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Abstract. Reliable Bitcoin price forecasts currently represent a chal-
lenging issue, due to the high volatility of this digital asset with respect
to currencies in the Forex market. Since 2009 several models for Bit-
coin price have been studied, based on neural networks, nonlinear opti-
mization and regression approaches. More recently, Machine Learning
paradigms have suggested novel ideas which provide successful guide-
lines. In particular, in this paper we start from considering the most
recent performance of Bitcoin price, along with the history of its price,
since they seem to partially invalidate well renowned regression models.
This gives room to our Machine Learning and Mixed Integer Program-
ming perspectives, since they seem to provide more reliable results. We
remark that our outcomes are data–driven and do not need the fulfill-
ment of standard assumptions required by regression–based approaches.
Furthermore, considering the versatility of our approach, we allow the
use of standard solvers for MIP optimization problems.
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1 Introduction

This paper details a novel viewpoint to study a price forecast problem, asso-
ciated with Bitcoin [2,4,7], that represents the proposal with the largest mar-
ket capitalization among the crypto assets. Bitcoin was initially created by an
anonymous researcher (or possibly a team of people), under the nickname of
Satoshi Nakamoto. The actual identity of such creator has never been revealed
so far, and anonymity is expected to be likely maintained also in the future.
No private/central bank is responsible for minting novel bitcoins1, so that Bit-
coin/USD rate is merely the result of negotiations among private stakeholders
1 Observe that typically the symbol Bitcoin is used to identify the crypto asset, while
bitcoins represent its coins.
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through online exchanges, so that exchanges prevent from double-spending and
arbitrary generation of new bitcoins. Direct peer–to–peer transactions involving
bitcoins among private investors are also allowed, recurring to special secure
protocols that impede abuses. In order to take record of finalized Bitcoin move-
ments, a special distributed ledger, namely a blockchain, both does not allow
reversibility for transactions and guarantees public information on transactions
amount, though preserving anonymity.

In the last decade a number of approaches were introduced in the literature
for Bitcoin price prediction (see e.g. [1] and [6], along with therein references),
involving investors, researchers, practitioners, as well as private and public insti-
tutions, so that some approaches may be undoubtedly considered more method-
ologically sound with respect to others. Among the main difficulties which nega-
tively affect an accurate prediction of Bitcoin price we find its high volatility, that
is yielded by several causes, including a relatively small experience of investors,
an unstructured market, the extreme liquidity of bitcoins and the high leverages
on Bitcoin transactions.

Unlike the cited references we report here a data–driven approach, based on
both Multiobjective Optimization and a Mixed Integer Quadratic Programming
formulation, in order to reliably foresee Bitcoin price and exploiting its historical
performance.

2 Our Problem

As from [5], in Fig. 1 we summarize some relevant information associated with
the price of Bitcoin, from past transactions between 2009 and the end of Septem-
ber 2021. The abscissa axis reports the scaled values of the Stock–to–Flow (SF)
associated with Bitcoin, i.e.

SF =
Stock of Bitcoin at a given date

F low of bitcoins in a given time window
,

where Flow of bitcoins in a given time window refers to an interval of 463 days
(according with the suggestion from the current literature – see also [5]). On the
ordinate axis of Fig. 1 we report Bitcoin price. Moreover, we compute the sets
LEast−South and LWest−North, being respectively

– LEast−South: the weak Pareto front associated with both the maximization
of the stock-to-flow SF and the minimization of Bitcoin price;

– LWest−North: the weak Pareto front associated with both the minimization
of the stock-to-flow SF and the maximization of Bitcoin price.

Furthermore, we also indicate in Fig. 1 some circled points, corresponding to so
called support vectors, obtained applying a standard Support Vector Machine
(SVM) approach (see also [6] and [5]) to the linear separation problem between
the points in the sets LEast−South and LWest−North. The stripe delimited by the
lines through these support vectors represents an area where no extreme Bitcoin
transactions were experienced. In other words, loosely speaking this last area
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contains all the pairs of Bitcoin vs. its SF, obtained during its history, neither
contained in LEast−South nor in LWest−North. Thus, this (reasonably thin) area
is likely expected to contain also most of the future transactions.

Fig. 1. The weak Pareto fronts LEast−South and LWest−North, corresponding to
extreme past transactions of Bitcoin price vs. its stock-to-flow ratio: cyan points corre-
spond to relatively favorable (i.e. large priced) transactions, while red points correspond
to relatively poor (i.e. poorly priced) transactions.

2.1 Our MIP Viewpoint vs. SVMs

First observe that if N represents the number of all the points in R
2 correspond-

ing to Bitcoin price vs. its SF (i.e. our dataset), we consider the next assignment
for the labels {yi}:

yi = +1 if the point Pi belongs to LWest−North,
yi = −1 if the point Pi belongs to LEast−South.

Then, setting N0 = |LEast−South∪LWest−North|, in order to apply the SVM app-
roach in Fig. 1, the solution of the next Convex Quadratic Programming problem
is required (see also [1] and therein references for a complete justification)

min
β, β0, ξ

1
2
‖β‖2 + C

N0∑

i=1

ξi

s.t. (βT xi + β0)yi ≥ 1 − ξi, i = 1, . . . , N0,
ξi ≥ 0, i = 1, . . . , N0,

(1)
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In (1) the pair (β, β0) represents the coefficients of the line (central line in Fig. 1)
which best separates the sets LEast−South and LWest−North, i.e. it corresponds
to the largest possible stripe delimited by the support vectors in Fig. 1. The
quantities xi, i = 1, . . . , N0, in our application represent scalars, corresponding
to a value (i.e. SF) in the abscissa axis. Nevertheless, in a more general framework
they may represent n–real vectors, each representing a vector of values including
the SF; this explains why in (1) we preferred to introduce the (more general)
inner product between the n–real vector (of coefficients) β and the vector xi, for
any i. A similar consideration holds also for the formulations (2) and (3) below.

We highlight that some elements of the solution of this mathematical pro-
gramming problem, namely β∗ and β∗

0 , provide the optimal estimates of the
coefficients of the central line inside the area delimited by the weak Pareto
fronts LEast−South and LWest−North. Similarly, this also happens for the subse-
quent formulations (2) and (3). Note that these optimal estimates are determined
accordingly to a data-driven SVM-based optimization approach which, loosely
speaking, regresses the Bitcoin price on the SF . Note also that the above (opti-
mal) central line constitutes the long term Bitcoin price forecaster; similarly,
again, for the mathematical programming problems (2) and (3).

Moreover, it can be proved that the quantities {ξi} will be all equal to zero
if and only if the two sets LEast−South and LWest−North are linearly separable.
We also observe that after assigning i ≥ 1 labels {y1, . . . , yi} ⊆ {+1,−1} to
the points {P1, . . . , Pi}, not contained in LEast−South ∪LWest−North, then in (1)
we can replace N0 by Ni, being Ni ⊃ N0 and Ni = N0 + i (i.e. Ni points in
the dataset have been labelled). Thus, it can easily be proved that adopting the
procedure in [5], including one point of our dataset at a time, starting from N0

up to N , we can iteratively refine the solution of (1) by solving

min
β, β0, ξ

1
2
‖β‖2 + C

Ni∑

j=1

ξj

s.t. (βT xj + β0)yj ≥ 1 − ξj , j = 1, . . . , Ni,
ξj ≥ 0, j = 1, . . . , Ni.

(2)

Thus, after solving N − N0 + 1 SVMs (i.e. i = 1, . . . , N − N0 + 1), each corre-
sponding to a binary separation problem, all the N points in the dataset will be
classified as either closer to LEast−South or closer to LWest−North. We strongly
highlight that, as detailed in [5], there are applications (e.g. from semi–supervised
learning) where the labels {y1, . . . , yN} are not all known when solving the first
SVM in the sequence: this justifies the above iterative procedure.

Now, considering a completely different perspective we might alternatively
replace the above iterative SVM–based procedure with a unique Mixed Integer
Quadratic Programming (MIQP) reformulation. In this regard, let us prelimi-
narily set ⎧

⎨

⎩

A ≡ LWest−North,

B ≡ LEast−South.



166 M. Corazza and G. Fasano

Then, in place of the above N −N0 +1 SVMs we can propose to solve the MIQP
problem (note that M � 1 is not an unknown but it represents a Big–M , i.e. a
large enough constant value)

min
β, β0, ξ, γ

1
2
‖β‖2 + C

N∑

i=1

ξi

s.t. − (βT xi + β0) + 1 − ξi ≤ (1 − γi)M, i : xi 
∈ A ∪ B,
(βT xi + β0) + 1 − ξi ≤ γiM, i : xi 
∈ A ∪ B,
−(βT xi + β0) + 1 − ξi ≤ 0, i : xi ∈ A,
(βT xi + β0) + 1 − ξi ≤ 0, i : xi ∈ B,
ξi ≥ 0, i = 1, . . . , N,
γi ∈ {0, 1}, i : xi 
∈ A ∪ B,

(3)

where:

– the objective function maintains the same structure with respect to the for-
mulation (1) (i.e. a convex quadratic functional);

– 2(N − |A ∪ B|) linear constraints are added with respect to (1);
– 2(N −|A∪B|) binary unknowns (the unknowns {γi}) are added with respect

to (1), so that if (β∗, β∗
0 , ξ∗, γ∗) is the final solution of (3) then:

• γ∗
i = 0 means xi ∈ B (and in (1) we will equivalently have yi = −1),

• γ∗
i = 1 means xi ∈ A (and in (1) we will equivalently have yi = +1).

Remark 1. We highlight that the formulation (3) is equivalent to solve the N −
N0+1 SVMs in (2). Indeed, under mild assumptions (3) provides the same results
of the N −N0+1 SVMs in (2). However, note that (3) unlike (2) contains integer
unknowns, that typically increase the computational burden and require a more
sophisticated solver.

Several additional properties can be proved for the formulation (3), with
respect to considering a sequence of N − N0 + 1 SVMs, including some interest-
ing numerical results. The reader may refer to [5] and [3] for a more thorough
description, along with additional suggestions and a complete analysis of the
outcomes of the above methodologies on several practical applications. We also
remark that C represents the unique parameter included in the formulation (3),
and its assessment typically follows two guidelines: on one hand it is chosen large
enough to penalize misclassification (i.e. when C is large we tend to reduce the
number of nonzero unknowns {ξi}); on the other hand, a too large value for C
may imply a relatively large time of computation. In our Matlab implementation
we set C = inf and no numerical odd was experienced.
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