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Abstract
In this paper, we amend amulti-criteriamethodology known asMURAME, to evaluate
the creditworthiness of a large sample of Italian Small and Medium-sized Enterprises,
using as input their balance sheet data. This methodology produces results in terms of
scoring and of classification into homogeneous rating classes. A distinctive goal of this
paper is to consider a preference disaggregation method to endogenously determine
some parameters of MURAME, by solving a nonsmooth constrained optimization
problem. Because of the complexity of the involved mathematical programming prob-
lem, for its solution we use an evolutionary metaheuristic, coupled with a specific
efficient initialization. This is combined with an unconstrained reformulation of the
problem, which provides a reasonable compromise between the quality of the solu-
tion and the computational burden. An extensive numerical experience is reported,
comparing an exogenous choice of MURAME parameters with our approach.
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1 Introduction

The use of Multi-Criteria Decision Analysis (MCDA) for credit risk modeling has
become very common in the specialized literature. MCDA enables to simultaneously
consider themany factors that affect firms’ creditworthiness, in order to directly involve
the decision maker (DM) in the credit risk assessment process, and—particularly
important—to incorporate her/his preference structure in the evaluation model. Usu-
ally, the preferential system of the DM is mainly specified by the parameters of the
adopted MCDA. Of course, the quality of the creditworthiness analysis performed
by the considered MCDA strongly depends on the “appropriate” determination of
its parameters. When this determination is not immediately available by the DM (as
in most cases), it can be endogenously inferred by a proper reference set of eval-
uations/decisions previously taken by the same DM. The methodological approach
considered in this occurrence is the so-called preference disaggregation analysis,
which is widely used in different application contexts (see Jacquet-Lagrèze and Siskos
2001 for a classical review and see Kadzinski et al. 2020a, b for recent developments).

Within this reference framework, in this paper we consider a MCDA methodology
known as MUlticriteria RAnking MEthod (MURAME)1 to evaluate the creditworthi-
ness of a large sample of Italian Small andMedium-sized Enterprises (SME), using as
input their balance sheet data. This methodology produces results in terms of scoring
and classification into homogeneous rating classes. A distinctive goal of this paper
is to consider a preference disaggregation method to endogenously determine some
parameters of MURAME, by solving a nonsmooth constrained optimization problem.
Because of the complexity of the mathematical programming problem, for its solution
we use the evolutionary metaheuristic known as Particle Swarm Optimization (PSO),
coupled with a specific efficient initialization. This is combined with an unconstrained
reformulation of the problem, which provides a reasonable compromise between the
quality of the solution and the computational burden.

The studywe present here continues a line of research initially developed inCorazza
et al. (2014, 2015b, 2016). Briefly, with reference only to the two papers of main inter-
est for the current study, in Corazza et al. (2015b) a novel evolutionary approach was
adopted in order to determine the MURAME parameters. To this aim, an auxiliary
mathematical programming problem was solved for tuning MURAME parameters. It
was based on minimizing the inconsistency between the creditworthiness evaluations
from the MURAME-based methodology and those revealed by a DM. The heuristic
procedure PSO was adopted, in order to solve an unconstrained global optimization
problem. In particular, PSO was adopted for the minimization of a nondifferentiable
penalty function, where standard initializations for PSO were used, inasmuch as the
main focus of the paper was on a creditworthiness problem. In Corazza et al. (2016),
a general MURAME-based methodology has been applied to evaluate the creditwor-
thiness of about 36,500 Italian SMEs in the period 2006–2008, a triennium including
the beginning of the past economic and financial crisis. In that paper, the MURAME-
based procedure was not coupled with any optimization procedure, and the assessment

1 MURAME has been originally proposed for the assessment of industrial projects (see Goletsis et al. 2001,
2003).
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of its parameters was exogenously based on standard indications from the literature.
The obtained results have shown that the MURAME-based methodology was able to
detect early signals of recession in the Italian SMEs sector. Furthermore, numerical
results have also confirmed the robustness of this methodology with respect to the
number of the evaluation criteria.

Despite the findings obtained in Corazza et al. (2015b, 2016), one of the key
aspects to improve efficiency of MURAME is represented by a reliable and effective
assessment set of its parameters. Even though the approach in Corazza et al. (2015b)
partially focuses on an endogenous assessment of MURAME parameters by PSO,
it requires to force the reformulation of a constrained optimization problem into an
unconstrained one, through the use of penalty terms. This might be a difficult task,
since the use of penalty terms can possibly raise numerical instabilities, as better
detailed in the sequel.

Conversely, the current contribution has three distinctive tasks:

(i) We employ an endogenous computation of some MURAME parameters to
score and to classify into homogeneous rating classes the Italian SMEs belong-
ing to the same dataset of firms considered in Corazza et al. (2016). This is an
enhancement to what we have done in Corazza et al. (2016), where the scoring
and the classification were determined only using an exogenous specifica-
tion of the MURAME parameters. Notice that the endogenous determination
employed in the present work is focused on correctly scoring and classifying
bankrupt firms, which are particularly important for any economic/financial
institution. (The reasons of this choice will be detailed in Sect. 4.) In turn,
this is different from what some of these authors have done in Corazza et al.
(2015b), where the MURAME parameters were endogenously determined to
minimize the number of all the firms, both active and bankrupt, incorrectly
classified;

(ii) The preference disaggregationmethodwe consider to endogenously determine
some parameters of MURAME implies to solve a constrained optimization
problem. But the metaheuristic solution we use was conceived for uncon-
strained problems, and its direct application cannot prevent from generating
infeasible solutions. Therefore, in order to manage the constraints of the
involved mathematical programming problem, in place of adopting the penalty
function approach applied in Corazza et al. (2013, 2015b), we consider a novel
nonlinear reformulation of the constrained optimization problem in terms of
an unconstrained one2;

(iii) We use the metaheuristic procedure as in Corazza et al. (2015b), but we endow
it with two recently introduced deterministic initializations (see Corazza et al.
2015a; Diez et al. 2016) never used before in this research area. We remark
that the initialization procedures adopted here significantly differ from the one
in Campana et al. (2010), as better detailed in Subsect. 5.3. Finally, to validate
our approach, we compare the results in terms of scoring and of classification,
when comparing the above initialization procedures and the standard random
initialization in Corazza et al. (2015b) (see Sect. 6). Furthermore, we also

2 Notice that by doing so we can maintain PSO as in its original iteration.
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carry out a comparison with the results got by applying our MURAME-based
creditworthiness model with the exogenous parameterization considered in
Corazza et al. (2016) (see again Sect. 6).

The remainder of this paper is organized as follows. The next section reports a
brief review of the literature, whose main purpose is not to be exhaustive but, rather,
to highlight the most relevant contributions on this research area. Sect. 3 presents
the MURAME methodology adopted for the creditworthiness evaluation of SMEs.
Section 4 first formulates the constrained optimization problem for the endogenous
determination of the MURAME parameters, then describes the balance sheet data of
the Italian SMEs used in the empirical investigation. Regarding Sect. 5: it first intro-
duces some basics about PSO, then it illustrates the nonlinear reformulation of the
constrained optimization problem in terms of an unconstrained one. Next, to compare
the PSO solver based on this novel reformulation with the PSO one based on the
penalty approach in Corazza et al. (2013, 2015a), Sect. 5 briefly presents the uncon-
strained reformulation of the mathematical programming problem within a penalty
framework. Lastly, the same section details the PSO deterministic initializations we
use. Section 6: first presents the results related to the classification of the investigated
Italian SMEs into homogeneous rating classes, using the methodology we propose
here; then compares these results with those obtained in Corazza et al. (2016) using an
exogenous determination of the MURAME parameters. Section 7: first compares the
aforementioned results also with those from a PSO solver based on a penalty function
approach; then issues some very preliminary ideas to possibly improve the exploitation
of the informative content coming from the aforementioned SMEs. Finally, Sect. 8
includes some concluding remarks.

2 Brief review of the literature

The topic of creditworthiness evaluation of SMEs has been mainly addressed by using
statistical and econometric techniques. Some of the recent contributions on this topic
have been stimulated by the Basel capital accord Basel II (see Basel Committee on
Banking Supervision 2004), that permitted banks to distinguish separately the expo-
sures to SMEs. The effects of Basel II on the bank capital requirements have been
investigated in Altman and Sabato (2005) in case of US, Italian and Australian SMEs.

In particular, we highlight the importance of modeling credit risk peculiarly for
SMEs. This issue has received an increasing attention: papers (Altman and Sabato
2005, 2007; Altman et al. 2010), and the very recent contribution (Altman et al.
2020) concerning the Italian SMEs, have explicitly pointed out the importance to
develop credit risk models specifically for SMEs. Particularly, Altman and Sabato
(2007) identified a set of financial ratios that could influence SMEs creditworthiness.
It showed the superiority of the proposedmodel in terms of default prediction accuracy,
compared to a generic corporate model.

It is interesting to note that over the years new methodologies have attracted the
attention of creditworthiness assessment. For instance, the early paper (Altman et al.
1994) compares traditional statistical methodologies for distress classification and
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prediction, such as linear discriminant analysis, with neural networks, and applied the
results to retailing/trading and construction firms in Italy. Moreover, Akkoç (2012)
proposed a credit scoring model that simultaneously uses an artificial neural network
and fuzzy logic, whereas several contributions explored the use of evolutionary com-
puting for credit scoring (see Marqués et al. 2013 for an extensive literature review on
the evolutionary computation methods applied to credit scoring models).

It is also possible to observe a growing interest toward the MCDA-based tools
capable of providing effective support to creditworthiness evaluation (see for instance
Baourakis et al. 2009; Doumpos and Figueira 2019; Doumpos et al. 2002; Doumpos
and Pasiouras 2005; Doumpos and Zopounidis 2011; García et al. 2013; Khalil et al.
2000; Mousavi and Ouenniche 2018). Among them, a few studies have specifically
addressed the issue of credit risk evaluation of SMEs through MCDA. Two main
research directions can be observed on this last topic: the one using the MURAME
methodology to evaluate SMEs creditworthiness (see Corazza et al. 2014, 2015b,
2016) and the one proposing ELECTRE TRI-based methods for the creditworthiness
evaluation of innovative SMEs (see Angilella and Mazzú 2015, 2019).

We remark that the present contribution is part of the first line of research, as it is
inspired by Corazza et al. (2015b, 2016), that detail the use of MURAME to deal with
a creditworthiness evaluation problem (the differences with the two previous studies
have been highlighted in the introductory section).

We conclude this section by noting that, despite the broad literature on MCDA
applications, there are relatively few applications of MCDA to the credit risk assess-
ment of SMEs. However, most of the studies mentioned above on this topic have been
proposed in recent years, so that research in this field appears promising.

3 MURAME for creditworthiness evaluation

In order to assess SME creditworthiness, we use an approach that jointly obtains a
ranking of SMEs on the basis of multiple indicators, typically balance sheet indi-
cators, and classifies the enterprises into homogeneous classes with respect to their
creditworthiness.

Let us denote by A = {a1, . . . , am} the set of firms whose creditworthiness has to
be evaluated on the basis of the set of indicators {I1, . . . , In} and by G = [gi j ] the
decisionmatrix of dimensionm×n in which the entry gi j indicates the performance of
firm ai with respect to indicator I j . A weightw j , with j = 1, . . . , n, is also associated
to each I j , being ‖w‖1 = 1, indicating the relative importance of each indicator in the
evaluation process.

The approach based on MURAME adopted for creditworthiness evaluation is
implemented in three steps (see Corazza et al. 2016). The objective of Step I is to
build the so-called reference profiles to use for classifying firms into homogeneous
rating classes. Regarding Steps II and III, since MURAME results from merging two
common multicriteria methods, ELECTRE III (see Roy 1968) and PROMETHEE II
(seeBrans andVincke 1985), they are peculiar of its two “ancestors.” In particular, Step
II aims at computing concordance and discordance indicators, which in turn are used
to build the outranking index O(ai , ak) for each pair of firms (ai , ak). The outranking
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relation between ai and ak allows to judge whether there are enough arguments to
definitely state that firm ai is at least as good as firm ak (see for example (Belton and
Stewart 2002, ch. 8) for the definition of the outranking relation and the description
of the so-called outranking methods in MCDA). Lastly, Step III uses the outranking
indexes in order to compute a final score associated to each firm, which enables us to
completely rank the firms.

3.1 Step I: reference profiles

The first step aims at specifying the reference profiles to add to the firms, for classifying
them into homogeneous classes from the point of view of their creditworthiness.
Reference profiles represent a sort of benchmark profiles related to fictitious firms,
which could also be specified by the DM. They delimit contiguous rating classes and
serve as comparison with the profiles of real firms. Notice that, if we need to classify
firms in l rating classes Class1, . . . , Classl , a number of l − 1 reference profiles has
to be considered.

Let us denote byR = {r1, . . . , rl−1} the set of reference profiles and by Ã = A∪R
the union of the set of firms and R itself; the elements of Ã are denoted by ãi , with
i = 1, . . . ,m + l − 1.

The final classification of firm ai ∈ A is determined according with this procedure:

ai ∈ Class j ⇐⇒ ϕ(r j−1) > ϕ(ai ) ≥ ϕ(r j ), (1)

for j = 1, . . . , l, where ϕ(·) is the final score associated by MURAME to the consid-
ered alternative3, with ϕ(r0) = +∞ and ϕ(rl) = −∞.

To compute the reference profiles, we follow the method adopted in Corazza et al.
(2016), with the only difference that we assume five rating classes instead of ten. This
choice agrees with a recent proposal of the Italian Ministry of Economic Develop-
ment, regarding a guarantee fund for SMEs, which indeed considers an evaluation
model based on five creditworthiness classes. In particular, for each indicator I j ,
we first calculate the sample quintiles of its empirical distribution, that we named
I 1j , I 2j , . . . , I 4j ; then, we aggregate the quintiles of the same order, obtaining 4
fictitious alternatives to be used as reference profiles:

⎧
⎪⎨

⎪⎩

r1 = (I 11 , I 12 , . . . , I 1n )
...

r4 = (I 41 , I 42 , . . . , I 4n ).

(2)

It is noteworthy that such reference profiles produce homogeneous rating classes
whose cardinalities strictly depend on the features of the empirical distributions of the
indicators.

3 A formal definition of ϕ(·) is provided in (6).
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3.2 Step II: concordance, discordance and outranking indexes

The construction of concordance and discordance indexes in MURAME is based on
a quite realistic preference structure. Indeed, with respect to the creditworthiness,
this approach permits the DM to express a strong preference for a certain firm, or to
consider two firms indifferent, or even to exhibit his/her indecision through a weak
preference for a given firm.

The use of preference and indifference thresholds related to each indicator I j , which
are denoted by p j and q j , respectively, with 0 ≤ q j ≤ p j , allows to differentiate
between the three preference zones described above.

Let us consider indicator I j and compare the pair of firms (ãi , ãk) with respect to
such an indicator. In particular, if gkj ≥ gi j + p j , then there is a strict preference for
the second firm ãk . More generally, the following local concordance index C j (ãi , ãk)
can be introduced to summarize the elements in favor of the first firm ãi over firm ãk :

C j (ãi , ãk) =

⎧
⎪⎨

⎪⎩

1 if gkj ≤ gi j + q j

0 if gkj ≥ gi j + p j
gi j−gk j+p j

p j−q j
otherwise.

(3)

Notice that the local concordance index reaches its maximum value, i.e.,
C j (ãi , ãk) = 1, when the second firm ãk is not preferred to the first one, whereas
in the intermediate zone of indecision the index takes values in the interval (0, 1), and
it (linearly) decreases as gkj − gi j increases.

On the other hand, a discordance principle represents the reasons against the state-
ment that firm ãi is at least as good as firm ãk . The following local discordance index
can be introduced:

Dj (ãi , ãk) =

⎧
⎪⎨

⎪⎩

0 if gkj ≤ gi j + p j

1 if gkj ≥ gi j + v j
gk j−gi j−p j

v j−p j
otherwise,

(4)

where the parameter v j , with v j ≥ p j , indicates the veto threshold. When gkj ≥
gi j + v j , one has that the second firm ãk performs strongly better than firm ãi with
respect to indicator I j , so that the local discordance index Dj (ãi , ãk) reaches its
maximal value of 1. Otherwise, when gkj ≤ gi j + p j , one has that the firm ãk performs
approximately as the firm ãi , so that the index reaches its minimal value of 0, and the
indicator I j does not put any veto. In the weak preference zone, Dj (ãi , ãk) shows a
(linear) increase as gkj − gi j increases.

Lastly, in order to build the outranking index O(ãi , ãk) for the pair (ãi , ãk), both
concordance and discordance indexes have to be simultaneously considered, as in:

O(ãi , ãk) =
{

C(ãi , ãk) if Dj (ãi , ãk) ≤ C(ãi , ãk) ∀ j

C(ãi , ãk)
∏

j∈T
1−Dj (ãi ,ãk )
1−C(ãi ,ãk )

otherwise,
(5)
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where C(ãi , ãk) = ∑n
j=1 w jC j (ãi , ãk) is the global concordance index, which

aggregates all the local ones using the relative weights associated to the indicators,
and T ⊆ {1, . . . , n} denotes the subset of indicators which satisfy the condition
Dj (ãi , ãk) > C(ãi , ãk). Broadly speaking, O(ãi , ãk) is higher when there are enough
arguments to state that firm ãi is at least as good as firm ãk , i.e. when C j (ãi , ãk) is
high, while there are no particular reasons to reject this assertion, i.e. when Dj (ãi , ãk)
are low. On the contrary, if the performance of a firm ãi with respect to at least an
indicator I j is rather low, i.e. if at least some Dj (ãi , ãk) is high, the outranking index
decreases. Observe that O(ãi , ãk) can even vanish in case of maximum discordance,
i.e. Dj (ãi , ãk) = 1, for even only one indicator.

3.3 Step III: net flow and firms ranking

By using the outranking indexes O(ãi , ãk) obtained in the previous step, the final
score, or net flow, ϕ(ãi ) is computed for each firm ãi , as follows:

ϕ(ãi ) =
∑

i �=k

O(ãi , ãk) −
∑

i �=k

O(ãk, ãi ). (6)

Broadly speaking, the first summation gives the aggregation of how much firm ãi
outranks with respect to any other firm, whereas the second summation provides the
aggregation of how much any other firm outranks with respect to firm ãi .

Lastly, the final score (6) is employed to rank firms from the best to the worst.
In conclusion, we highlight that the outputs produced by our MURAME-based

approach for creditworthiness evaluations are the (relative) scoring and ranking of the
investigated firms, and their classification into homogeneous rating classes. On the
basis of these outputs, other important quantities for credit risk assessment can be
calculated, like for instance the probabilities of default and of migration (see Corazza
et al. 2014), and various model’s performance metrics. However, the calculation of
such quantities is beyond the scope of this paper. As a matter of fact, the main target
of our research is to improve as much as possible the produced outputs by addressing
an appropriate preference disaggregation problem (see the next section). Of course,
this improvement also leads to an enhancement of calculation of the quantities above.
In particular, notice that by ranking and by classifying firms according to their score,
we are implicitly satisfying requirements of common used model’s performance met-
rics in credit risk assessment, as for example the area under the Receiver Operating
Characteristic (ROC) curve (see Fawcett 2006).

4 The optimization problem for the endogenous parameter
specification

As stated in Sect. 1, the initial task of this study is to endogenously determine some
MURAMEparameters in order tominimize the inconsistencyof thefirmsclassification
produced by our approach for creditworthiness evaluation. As it will become clear later
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on, the features of the PSO-based optimization algorithmwe adopt actually allow only
the assessment of someMURAME parameters, and not all of them. Indeed, since PSO
is ametaheuristic procedure for global optimization, the computational cost associated
with its application strongly increases with the number of decision variables.

At first, our research focuses on the endogenous calculation of the weights {w j }.
Notice that they likely summarize the main informative parameters on the DM’s pref-
erence structure as they specify the (relative) importance of the indicators {I j }. This
is one of the reasons for their choice; other rationales will be detailed later in this
section. Regarding the determination of the other parameters, i.e. the thresholds {p j },
{q j } and {v j }, we adopt the exogenous setting suggested in Corazza et al. (2014). In a
few details, assuming without loss of generality that the indicators I j are real numbers
in the range s j = max I j −min I j , for each indicator, the preference, indifference and
veto thresholds are, respectively, set as follows:

p j = 2

3
s j , q j = 1

6
s j , v j = 5

6
s j . (7)

Once concluded this starting part of the investigation, on the basis of some find-
ings (see Sect. 6), the indifference thresholds {q j } are also endogenously determined
together with the weights {w j }. Notice that the choice of this second set of parameters
is mainly grounded on the fact that, for each indicator I j , the indifference threshold
constitutes a lower bound for the other thresholds, i.e. q j ≤ p j ≤ v j . As far as the
determination of the other parameters, i.e. p j and v j , is concerned, we exogenously
specify them again according to (7).

4.1 The optimization problem

In order to endogenously specify the above MURAME parameters through prefer-
ence disaggregation, let us suppose that we have a reference set A′ consisting of m′
alternatives on which the classification is known a priori. The reference alternatives
in this case, as it is often the case when the universe of alternatives A is large, will be
a subset A′ ⊂ A of the whole set of the alternatives. In our implementation, A′ will
contain both a subset of nonbankrupt firms and a subset of bankrupt ones, for which
we will assume that we know their a priori correct classification. Given this input, the
objective is to determine the above parameters assigned to the MURAME criteria that
will minimize the inconsistencies between the model classification of bankrupt firms
and their correct one.

In order to formalize this optimization problem, initially with reference only to the
weights w j , suppose we are given a non-negative measure of inconsistency of our
model I(w1, . . . , wn), which ranges in the unit interval [0, 1], with I(w̄1, . . . , w̄n) =
0meaning that theweights w̄1, . . . , w̄n ensure the correct classification of the bankrupt
firms. Then, our aim is to solve the following mathematical programming problem:
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min
w1,...,wn

I(w1, . . . , wn)

s.t. w j ≥ 0, j = 1, . . . , n
n∑

j=1

w j = 1.
(8)

Problem (8) has surely a very compact expression, but a more accurate analysis reveals
possible serious difficulties when directly applying standard solvers for its solution.
Indeed, in our case every evaluation of the function I(w1, . . . , wn) first requires the
computation of the final scores ϕ(ai ), i.e. of (6), for each of the alternatives considered
in the reference set, not only for the bankrupt ones. Then, it requires that the firms
are classified according to (1), and finally, the measure of the inconsistency of the
model can be computed. Observe that several problems arise when trying to handle
formulation (8). Among them we highlight the following general issues, which may
strongly affect the efficiency and effectiveness of solvers:

• It is quite hard to write an exact analytical expression in closed form for
I(w1, . . . , wn), in terms of the decision variables;

• The function I(w1, . . . , wn) in general might be neither smooth nor Lips-
chitz/Holder continuous;

• The use of gradient-based methods for the solution of (8) is discouraged, since the
derivatives of I(w1, . . . , wn) are unavailable;

• An evolutionary optimizer to fast approximately solve (8) might be more appro-
priate, since expensive accurate solutions are possibly unnecessary.

Following this line of reasoning, in order to solve such a tough optimization prob-
lem, we use a solution algorithm based on PSO, which is a bio-inspired iterative
metaheuristic for the solution of nonconvex global optimization problems (see Sect. 5
and Kennedy and Eberhart 1995; Blackwell et al. 2007).

Regarding the formulation in which both the weights {w j } and the indifference
thresholds {q j } have to be endogenously determined, its structure substantially resem-
bles (8). The only differences consist in the inclusion of the decision variables q j and
of the constraints q j ≥ 0, with j = 1, . . . , n4.

Lastly, concerning the specification of the measure of inconsistency I to use, we
consider the following general principle: a good creditworthiness classification model
should place as many bankrupt firms as possible in the worst rating class, and the
number of bankrupt firms in each class should increasewith the class, being thefirst one
the best, and the last one the worst. By denoting with nB

j the number of bankrupt firms

grouped by the model in j-th class and with N B the total number of bankrupt firms
in our reference set, we considered then, according to the aforementioned principle,
the following two measures of inconsistency:

4 Notice that from conditions (7) one gets q j = p j /4 for any j . So that, constraint q j ≤ p j (see Sect. 3)
is satisfied by construction.
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I1(w1, . . . , wn)
.= I1 = nB

1

N B
,

I2(w1, . . . , wn)
.= I2 = 1 − nB

5

N B
.

(9)

We highlight that both these inconsistency measures are uniquely calculated with
respect to the bankrupt firms in A′.

The reasons for focusing only on the misclassification of bankrupt firms basically
depend on the fact that the firms’ credit status provided by the dataset used (see the next
subsection) is a dichotomous variable, while the number of considered homogeneous
rating classes is greater than two.

The choice to specialize our MURAME-based creditworthiness evaluation model
in the bankrupt firms classification is grounded on the following awareness: while the
wrong classification of a firm that will not bankrupt leads “only” to a missed earning
for the involved creditor institution, thewrong classification of a firm thatwill bankrupt
produces a certain loss for the same institution. As to say that in the former scenario,
the economic–financial profile of the entailed institution remains unchanged, while in
the latter scenario the same profile definitely worsens.

Clearly, an ideal approach would entail to jointly exploit the informative contents
coming both from the bankrupt firms and from the nonbankrupt ones. In this regard,
in Subsect. 7.2 we advance and apply a simple proposal about some inconsistency
measures possibly capable to use the information deriving from both the categories of
firms.

Notice that some additional hints for the classification of bankrupt firms might be
possibly suggested by the use of standard classificationmeasures like, for instance, the
ROC analysis (see, e.g., Fawcett 2006; Hand and Till 2001; Waegeman et al. 2008).

4.2 Balance sheet data on SMEs

Our MURAME-based approach for creditworthiness evaluation, properly improved
by the endogenous determination of some parameters, is applied to evaluate the cred-
itworthiness of a set of Italian SMEs during the triennium 2006-2008. We highlight
that, from the credit risk assessment standpoint, it is particularly important to be able
to correctly classify bankrupt firms in a triennium like that, as it includes the beginning
of the past economic and financial crisis.

Data has been collected from the professional database AIDA, by Bureau Van
Dijk Electronic Publishing, which contains the balance sheets of Italian firms, drafted
according to the IV CEE directive. The investigation regards SMEs with the legal
status of companies or corporations, which have a good coverage in AIDA. Within
the SMEs category, for the purpose of the present work, we focus on the enterprises
having an annual turnover not exceeding 50million Euros, and a number of employees
between 50 and 249. Therefore, we consider the largest SMEs in terms of number of
employees, which correspond to the third group of SMEs analyzed in Corazza et al.
(2016).

As far as the choice of the balance sheet indicators is concerned, in order to be able
to compare the results coming from this study with the ones obtained in Corazza et al.
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Table 1 Indicators considered in the creditworthiness analysis

I1 Cost of debt: Financial costs/Bank debts

I2 Return on equity (ROE): Net profit before tax/Total equity

I3 Total assets turnover: Sales/Total assets

I4 R&D costs/Total asset

I5 Income tax/Profit before taxes

I6 Equity − Equipment

I7 Rate of increase of revenues from sales and services

I8 Liabilities/Total assets

I9 Cash/Total assets

I10 Working capital/Total assets

I11 Intangible/Total assets

I12 EBITDA/Total assets

I13 Retained earnings/Total assets

I14 Net income/Sales

I15 Short term debt/Equity

I16 EBITDA/Interest expenses

I17 Account payable/Sales

I18 Account receivable/Liabilities

I19 Sales/Personnel costs

Table 2 Cardinality of the
sample of SMEs for each
considered year

Years Active Bankrupt Total
firms firms

2006 6625 1089 7714

2007 6766 925 7691

2008 6933 696 7629

(2016), we considered the same two sets of evaluation criteria used in that paper. The
first set is constituted by 19 quantitative indicators frequently used in the literature
to measure profitability, liquidity, solvency and other aspects of firm’s profile (see
Table 1). Once specified the first set of evaluation criteria, it is possible to detect in
the database AIDA the firms for which such indicators are available. In Table 2, we
report the cardinality of the sample of SMEs which are present in AIDA for at least
two years of the considered triennium; the table illustrates separately the number of
active and bankrupt firms analyzed. The second set of evaluation criteria, which is a
subset of the first one, is constituted by the accounting indicators used in Altman and
Sabato (2007) for the prediction of U.S. SMEs default (in the sequel named Altman’s
variables). Altman’s variables are listed in Table 3 and correspond to the indexes I15,
I9, I12, I13 and I16 of Table 1.

The use of two different sets of evaluation indicators allows us to clearly exemplify
the impact of the parameter specification on the scoring and on the ranking of the
firms, as well as on their classification into homogeneous rating classes. In particular,
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Table 3 Altman’s variables in the US SME model of Altman and Sabato (2007)

Accounting ratio category Variable

Leverage Short term debt/Equity book value

Liquidity Cash/Total assets

Profitability EBITDA/Total assets

Coverage Retained earnings/Total assets

Activity EBITDA/Interest expenses

all the applications inCorazza et al. (2016)were performed under an equallyweighting
scheme, i.e. all the values of theweightswere equal to 1/19 for the indicators belonging
to the first set and to 1/5 for the Altman’s variables. Of course, from a technical point
of view, moving from the former indicators to the Altman’s variables is equivalent
to a change of the preference structure implicit in the model, in terms of importance
assigned to the indicators. Indeed, in such a case the value of the weight of each
Altman’s variable becomes 1/5, and the value of the weight of any other variable
becomes 0. Furthermore, the Altman’s variables represent approximately 25% of all
the variables in Table 1, as to say that the informative contents of the two sets of
variables, in Table 1 and Table 3, respectively, are so different that a significant impact
on the rating is expected.

The results in terms of distribution of bankrupt firms in rating classes presented
in Corazza et al. (2016, Tables 15, 32, 33) show that, in all the considered years,
there is a slight decrease of the number of bankrupt firms in the first (best) class, and
a slight increase of the number of the bankrupt enterprises in the last (worst) class.
Therefore, it appears that MURAME methodology, when using only the Altman’s
variables, rates slightly better the bankrupt firms in the extreme classes than when
using all the variables in Table 1.

This remark suggests another reason for the (initial) choice of the weights {w j } as
parameters to endogenously determine. Indeed, a specific tuning of them might be a
possible critical issue in order to improve the model performance.

5 Using PSO evolutionarymethod to solve the optimization problem
(8)

Broadly speaking, the basic idea behind PSO is to use the so called swarm intelligence
(see Bonabeau et al. 1999), that drives groups of individuals belonging to the same
species when foraging. Every member of the swarm explores the search area keeping
memoryof its best position so far outreached, and it exchanges this informationwith the
individuals belonging to a suitable neighborhood in the swarm. Thus, the whole swarm
is supposed to converge eventually to the best global position reached by some swarm
members. From a mathematical point of view, every member of the swarm (namely
a particle) represents a possible solution point in the feasible set of the investigated
optimization problem. Moreover, every particle is randomly initialized before PSO
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procedure is applied and it is also associated with a vector of velocity, also randomly
initialized, which is used to determine its direction of movement.

Now, in order to formalize these ideas, let us denote with P the size of the swarm,
and let f : Rn �→ R be the function to minimize. For each particle l = 1, . . . , P ,
let xkl ∈ R

n be its position at step k= 0, 1, . . . of the PSO procedure. Then, its new
position at step k + 1 is

xk+1
l = xkl + vk+1

l , l = 1, . . . , P, (10)

where vk+1
l is an n-real vector which is usually addressed in the literature as velocity,

and is given by

vk+1
l = χk

[
wkvkl + αk

l ⊗ (pkl − xkl ) + βk
l ⊗ (pkg − xkl )

]
. (11)

In (11) χk > 0 is a suitable parameter, vkl is the previous vector of velocity, and pkl
and pkg are, respectively, the best solution so far found by particle l and by the whole
swarm, i.e.

pkl ∈ arg min
0≤h≤k

{
f (xhl )

}
, l = 1, . . . , P, (12)

pkg ∈ arg min
1≤l≤P

{
f (pkl )

}
. (13)

Finally, αk
l , βk

l ∈ R
n are positive random vectors, with the symbol ⊗ denoting the

component-wise product. The most commonly used specifications in the literature for
αk
l , β

k
l , which we will adhere to, are (see Blackwell et al. 2007)

αk
l = c1rkl,1, (14)

βk
l = c2rkl,2, (15)

where rkl,1, r
k
l,2 are n-real vectors whose entries are uniformly randomly distributed in

[0, 1], and c1, c2 ∈ (0, 2.5]. A full discussion on the choice of the parameters in (11)
can be found in Serani et al. (2016).

In the remainder of this section, we present our original enhancements to PSO, in
order to improve its effectiveness when tackling the optimization problem. Initially,
in order to manage the constraints of (8), we replace the penalty function approach
proposed and used in Corazza et al. (2015b) with a nonlinear reformulation of the
optimization problem. This allows us to avoid possible numerical ill-conditioning
when assessing the penalty parameters. Then, with reference to the initialization of
the particles, we endow PSO with some recently introduced initialization procedures
never used before in this research area.
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5.1 A nonlinear reformulation of the optimization problem (8)

Since PSO was conceived for unconstrained problems, its direct application to (8)
cannot prevent from generating infeasible particles’ positions when constraints are
considered. To avoid this problem, different strategies have been proposed in the
literature, and most of them involve repositioning of the particles (see for instance
Zhang et al. 2005), or the introduction of some external criteria to rearrange the
components of the particles (see for instance Cura 2009), or the use of a penalty
function approach (see for instanceCorazza et al. 2013, 2015b).On the contrary, in this
paper we consider a novel approachwhich first encompasses a nonlinear reformulation
of (8), so that we can maintain PSO as in its original iteration. Initially, with reference
to the endogenous determination of only the weights {w j }, in place of (8) we can solve
the unconstrained optimization problem

min
t1,...,tn

I [w1(t), . . . , wn(t)] , (16)

where the mapping between the new variables, i.e. (t1, . . . , tn), and the old ones, i.e.
(w1, . . . , wn), is given by the following nonlinear transformation

w j (t) ← ψ j (t)
n∑

i=1

ψi (t)

, j = 1, . . . , n, (17)

where we assume ψ j (t) continuous and ψ j (t) ≥ 0. Observe that any global solu-
tion t ∈ R

n of (16) corresponds to a global solution w ← w(t) of (8), where
w(t) = (w1(t), . . . , wn(t))T , even though (17) surely introduces nonlinearities which
in principle increase the computational complexity. Apart from the last drawback, we
remark that in case the vector t̄ �= 0 solves (16), by (17) the vector w(t̄) is a feasible
point for (8).

Considering that on the overallwe are adopting ametaheuristic procedure to approx-
imately solve (8), the following two simple choicesmay be considered,with some care,
for ψ j (t) in our framework, namely

ψ j (t) = t2j , j = 1, . . . , n, (18)

ψ j (t) = |t j |, j = 1, . . . , n. (19)

In particular, we adopted (18) in our numerical experience (but also (19) might have
been an appealing choice). The transformation (18) is continuous everywhere, exclud-
ing a neighborhood of t = 0, and t = 0 cannot correspond to any feasible set of weights
in (8). Thus, recalling that PSO is a metaheuristics which does not guarantee any
convergence to a global minimum, the use of (18) to large extent can be seen as a
reasonable expedient to transform the constrained problem (8) into the unconstrained
one (16), without a significant additional computational burden. We remark that in
our implementation of PSO for solving (16), we introduced a check to prevent from
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possible division by small values in (17), when (18) is adopted. Anyway, in our numer-
ical experience the latter test was never satisfied, since the algorithm likely tended to
approach a global minimum and skip the point t = 0.

As concerns the instance in which both weights and indifference thresholds have
to be endogenously determined, similarly to (17), to prevent the possible generation
of infeasible values for the decision variables {q j }, we adopted the quadratic trans-
formation q j ← u2j , with j = 1, . . . , n, and we solved by PSO an unconstrained
optimization problem analogous to (16), for any of the two objective functions (9).

5.2 The penalty function approach, for comparison purposes

The (novel) unconstrained reformulation (16) of problem (8), which allows to keep
PSO as in its original iteration, is not the only possible one. Indeed, as already men-
tioned, a penalty function approach is proposed and used in Corazza et al. (2013,
2015b) for reformulating the mathematical programming problems therein involved.
In this subsection we synthetically present this latter approach; the results of its appli-
cation are presented for comparison purposes in Subsect. 7.1.

Roughly speaking, in case of minimization as in (8), the idea behind the penalty
function approach is to reformulate the starting constrained optimization problem in
a new unconstrained one, in which the new objective function is given by adding
a properly penalized sum of all the constraints violations to the original objective
function. With particular reference to (8), the application of this approach leads to the
following unconstrained optimization problem

min
w1,...,wn

I(w1, . . . , wn) + 1

ε

⎛

⎝
n∑

j=1

max
{
0,−w j

} +
∣
∣
∣
∣
∣
∣

n∑

j=1

w j − 1

∣
∣
∣
∣
∣
∣

⎞

⎠ , (20)

where ε is the so-called penalty parameter. It is possible to prove that there exists a
penalty parameter value ε∗ such that, under mild assumptions, for any ε ∈ (0, ε∗) the
solutions of (20) and of the constrained problem (8) coincide (see for details Corazza
et al. 2013, 2015b and the references therein).

As regards the instance in which both weights
{
w j

}
and indifference thresholds{

q j
}
have to be endogenously determined, the structure of the new objective func-

tion remains basically the same. The only difference consists of including constraints
violations associated to q j ≥ 0, with j = 1, . . . , n.

Notice that, by construction, the penalty function approach suffers from some draw-
backs which, on the contrary, are not present in the nonlinear reformulation approach
proposed and used in this paper. In particular we have the following:

• The proposal in Subsect. 5.1 always ensures that the found (sub)-optimal solu-
tion of problem (8) is always feasible; on the contrary, the last property does not
necessarily hold for the penalty function-based approach;

• The approach in Subsect. 5.1 does not require the burdensome assessment of the
penalty parameter ε;
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• As awell known drawback from the literature (see, e.g., Corazza et al. 2013), in the
penalty function-based approach the use of small values of the penalty parameter
ε may likely yield ill-conditioning; conversely, large values of ε might not be
satisfactory in order to guarantee the feasibility for the found solution.

5.3 The initialization procedures

As for every evolutionary algorithm, PSO performance depends on the choice of its
parameters χ , w, c1, c2 and on the initial positions and velocities of the swarm, that is
x0l , v

0
l ∈ R

n for l = 1, . . . , P . For the choice of the parameters, we compliedwith stan-
dard settings in the literature. As regards the initialization of the algorithm, we applied
and compared three different proposals: the standard random one, mainly adopted in
the literature, and two deterministic ones, namely Orthoinit and Orthoinit+,
recently proposed in Corazza et al. (2015a) and Diez et al. (2016), respectively. The
idea behind these two novel initializations is to scatter particle trajectories in the
search space in the early iterations, in order to better initially explore the search space,
and to obtain approximate solutions that are not grouped in a reduced sub–region
of the feasible set. In the Appendix, we detail a brief summary of the theoretical
results supporting these initializations (see Diez et al. 2016 for a more complete
report).

Assuming for simplicity P = 2n, recalling the formulae (29), if we adopt the
following initialization (Orthoinit) for PSO particles

⎛

⎝
v0i

x0i

⎞

⎠ = ρi zi (k), ρi ∈ R \ {0}, i = 1, . . . , n, (21)

and

⎛

⎝
v0n+i

x0n+i

⎞

⎠ = ρn+i zn+i (k), ρn+i ∈ R \ {0}, i = 1, . . . , n, (22)

then the first n entries of the free responses of the particles, i.e. the velocities v0i ,
i = 1, . . . , 2n, are orthogonal at step k of the deterministic PSO. To some extent,
this also tends to impose a near orthogonality of the particles trajectories at step k,
as well as in some subsequent iterations. While this initialization has the advantage
of making the particles trajectories better scattered in the search space, unfortu-
nately it tends to yield too sparse approximate solutions (see Diez et al. 2016),
i.e. only few components of the vector of solutions are nonzero. This is essentially
a consequence of the fact that zi (k) and zn+i (k) are very sparse vectors (see the
Appendix).

In order to possibly pursue a dense final solution, a modification (namely
Orthoinit+) has been proposed in Diez et al. (2016). Here, the vectors zi (k),
i = 1, . . . , 2n in (21) and (22) are replaced by the following ones
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νi (k) = zi (k) − α

n∑

j=1
j �=i

z j (k) − γ

2n∑

j=n+1

z j (k), i = 1, . . . , n

νn+i (k) = zn+i (k) − β

2n∑

j=n+1
j �=n+i

z j (k) − δ

n∑

j=1

z j (k), i = 1, . . . , n,

(23)

where α ∈ R \ {−1, 1
n }, β = 2

n−2 , γ = 0, δ ∈ R \ {0, 1}. It is possible to prove
that the vectors ν1(k), . . . , ν2n(k) are still well scattered in R2n , as well as uniformly
linearly independent (see Diez et al. 2016).

6 Numerical results

The ideal application of the preference disaggregation methodology described above
would imply to consider the whole group of firms, that is to set A′ ≡ A, and then to
determine the weights (or the weights and the indifference thresholds) that minimize
the measure of inconsistency I(·, . . . , ·) over the entire population of firms, for each
of the considered years. On the basis of some preliminary trials, a single evaluation
of I(·, . . . , ·) requires on average 16 minutes on an Intel™ i7-based PC with 16GB
RAM using the coding environment Matlab c©, release 2016b. This means that for
a single run of our PSO-based solver with P = 40 particles, around 11 hours are
needed5. To tackle this drawback, on the basis of the results obtained in Corazza
et al. (2015b), we considered a smaller reference set of firms in order to achieve a
good compromise between the quality of the obtained solution and the computational
time required. As a matter of fact, the larger the cardinality of A′, the better the
classification performance for the group of considered firms, but also the longer the
computational time. Furthermore, again with respect to the time of computation, we
want also to check if, similarly to Corazza et al. (2015a), the use in these experiments
of PSO initializations Orthoinit and Orthoinit+ allows a better minimization
of I(·, . . . , ·) within the early iterations, compared to the one obtained with the usual
random initialization of the PSO particles. This fact, if verified, could be useful to
quickly finding approximate solutions when the size of A′ is particularly large, and
consequently, the time needed for each iteration of the PSO-based solver is quite long.

Regarding the setting of the PSO parameters used in our experiments, they have
been determined according to the prevailing specialized literature and analogously to
Corazza et al. (2015a), that is: c1 = c2 = 1.49618, wk = w = 0.7298, χk = χ = 1
for all k, α = 0.25 and δ = 0.75.

Then, to keep our preference disaggregation procedure safe and significant: first,
the members of the reference set A′ are randomly selected from the whole population
of the considered firms, i.e. A, preserving the same ratio between active and bankrupt
firms as in A itself. Then, the selected optimization approach is applied to A′ in order

5 This time might be reduced by the parallelization of the code used for the computations, but such an issue
is not treated in this paper.
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Table 4 Average (μ) and
standard deviation (σ ) values of
I1 for differently sized reference
sets (A′) and for the whole
population of firms (A)

Random Orthoinit Orthoinit+

|A′| = 250

μ(A′) 0.534783 0.495652 0.547826

σ(A′) 0.055168 0.070644 0.078261

μ(A) 0.681466 0.643247 0.626437

σ(A) 0.048448 0.047240 0.022899

|A′| = 2500

μ(A′) 0.580263 0.522807 0.587719

σ(A′) 0.015451 0.042920 0.015445

μ(A) 0.608046 0.594109 0.603879

σ(A) 0.011598 0.019901 0.004454

to compute weights and possibly indifference thresholds; lastly, these parameters are
used to classify all firms belonging to A.

Finally, as for an appropriate determination of the cardinality of A′, after some
preliminary tests on the sensitivity of the inconsistency measures with respect to the
cardinality itself, we set the value |A′| = 2500. This allows to perform nearly 500
iterations of the PSO-based solver within a reasonable CPU–time. In order to give an
example for illustrating the rationale under our choice of the cardinality of A′, inTable 4
we provide some sample statistics computed over the values of the inconsistency
measure I1, obtained after ten runs of the PSO-based solver, using all the indicators
of Table 1. In particular, in each run a new randomly selected A′ is considered. It can
be seen that the average (sub-)optimal value of I1 computed using a smaller reference
set (i.e. |A′| = 250) is better than that for a larger one (i.e. |A′| = 2500), while the
converse holds for the results computed over the whole population of firms (i.e. A).
Notice that these findings hold regardless of the initialization procedure considered,
and similar conclusions hold for the inconsistency measure I2, too.

6.1 Results: the creditworthiness classifications with decision variablesw

In Tables 5, 6, 7 and 8, we show the results, in terms of classification both of the
bankrupt firms andof the entire population of the investigated ItalianSMEsfirms, using
data of year 20086. The reported percentages represent the distribution of the firms in
the five rating classes obtained using the weights {w j (t)} as specified in (17) and (18),
adopting the two inconsistency measures I1 and I2, and employing the three PSO
initialization procedures described in Subsect. 5.3 (see the rows labeled “Random,”
“Orthoinit” and “Orthoinit+”). In particular, Tables 5 and 6 provide the results
considering all the indicators of Table 1, while Tables 7 and 8 consider only the
Altman’s variables of Table 3. We remind that the values of the weights {w j (t)}

6 Notice that we performed all the experiments described in this section for any year of the considered
triennium, (i.e., 2006–2008). The results coming from each of the various years are definitely similar, so
we report only those of 2008.
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have been detected applying the solution algorithm to a reference set of firms A′ of
size 2500, and that the classification results reported here refer to the application of
MURAME once set with the obtained weights to the entire population of firms. Lastly,
for comparison purposes, in the first row of each table (labeled “Standard”) we give
the classification results got using the standard exogenous specification of weights
adopted in Corazza et al. (2016), that is w j = 1/n for the weights and q j = s j/6 for
the indifference thresholds, with j = 1, . . . , n.

From the results presented in these tables, it can be seen that:

• When considering as criteria either all the indicators of Table 1 or only the Alt-
man’s variables and using either the inconsistency measure I1 or the inconsistency
measure I2, the (sub-)optimal values of the weights {w j (t)} determined by our
PSO-based solver allow improvements in terms of the creditworthiness distribu-
tion of bankrupt firms with respect to the exogenous specification of the same
weights (see Tables 5 and 6);

• The overall quality of the creditworthiness distribution of bankrupt firms depends
on the PSO initialization procedure applied. Indeed, in the case of the Orthoinit
one, when all the nineteen indicators of Table 1 are considered and either using I1
or I2, the obtained classification (slightly) dissatisfies the aforementioned general
principle, since it shows an higher concentration of bankrupt firms in the fourth
rating class (see Tables 5 and 6);

• Conversely, when considering only the five Altman’s variables, some little
improvements in the bankrupt firms’ creditworthiness classification are observed,
generally regardless of the initialization procedure or the inconsistency measure
adopted, with respect to the results obtained when using all the 19 indicators of
Table 1 (see Tables 7 and 8).

6.2 Results: the creditworthiness classifications with decision variablesw and q

Now, we present the classification results related to the endogenous determination of
both the weights and the indifference thresholds together. In other terms, we add to
our optimization framework the decision variables q j , with j = 1, . . . , n. In this case,
we focus only on the Altman’s variables since, as observed in the previous subsection,
their use leads to some improvements in the classification results with respect to the
use of all the indicators of Table 1. Tables 9 and 10 show the classification results got
when using I1 and I2, respectively.

In this case, it can be noted that:

• In general, good results are obtained in terms of the percentages of bankrupt firms
classified in the best creditworthiness class, either using the inconsistencymeasure
I1 or the inconsistency measure I2 and regardless of the initialization procedure
(see Tables 9 and 10, respectively). Moreover, these percentages are all better than
the corresponding ones reported in Tables 7 and 8, respectively;

• Nevertheless, when using I1 and independently of the initialization procedure
employed, the creditworthiness classifications obtained always fail to satisfy the
general principle considered in Sect. 4.1;
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• Conversely, when using I2, the same general principle as above is dissatisfied
only once, in correspondence of the initialization procedure Orthoinit (see
Table 10). Furthermore, again when using I2 and regardless of the initialization
procedure, remarkable improvements are achieved in terms of the percentages of
bankrupt firms classified in the worst creditworthiness class, with respect to the
corresponding ones presented in Table 8.

At this point of our analysis, we can draw a first general conclusion. The results
reported in Tables 5, 6, 7, 8, 9 and 10 showwith some evidence that the best creditwor-
thiness distributions of bankrupt firms are obtained considering I2 as inconsistency
measure. Furthermore, they also show that, albeit with less evidence, some of the
obtained creditworthiness classifications yield improvements when jointly using w
and q as decision variables.

6.3 Results: the endogenously determinedMURAME parameters

Here, we provide some observations about the (sub-)optimal values of the MURAME
parameters endogenously determined using the inconsistency measure I27. These
values are presented in Tables 11 and 12 . In particular: Table 11 refers to the case
with all indicators of Table 1 and only the weights w as decision variables; Table 12
refers to the case with only the Altman’s variables of Table 3 with both the weights w
and the indifference thresholds q as decision variables.

From the displayed values, it can be seen that:

• Adrawback related to the use of the initialization procedureOrthoinit emerges,
as alreadyhighlighted inCorazza et al. (2015a): namely, the sparsity of the achieved
solutions8. Indeed, while both the other two initialization procedures give dense
solutions9, those providedbyOrthoinit lead to a creditworthiness classification
model in which just one or at most two criteria play some role;

• Then, from Table 11 one can infer that a careless initialization of PSO, like that
performed by the initialization procedure Random, may be unable to lead to clear
indications about themost relevant criteria. Indeed, usingRandom a too large num-
ber of criteria is suggested, which does not help to rank them by their importance.
This motivates the introduction of the initialization procedure Orthoinit+,
whose performance generally constitutes a balance between the extreme ones pro-
vided by Random and Orthoinit.

• Finally, again with reference to Table 11, one can note that the PSO-based solver
initialized through Orthoinit+ identifies I2, I3 and I5 as relevant criteria, while
assigns the value 0.06% to the other weights, suggesting the scarce relevance of
the latter.We highlight that, even if the obtained values for the endogenously deter-
minedMURAMEparametersmay appear unusual in a creditworthiness evaluation
model, two aspects have to be remarked. First aspect: such values represent a (sub-
)optimal solution determined by a metaheuristic. In general, ceteris paribus, the

7 The choice of considering only I2 is based on the previous general conclusion.
8 For the sake of brevity, hereafter by “solution” we mean “(sub-)optimal solution.”
9 By “dense solution” we mean that the majority of the weights, or of the weights and the indifference
thresholds, have significant non-zero values.
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Table 11 Values of the weights of all indicators using I2
Initialization I1 (%) I2 (%) I3 (%) I4 (%) I5 (%)

PSO-Random 0.01 34.22 14.76 0.01 11.56

PSO-Orthoinit 0.00 0.00 0.00 0.00 0.00

PSO-Orthoinit+ 0.06 57.17 38.41 0.06 3.45

I6 (%) I7 (%) I8 (%) I9 (%) I10 (%)

PSO-Random 0.00 4.84 2.50 10.92 4.37

PSO-Orthoinit 0.00 0.00 0.00 0.00 0.00

PSO-Orthoinit+ 0.06 0.06 0.06 0.06 0.06

I11 (%) I12 (%) I13 (%) I14 (%) I15 (%)

PSO-Random 0.02 0.03 3.27 0.59 3.34

PSO-Orthoinit 0.00 0.00 0.00 0.00 0.00

PSO-Orthoinit+ 0.06 0.06 0.06 0.06 0.06

I16 (%) I17 (%) I18 (%) I19 (%)

PSO-Random 2.75 4.99 0.41 1.40

PSO-Orthoinit 100.00 0.00 0.00 0.00

PSO-Orthoinit+ 0.06 0.06 0.06 0.06

Table 12 Values of the weights and the indifference thresholds of the Altman’s variables using I2
Initialization I9 I12 I13 I15 I16

PSO-Random w 0.92% 56.54% 15.33% 1.28% 25.93%

q 6.994 5.468 2.886 20.714 0.021

PSO-Orthoinit w 0.00% 0.00% 50.53% 0.00% 49.47%

q 0.000 0.000 0.000 0.000 1.549

PSO-Orthoinit+ w 13.97% 21.51% 21.51% 21.51% 21.51%

q 0.161 0.161 0.161 22.829 0.161

solution performances of a metaheuristic worsen when the dimension of the search
space increases, as in the considered case. Therefore, as per operational practice,
in order to improve the quality of the solution it might be necessary to increase
the number of PSO iterations. Of course, this would have negative consequences
in terms of the computational time required. Second aspect: we highlight that the
determined values of the MURAME parameters are however significantly infor-
mative. Indeed, recalling that the main aim of a MCDA-based model is to support
the DM in the decision process, the obtained values of the weights can represent
a tentative assessment for a better understanding of the relevance of the various
criteria. Similarly, the achieved values of the indifference thresholds can represent
a basis for a better understanding of the preference structure implicit in the used
data.
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At the end of this subsection, we can draw another general conclusion, from the
results reported in Tables 5, 6, 7, 8, 9, 10, 11 and 12. Namely, in terms of both
creditworthiness classification and tuning of MURAME parameters, Orthoinit+
initialization seems preferable. This can be explained by noting that Orthoinit+
adopts an initial populationwhich proves to bemore scattered on the search space,with
respect to both Orthoinit and Random initializations. Thus, better approximate
solutions can be obtained by PSO scheme, inasmuch as a better exploration of the
search space is expected.

6.4 Some in-depth-analyses about the deterministic initialization procedures

As mentioned before, we want to check the capability of the two deterministic PSO
initialization procedures in order to find reasonably good solutions in the early itera-
tions of PSO-based solver. This issue could be of interest in case our creditworthiness
evaluation model was applied to a reference set A′ whose cardinality is particularly
large.

As examples, Figs. 1 and 2 show the behavior of the solution quality, which is
represented by the inconsistency measure I2, as the iterations of the PSO-based solver
increase. (An improvement of the solution quality is graphically represented by a
decreasing of I2.) In particular: Fig. 1 plots I2 vs. the PSO iterations in the case where
all the indicators of Table 1 are considered and w are the decision variables; Fig. 2
plots I2 vs. the PSO iterations in the case where only the Altman’s variables of Table 3
are considered and both w and q are the decision variables.
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Fig. 1 Values of I2(w), for the first 100 iterations of the PSO procedures
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Fig. 2 Values of I2(w, q), for the first 100 iterations of the PSO procedures

From these figures, it can be noted that:

• Especially when using the initialization procedure Orthoinit+, a fast decrease
of I2 occurs after the very first iterations of PSO, that is when the effects of the
uniformly linearly independent choice of the initialization of the PSO particles are
still relevant;

• Then, further improvements of the solution quality generally require an additional
number of PSO iterations. This could mean that the evolutionary process might
be entangled in a plateau of I2. Notice that it happens regardless of the chosen
initialization procedure;

• Anyway, the quality of the results achieved within a moderate number of PSO
iterations (see the previous tables) may be considered satisfactory for practical
applications. This is a positive feature of our MCDA-based method, since the
search of a definitely acceptable solution might require a really heavy computa-
tional burden.

7 Comparisons and some proposals

In this section, we first compare the above results with those coming from the use of
a PSO solver based on the penalty function approach, already proposed and adopted
in Corazza et al. (2013, 2015b). Then, we propose and apply some new inconsistency
measures which are possibly able to jointly use the informative contents from both the
bankrupt firms and the nonbankrupt ones.
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7.1 The comparison with the penalty function approach

The results presented in Tables 5, 6, 7, 8, 9, 10, 11 and 12 are obtained applying
PSO to a (novel) nonlinear reformulation of the mathematical programming problem
(8). In this subsection, we compare these results with those got solving the same
problem by using again PSO but once (8) has been reformulated on the basis of
a penalty function approach (see Subsect. 5.2). Unlike the nonlinear reformulation
approach presented above, using a penalty function requires the preliminary setting of
an important parameter, the so-called penalty parameter ε. In this regard, recalling that
the latter approach has been (originally) used for solving a creditworthiness problem
in Corazza et al. (2015b) by setting ε to 1, here we adopt the same value for consistency
reasons.

In Tables 13, 14, 15, 16, 17 and 18, we report the results, respectively, corre-
sponding to those shown in Tables 5, 6, 7, 8, 9 and 10. Notice that, with reference
to the creditworthiness classification, throughout this paper we considered eighteen
different configurations of the type: “Initialization procedure (Random,Orthoinit,
Orthoinit+)—Inconsistency measure (I1, I2) – Criteria (all indicators of Table 1,
Altman’s variables of Table 3)—Decision variables (w, w and q).” The importance
for the reader of the last note will become clearer in a while.

Finally, with reference to the creditworthiness classification, from the results in
Tables 13, 14, 15, 16, 17 and 18 we can infer that:

• The endogenous determination of the MURAME parameters obtained applying
the penalty function approach allows improvements in terms of the percentages
of bankrupt firms classified in the best creditworthiness class, with respect to the
exogenous specification of the same parameters, only in 9 over 18 of the considered
configurations. On the contrary, when using the nonlinear reformulation approach,
this percentage reaches its maximum value, i.e. in 18 cases over 18;

• The same endogenous determination of the MURAME parameters permits
improvements in terms of the percentages of bankrupt firms classified in the worst
creditworthiness class, with respect to the exogenous specification of the same
parameters, in 10 over 18 configurations. Differently, when using the nonlinear
reformulation approach, this performance increases, yielding a satisfactory result
in 13 cases over 18;

• The obtained creditworthiness classifications fail in satisfying the general principle
stated above in 14 over 18 of the considered configurations, even if in some cases
the displacement is minimal. Conversely, when using the nonlinear reformulation
approach, the performance decreases up to 6 over 18.

With reference to the endogenously determined parameters, adopting the penalty
function approach we can carry out the following conclusions from our experiments:

• Some of the parameters may get negative values (which are not negligibly small),
and one weight assumes a value which is even considerably greater than 100%;

• In correspondence with some configurations the summation of the weights may
significantly differ from 100%.
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Both the last items reveal a violation of some constraints in (8). Thus, the penalty
function approach we adopted seems unable to avoid the generation of infeasible
solutions, unlike the nonlinear reformulation.

7.2 A tentative use of the nonbankrupt firms’ informative content

As discussed in Sect. 4, the use of the nonbankrupt firms’ informative content for
the endogenous determination of the weights {w j } and possibly of the indifference
thresholds {q j } yet represents a challenging task.

Although this issue is not central in the current study, we nevertheless advance
some very preliminary ideas that could properly be investigated in future researches.
In particular, in this subsection: first we propose some simple extensions of the incon-
sistency measures (9), which are possibly able to manage the information contained
even in the nonbankrupt firms; then we apply these new measures to the classification
of the bankrupt firms (we recall that the current work is focused on the correct classi-
fication of the latter kind of firms); lastly we compare the obtained results with those
coming from our MURAME-based creditworthiness evaluation model.

As far as the specification of the new (very preliminary) inconsistency measures
regards, we still consider the general principle set out in Subs. 4.1 related to bankrupt
firms, here accompanied by the following similar general principle concerning the
nonbankrupt firms: a good creditworthiness classification model should place as many
nonbankrupt firms as possible in the best rating class, and the number of nonbankrupt
firms in each class should decrease as the class creditworthiness quality decreases. So,
denoting by nN B

j the number of nonbankrupt firms classified in the j-th class and by

NNB the total number of nonbankrupt firms, according to both the aforementioned
principles, we suggest the following two new inconsistency measures:

Ĩ1(w1, . . . , wn)
.= Ĩ1 = λI1 + (1 − λ)

nN B
5

NNB
= λ

nB
1

N B
+ (1 − λ)

nN B
5

NNB
,

Ĩ2(w1, . . . , wn)
.= Ĩ2 = λI2 + (1 − λ)

(

1 − nN B
1

NNB

)

= 1 −
[

λ
nB
5

N B
+ (1 − λ)

nN B
1

NNB

]

,

where λ ∈ [0, 1] is a parameter indicating the preference of the DM toward the
informative content coming from the bankrupt firms.

As for the applications of these new measures to the classification of bankrupt
firms, we turn our attention only to those configurations that our numerical experience
generally led to the best classification results, that is: Random and Orthoinit+ as
initialization procedures; Altman’s variables as criteria;w and q as decision variables.
Lastly, having no argumentations to prefer bankrupt firms’ informative content to the
nonbankrupt firms’ one and vice versa, we set λ = 0.5.

Tables 19 and 20 report the results using Ĩ1 and Ĩ2, and represent the counterpart
of Tables 9 and 10, respectively.
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From the results reported in these tables, it can be noted that:

• The overall quality of the creditworthiness distribution of bankrupt firms depends
on the inconsistency measure applied. Indeed, in the case of Ĩ1, the obtained clas-
sifications heavily dissatisfy the general principle concerning the bankrupt firms
themselves, regardless of the initialization procedures (see Table 19). Conversely,
this principle dissatisfaction is less evident when using Ĩ2 and almost disappears
when applying the initialization procedure Orthoinit+ (see Table 19). These
findings confirm some of the general conclusions already presented. Indeed, in
terms of creditworthiness classification: Ĩ2, which derives from I2, seems prefer-
able to Ĩ1, which derives from I1, as I2 resulted preferable to I1; Orthoinit+
generally performs better than Random;

• The endogenous determination of the MURAME parameters based on Ĩ1 and on
Ĩ2, respectively, leads to a quality of the bankrupt firms’ creditworthiness distri-
butions which is not much worse than the one of the corresponding distributions
achieved through the application of I1 and of I2, respectively;

• The (sub-)optimal values of the weights and of the indifference thresholds (not
present here) do not show noteworthy features and, in any case, not particularly
different from those detectable by the corresponding results achieved when using
I1 and I2, respectively.
The second item is notably interesting. It highlights that the new inconsistency

measures appear to perform in away almost comparable with the one of their ancestors
(9). In its turn, this implicitly underlines the role played by the trade-off between the
quality of the classification results and the amount of computational time. (Notice
that this trade-off characterizes our evolutionary approach for the creditworthiness
evaluation.) Indeed, on one hand, the above finding promotes to deepen the research
on Ĩ1- and Ĩ2-like inconsistency measures in order to improve the quality of the
obtained results. On the other hand, such a further research would require greater
computational efforts than those related to the measures of inconsistency (9).

8 Conclusions and future work

In this paper, we have proposed a MCDA-based approach for the creditworthiness
evaluation of Italian SMEs. It allows to simultaneously consider as criteria several
different indicators, derived from balance sheet data of the firms, and provides results
in terms of classification of the firms in homogeneous rating classes. Our proposal
is characterized by the use of three distinctive elements, being all them relevant to
our purposes. First, we definitely privileged an endogenous computation of some
MURAME parameters, with a specific emphasis on the application in hand. Second,
similarly to what done in Corazza et al. (2015b), we adopted a PSO-based scheme to
solve an appropriate constrained optimization problem, which is related to the endoge-
nous determination of MURAME parameters. However, we gained effectiveness and
efficiency ignoring the penalty approach in Corazza et al. (2015b), which might cause
possible instabilities, and introducing a nonlinear change of the involved unknowns
which could better exploit the simplex-like structure of the feasible set of the afore-
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mentioned problem. Third, unlike (Corazza et al. 2015b), we endowed PSO with a
couple of specific deterministic initializations, which are tailored on our problem of
classifying performance for bankrupt firms, as numerical results confirmed. More-
over, the overall PSO scheme we adopted was able to early generate reasonably good
(sub-)optimal solutions.

In the future, we plan to possibly extend the study of the efficient determination
of MURAME parameters, by endogenously assessing not only the weights and the
indifference thresholds associatedwith the criteria, but also allMURAMEparameters.
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Appendix

In this appendix, we provide a brief summary of the theoretical results supporting the
deterministic PSO initialization procedures in Sect. 5.

Let us assume that rkl,1 = r1, rkl,2 = rg1,with given r , rg > 0 and1 = (1, . . . , 1)T ∈
R
n , that is PSO iteration (10)-(11) becomes deterministic. Then, assume that for any

k > 0 we set wk = w > 0, χk = χ > 0, and that the following relations hold

⎧
⎪⎨

⎪⎩

a = χw < 1

ω = χ(c1r + c2rg) < 2(χw + 1)

ω �= (1 ± √
χw)2,

(24)

which ensure necessary conditions to avoid diverging particles trajectories (see Cam-
pana et al. 2010). Under the latter conditions, denoting with

Xl(k) =
⎛

⎝
vkl

xkl

⎞

⎠ ∈ R
2n

the state of particle l at iteration k, it is easy to prove that the update (10)–(15) can be
rewritten as the dynamic linear system

Xl(k + 1) = AXl(k) + B(k),
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with

A =
⎛

⎝
aI −ωI

a I (1 − ω)I

⎞

⎠ ∈ R
2n×2n . (25)

In particular, we can write

Xl(k) = XL
l (k) + XF

l (k), (26)

where XL
l (k) is the so-called free response and has the representation

XL
l (k) = Ak Xl(0), (27)

so that XL
l (k) is independent of pkl and pkg (see again Campana et al. 2010).

Since the free responsedepends onlyon the initial state of the particle, an appropriate
choice of the initial state can force XL

l (k) to retain specific properties. In particular,
when (24) holds it is possible to prove thatA has only two distinct eigenvalues λ1 and
λ2. Now, let us consider, for a given k ≥ 0, the quantities

γ1(k) = λk1(a − λ2) − λk2(a − λ1)

λ1 − λ2
, γ2(k) = ω(λk1 − λk2)

λ1 − λ2
(28)

and the 2n vectors in R2n

zi (k) =
⎛

⎝

γ2(k)
γ1(k)

ei

ei

⎞

⎠ , i = 1, . . . , n

zn+i (k) =
⎛

⎝
− γ1(k)

γ2(k)
ei

ei

⎞

⎠ , i = 1, . . . , n,

(29)

where ei ∈ R
n represents the i-th unit vector. Finally, the vectors in (29) can be used

to set PSO initializations, as detailed in Sect. 5.
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