purpose, we used the heuristics particle swarm optimisation (PSO) for derivative-free
problems (see Kennedy and Eberhart, 1995; Campana et al., 2009a). PSO proved to be
a satisfactory compromise between the computational burden and the accuracy to find a
global minimum of P (x, s̄x; εk).

4.1.4 Exact penalty functions

We have also considered exact penalty functions for solving (6), where a unique
unconstrained minimisation problem was solved.

In the literature the term ‘exact’ is used to indicate the precise correspondence
between the solutions of (6) and the minimisers of the exact penalty function.

The latter correspondence holds as long as the parameter ε satisfies ε ∈ (0, ε∗], for
a suitable (and usually unknown) threshold ε∗. As detailed in Section 6 we did not
experience problems to set this parameter. A wide range of exact penalty functions has
been introduced in the literature. We mainly focus on the so called ℓ1 exact penalty
function, which is the following nondifferentiable penalty function proposed by Zangwill
(1967) (see Fletcher, 1987)

Φ(x, s̄x; ε) = f(x, s̄x) +
1

ε

{
∥max{g(x), 0}∥1 + ∥h̄(x, s̄x)∥1

}
. (13)

Clearly relation (13) is nondifferentiable because of the norm ∥ · ∥1. Thus, the
minimisation of (13) requires a specific safeguard. Since in our ship design problem
(6) the derivatives are unavailable, we again minimised (13) by using PSO (see
Section 4.1.3). This choice had two remarkable advantages:

• for any ε ∈ (0, ε∗] PSO was applied to minimise the nondifferentiable function
(13), without being affected by possible illconditioning;

• PSO again provided a suitable compromise between the performance [i.e., a
satisfactory estimate of the minimiser for (13)] and the computational cost.

Under mild assumptions we can prove, also for exact penalty functions, a theoretical
result similar to Proposition 4.1.

Due to the nature of our ship design problem, we did not consider also the use
of continuously differentiable exact penalty functions defined in the literature (see for
example, Fletcher, 1970).

4.1.5 Augmented Lagrangian functions

Augmented Lagrangian functions are iterative methods introduced by Powell (1969),
for equality constrained problems. Then, Rockafellar (1973) extended the approach to
inequality constrained problems. These methods have some similarities with the penalty
functions and exact penalty functions, and proved to be even more efficient and less
sensible to illconditioning. However, for our purpose at least a couple of motivations
discourage from their use: they introduce an additional set of variables (dual variables),
one for any constraint in (6); they require the use of a Lagrangian function associated
with problem (6), to be minimised, in place of f(x, s̄x). Considering that the derivatives
of f(x, s̄x), h̄(x, s̄x) and g(x) in (6) are unavailable, the latter choice could be a
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complication with respect to both sequential and exact penalty functions. Anyway,
the use of derivative-free techniques could possibly alleviate the latter drawback. The
adoption of augmented Lagrangian functions could be an interesting extension for
future work.

5 Notes on PSO

Here we provide a brief description of the iterative heuristics PSO. It has been
recently widely adopted for the approximate solution of global optimisation problems
(see Kennedy and Eberhart, 1995). It belongs to the class of Evolutionary Methods and
was originally inspired by the flight of birds in a flock. The basic idea of PSO (see also
Blackwell et al., 2007 for a tutorial) is an attempt to model the behaviour of flocks of
birds when they cooperate to search for food.

In particular, the paradigm of a flying flock may be reformulated as the search of
a global minimum of a non-linear function. For each member (namely a particle) of
the flock (or a swarm), a pair of vectors is considered: the position and the velocity.
More formally, suppose we apply PSO, where M particles are included, to solve an
unconstrained optimisation problem in IRt, t ≥ 1. At the kth step of the PSO algorithm
we introduce the following quantities for any particle j ∈ {1, . . . ,M}:

• xk
j ∈ IRt, the current position

• vkj ∈ IRt, the current velocity

• pkj ∈ IRt, with pkj = argmin1≤h≤k{f(xh
j )} (i.e., the best position visited in the

previous steps by the jth particle)

• pbestk ∈ IRt, with pbestk = argmin1≤h≤k,1≤ℓ≤M{f(xh
ℓ )} (i.e., the best position

visited in the previous steps by all the particles).

A standard version of the PSO method is summarised by the following algorithm
(see also Clerc and Kennedy, 2002)

1 Set k = 1. Set χ > 0 and w ∈ [wmin, wmax], compute f(xk
j ), j = 1, . . . ,M , and

pbestk = +∞.

2 For any j = 1, . . . ,M , if f(xk
j ) < pkj then set pkj = f(xk

j ). Set
pbestk = argmin1≤ℓ≤M{pkℓ )}.

3 For any j = 1, . . . ,M update the position and the velocity of the jth particle, as

vk+1
j = χ

[
wvkj + c1u1 ⊗

(
pkj − xk

j

)
+ c2u2 ⊗

(
pbestk − xk

j

)]
xk+1
j = xk

j + vk+1
j
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where u1, u2 ∈ IRt are uniformly randomly distributed vectors in [0, 1] (however,
we set in our experiments u1 = u2 = 1 as detailed in Section 6), and the symbol
⊗ denotes the component-wise product.

4 If a convergence test is satisfied then STOP, else k = k + 1 and go to 2.

For typical values of the constriction coefficient χ see also Blackwell et al. (2007) and
therein references. Roughly speaking, at step k the jth particle updates its position as
subject to a pair of attractive directions: the vector heading its previous best position
(i.e., (pkj − xk

j )) and the vector heading the swarm best position (i.e., (pbestk − xk
j )).

Since PSO is a heuristics it is not endowed with the standard convergence properties
provided by exact derivative free optimisation methods like pattern search methods,
polynomial model-based methods, linesearch-based methods, etc. However, it often
provides a satisfactory approximation of a solution within a very few iterations. In other
words, PSO often yields a reasonable compromise between the computational cost and
the quality of the final approximate solution found.

6 Numerical results and comments

As previously recalled, our application is the optimisation of the keel fin of a sailing
yacht. It is a slender body: at the end of the fin, an heavy body is connected, namely
the keel bulb. The keel bulb provides the stability of the yacht. The fin is designed
to provide the side force needed to contrast the lateral forces generated by the sails
(see Figure 1): this effect is obtained by adequately shaping the fin, producing a
non-symmetric pressure distribution on the two sides of the fin. The pressure distribution
on the fin is origin of the required side force, but also of a side force and a bending
moment on the fin itself, whose geometry is deformed under these actions. Furthermore,
the yacht travels in an oblique position, so that the fin bends under the action of the
keel bulb plus the pressure acting on the fin itself. As a consequence of the unknown
fin deformation, two different solvers are needed for the evaluation of the performances
of the fin: a fluid dynamic solver and a structural solver. With the structural solver, the
real geometry of the deformed fin is computed, while the fluid dynamic solver computes
the hydrodynamic pressure on the fin, based on the real geometry computed. The final
result is obtained by the multidisciplinary interactions of the two different phenomena:
the hydrodynamic flow around the fin and the deformation of the fin. These two aspects
are mutually related, and this is classically the nature of a multidisciplinary problem.

The state variables (see Section 2) are taken into account in an indirect way. In fact,
the pressure and the deformation on each element of the fin, created after a discretisation
of its surface, represent the state variables s̄x. Since the deformed geometry of the fin
is a function of the hydrodynamic actions plus the bulb weight, an iterative procedure is
used for the derivation of the real deformed geometry: a first hydrodynamic solution is
computed, the pressure on the fin is calculated and it is passed to the structural solver
as an input. The deformation is computed and the new deformed geometry is analysed
by the fluid dynamic solver. At step k of this iterative procedure, our objective function
(3) will be different than at step k − 1. We can now define the quantity

η =
F k − F k−1

F k
, (14)
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where F k is the value of the objective function (3) at step k, and η is an indicator of
the steady-state value of the objective function when performing the MDA. If η → 0
the iterative procedure of the MDA converges, i.e., the equality constraints in (4) are
satisfied. The value of η is therefore an indicator of the degree of coupling between the
disciplines. In the current application we set a satisfactory value for η, namely η̄, and
stop the iterative procedure for the MDA if η < η̄.

The fin is substantially represented by a National Advisory Committee on
Aeronautics (NACA) profile with a large aspect ratio. A picture is reported in Figure 2:
on the left a side view of the fin is presented; on the right a representation of our
geometrical constraints is visible [i.e., the inequality constraints in (4)]. In order to
allow the connection of the fin with the yacht hull, and also in order to include a weak
structural constraint (the fin sustains a heavy weight, and the section of the fin cannot be
too small), we define a minimum volume to be included into the fin (the parallelepiped
in Figure 2).

Figure 2 Keel fin geometry: on the left, side view of the adopted keel fin, on the right,
visualisation of the geometrical constraint (see online version for colours)

The parametrisation of the fin is obtained by superimposing an analytical surface to the
original fin surface. Only one side of the fin is deformed, and then the new geometry is
mirrored. The fin can be enlarged/shrinked along the lateral direction, while the bottom
section can be shifted forward and backward with respect to the top section of the fin.
Four parameters are needed to model this deformation.

The objective function selected for this application is the efficiency of the fin,
defined as the ratio between the side force generated by the fin and the total resistance.
Since we need a high efficiency of the fin, in this application we solve a maximisation
problem, or equivalently we minimise the negative value of the efficiency.

To this end, as motivated in Sections 4.1.3 and 4.1.4, PSO algorithm is applied
(see Kennedy and Eberhart, 1995; Campana et al., 2009a), and 16 particles are randomly
distributed at the outset of the algorithm. Up to 100*NDV evaluations of the objective
function are allowed (computational cost), where NDV = 4 is the number of design
variables (i.e., the parameters used to model the fin deformation). Since the four
unknowns represent displacements of physical measurements, before applying PSO the
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objective function is also evaluated in the point (0, 0, 0, 0)T . The latter choice provides
a reference value for the objective function, corresponding to zero displacements. For η
in (14) we set a threshold value of η̄ = 10−3. As a consequence, the fulfilment of the
MDA is achieved along with the convergence of the optimisation problem (for further
details see also Campana et al., 2007).

Different choices for the penalty function have been experienced on our problem.
According with Section 4.1 we chose: the ℓ1 non-differentiable penalty function (13)
(addressed therein as ‘linear’, for short), with a fixed penalty parameter ε = 10−2, and
a quadratic penalty function (9) with εstart = 1 and ε → 10−2. In addition, for the
quadratic penalty function we also experienced εstart > 1 at the outset of the procedure
Alg Quadratic Penalty, then ε → 10−2, according with the theory which requires
ε → 0. At each step, the penalty parameter for the quadratic penalty function is halved.
Results of the comparisons are reported in Figures 3 and 4. The ℓ1 non-differentiable
penalty function (bullets) yields a better value of the objective function, using a
fairly large value of the parameter ε in (13). We remark that much smaller values of
ε (say ε < 10−6) may cause a possible numerical instability when minimising the
ℓ1 penalty function in (13). Moreover, the quadratic penalty function starting with
ε > 1 (squares) is not amenable, according with the theory. Each symbol in the picture
represents a particle of PSO. By observing the areas of Figure 3 where the particles
tend to cluster, we immediately deduce that the objective function is likely non-linear
and nonconvex. Indeed, particles clusters are associated with several local minima
of the objective function. On the overall, the ℓ1 penalty function provides the best
approximation of a global minimum, using the same number of function evaluations.

Figure 3 Comparison among different penalty methods for the minimisation of the objective
function
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Figure 4 Final values of the four design variables (i.e., the four parameters used to model the
deformation of the fin), adopting different penalty functions

Observe that from Figure 4 the three penalty functions considered provide very different
final values for the four design variables, i.e., very different geometries of the final
fin. This reveals that unlike heuristic methods may suggest, feasible geometries of
the fin may be very different from the optimal geometries computed by ad hoc NLP
approaches. Each symbol in the picture again represents a particle of PSO, and all the
final geometries in Figure 4 are feasible.

For the PSO parameters we adopted the values c1 = 0.4, c2 = 0.8, w = 0.9, χ = 1.
Moreover, we set u1 = u2 = 1 (see also Campana et al., 2009b) and unlike the common
literature we did not consider u1, u2 uniformly randomly chosen in [0, 1]. The latter
partial modification of a PSO scheme has a twofold motivation. On one hand we wanted
to adopt PSO since it is relatively fast to locate a satisfactory approximation of a global
minimum. On the other hand, the choice of random coefficients for u1 and u2 would
have required several reruns, in order to provide a significant statistics of the numerical
results. Since at the iterate xk

j the computation of f(xk
j ) may take several hours, on

our problem setting u1, u2 uniformly in [0, 1] was not allowed in practice (even using a
simplified computation for f(xk

j )).
We remark that other papers consider the implicit use of penalty functions for MDO

formulations (e.g., Belegundu et al., 2000). However, here we explicitly motivate, select
and compare different penalty function approaches, in order to match theoretical results
with the application, as detailed in Section 1.
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7 Conclusions

In this paper we have pursued a twofold purpose in a multidisciplinary optimisation
framework. First, we have briefly listed some renowned approaches from constrained
NLP, which can represent useful tools for the solution of complex multidisciplinary
optimisation schemes. Then, we have focused on a specific application in ship design,
where two disciplines are involved (namely fluid dynamic and structural disciplines),
each requiring a specific and different solver. The strategy adopted to combine the two
disciplines shows that the overall scheme yields very challenging numerical optimisation
problems, which require a fine and careful use of mathematical programming tools.
In particular, considering that the minimisation of non-differentiable functions was
required, we have also integrated the heuristics PSO in our approach. Numerical results
proved the effectiveness of our proposal, though further experiments may be fruitful to
test the robustness of the approach. On this guideline, we are also considering to include
robust optimisation methods in our multidisciplinary optimisation framework.
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Notes

1 With a little abuse of symbols we use here the same letters m and n in (1), but possibly with
different meanings.

2 Observe that the Hessian matrix ∇2
xxL(xk, s̄xk , λk, σk) is often computed by Quasi-Newton

approximations, in order to reduce the computational effort. This leads to a wide range of SQP
methods.


