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Abstract

In this paper we consider the evolutionary Particle Swarm Optimization (PSO) algorithm, for the
minimization of a computationally costly nonlinear function, in global optimization frameworks. We
study a reformulation of the standard iteration of PSO [KE95, CK02] into a linear dynamic system.
Then, the latter is partially investigated in order to provide indications for the parameters selection in
PSO. We carry out our analysis on a generalized PSO iteration, which includes the standard one proposed
in the literature. In our scheme the path of any particle is possibly affected by the trajectories of all the
other particles in the swarm. Then, for any particle we give indications on both the starting point and
the trajectory, in terms of the PSO coefficients. We analyze the scheme assuming either deterministic
and uniformly randomly distributed coefficients. Convergence analysis is partially provided.

Keywords : Global optimization, Evolutionary optimization, Particle Swarm Optimization, Dynamic linear
system, Convergence analysis.

1 Introduction

This paper is concerned with the solution of the global optimization problem

min
x∈L

f(x), L ⊂ IRn, (1.1)

where f : IRn → IR is a continuous function, and L is a robust and bounded set. In particular, we aim
at detecting a global minimum x∗ of (1.1), such that f(x∗) ≤ f(x) for any x ∈ L, and the function is
computationally costly. Examples of inherently difficult problems like (1.1) arise in several real aplications,
e.g. in the aerospace, automotive and naval engineering, where Navier-Stokes solvers for shape design are
used. Here, the CPU time for one function evaluation may require from one to ten hours, depending on the
geometry details [PPC04].
As well known, unlike local optimization frameworks, there are not optimality conditions which can char-
acterize the point x∗. Indeed, no stopping criterion both theoretical and practical, may be adopted in
order to detect the global minima of problem (1.1). Anyway, several approaches have been proposed in the
literature for the solution of (1.1) (see [P96] and therein references), either adopting deterministic [HT90]
and/or stochastic [HPT00] techniques. Deterministic methods selectively exploit the local information on
the objective function and aim at extending their exploration over a wide and possibly dense subset of L.
Similarly, stochastic techniques randomly generate a sequence {xk} of points uniformly distributed in L.
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Then, under reasonable assumptions they provide asymptotic convergence results in terms of probability. A
typical convergence result involves a subsequence of points {xk}K according with (see [P96])

Pr

{
lim

k→∞, k∈K
ρ(xk, X∗) = 0

}
= 1,

where X∗ is the set of global minima of f(x) in L, ρ(·, ·) is a distance and Pr{·} indicates the probability.
Evidently, the use of the latter techniques requires the exploration over a possibly dense subset of L; thus, the
increasing computational burden would be definitely unaffordable for the shape design problems described
above.

In the last decades both deterministic and stochastic methods for problem (1.1) have included many con-
tributions, whose rationale is often suggested by biological systems and/or social behavioural interpretations.
In particular, the latter methods often disregard convergence analysis and focus on the heuristic solution of
the problem in hand. Examples of such iterative approaches are genetic algorithms, where a set of points
(namely the population) is chosen in the feasible set. Then, to update the population at current step, cyclic
simple operations as crossover (recombination), selection and mutation are performed on the points [T].

In a similar fashion the evolutionary algorithms consider a population of individuals (points) in the feasible
set. Then, the population is updated by modifying each individual, according with the information on the
objective function collected by the entire population. In this paper we analyze the PSO algorithm [KE95],
an iterative method for global optimization, in the class of evolutionary algorithms. The latter scheme was
originally conceived in ’95 as a model to describe the behaviour of a flock of birds. Then, it has been recently
improved (see also [CK02, OM99, SE98, ZMZQ03, CLLPP05]) and is widely adopted within specific global
optimization applications [BWGHM00, FG00, PPC04, VS04].
The growing interest for PSO algorithm, to solve distinctive global optimization problems (e.g. ship design),
is encouraged by the following appealing features:

• balance between the computation involved and the precision of the solution detected;

• constant computational cost and memory engagement at each iteration;

• availability of a current approximate solution;

• derivatives of the objective function not required;

• easy implementation and parallelization of the method.

We recall that PSO iteration is neither able to guarantee the convergence to a global minimum nor to a local
minimum. Indeed, PSO is a heuristic method, and its reformulations in the literature are heuristics as well.
The general PSO iteration can be described at step k ≥ 0 by

xk+1
j = xk

j + dk
j , j = 1, . . . , P, (1.2)

where xk
j ∈ L is the current position of the j-th individual (particle) of the population (swarm), dk

j ∈ IRn

is the search direction and xk+1
j is the new position at step k + 1. Observe that dk

j may not be a descent
direction for the objective function f(x) at xk

j . In particular, direction dk
j depends on both the search

direction dk−1
j and the paths of the particles. The original version of PSO in [KE95] considers at step k the

direction
dk

j = dk−1
j + αk(xbest

j − xk
j ) + βk(xbest − xk

j ), (1.3)

where αk, βk are suitable random scalars and

xbest
j = argmin

0≤h≤k
{f(xh

j )}, j = 1, . . . , P

xbest = arg min
0≤h≤k, j=1,...,P

{f(xh
j )}.

In particular, dk−1
j contributes to maintain the search direction of step k − 1 while αk and βk (respectively

called cognitive and social parameter) have different roles. With αk the contribution from the history of the
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j-th particle, summarized in the vector xbest
j − xk

j , is suitably considered. On the other hand, βk weights
the influence of all the particles in the swarm (the vector xbest − xk

j ) on the j-th particle.
In this paper we figure out a partial analysis of the particles trajectories, on a very general reformulation

of PSO iteration. Our approach is not completely new in the literature (similar issues are partially considered
and investigated in [MS04, CK02, KE95, OM99]). First we extend several results from the literature; then,
we provide our analysis within a framework of preliminary convergence. In particular, we reformulate our
PSO generalized iteration into a dynamic linear system, where feedback is not included. The lack of a
feedback block is a simplification, motivated by a couple of basic reasons. On one hand, though preferable,
a complete stability analysis of a closed-loop system would be far from our purposes. Furthermore, some
practical results may be obtained by only focusing on the free response of the open-loop system.

We defer to a second paper a complete numerical experience, on our generalized version of PSO algo-
rithm. The latter paper will also contain a numerical comparison with the current literature.

In this paper Z and C respectively represent the set of integers and complex numbers. With ‘rk(A)’ we
indicate the rank of matrix A and ‘det(A)’ is its determinant. Finally we denote with I the identity matrix
of suitable dimension.

In Section 2 we describe our generalized PSO iteration by means of a dynamic linear system, whose
properties are partially analyzed in Sections 3 and 3.1. Section 4 is devoted to investigate promising starting
points for the particles, while in Section 5 we study a generalization of our model. Section 6 considers some
theoretical issues about our proposal and Section 7 provides some partial convergence results. In particular,
the Section 7 addresses the PSO parameters selection by imposing that the particles trajectories are confined
in a suitable compact set. Finally, a section of conclusions completes the paper.

2 A dynamic model for PSO

Consider the following (generalized) iteration of PSO algorithm in (1.2)-(1.3), which is reported by using a
common notation adopted in the literature:





vk+1
j = χ

[
wkvk

j + cjrj(pk
j − xk

j ) + cgrg(pk
g − xk

j )
]
, k = 0, 1, ...

xk+1
j = xk

j + vk+1
j , k = 0, 1, ...,

(2.1)

where j = 1, ..., P indicates the j-th particle, P is finite, vk
j and xk

j are the speed and the position of particle
j at step k, pk

j and pk
g respectively satisfy

pk
j = argminl≤k

{
f(xl

j)
}

, pk
g = argminl≤k, j=1,...P

{
f(xl

j)
}

, (2.2)

and χ,wk, cj , rj , cg, rg are suitable bounded coefficients. We assume at present that the latter parameters
are real constants with 0 ≤ rj ≤ 1 and 0 ≤ rg ≤ 1. The latter position will be generalized in Section 8 with
the introduction of uniformly distributed random parameters.
Then, we can further generalize (2.1) by assuming that possibly the speed vk+1

j depends on all the terms
pk

h − xk
j , h = 1, . . . , P , and not only on vectors pk

j − xk
j , pk

g − xk
j . In words this corresponds to allow a more

general social contribution in the PSO iteration. The new iteration is therefore




vk+1
j = χk

j

[
wk

j vk
j +

P∑

h=1

ck
h,jr

k
h,j(p

k
h − xk

j )

]
, k = 0, 1, ...

xk+1
j = xk

j + vk+1
j k = 0, 1, ... ,

(2.3)

where ck
h,j and rk

h,j depend on the step (k), the current particle (j) and the other particles (h).
Without loss of generality at present we focus on the j-th particle and omit the subscript in the recurrence
(2.3). Moreover, at present time we assume in (2.3) χk

j = χ, ck
h,j = ch, rk

h,j = rh and wk
j = w, for any k ≥ 0.

This is a common hypothesis in the PSO literature, which will be removed in Sections 4, 5 and 7, where we
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will extend our results including the case of non-constant parameters, for any k. With the latter position
the iteration (2.3) is equivalent to the dynamic discrete, linear and stationary (time-invariant) system

X(k + 1) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




X(k) +




P∑

h=1

χchrhpk
h

P∑

h=1

χchrhpk
h




, (2.4)

where

X(k) =




vk

xk


 ∈ IR2n, k ≥ 0.

The authors are aware that (2.4) may be inappropriate for a full analysis of stability, since the vector pk
h

is substantially a feedback term of the system (indeed pk
h depends on the sequences {xk

h}). However, as
described in the sequel, modelling the feedback of system (2.4) (i.e. modelling the expression of pk

h) is more
or less equivalent to resort to a deep knowledge of the objective function f(x). Unfortunately, the latter
is only known at points xk

h. Nonetheless, instead of studying the ambitious issue of the stability, for a
closed-loop model of system (2.4), we aim at considering the more tractable free response of (2.4) (see also
[CK02]). Then, the latter is used to obtain some partial indications on the assessment of PSO coefficients.
We give evidence in the sequel that this approach, though not complete, is effective in the applications.

The sequence {X(k)} identifies a trajectory in the state space IR2n, and since (2.4) is a linear and
stationary system, we may consider the free response XL(k) and the forced response XF (k) of the trajectory
{X(k)}. Then, considering (2.4) we explicitly obtain at step k ≥ 0 [S97]

X(k) = XL(k) + XF (k), (2.5)

where

XL(k) = Φ(k)X(0), XF (k) =
k−1∑
τ=0

H(k − τ)U(τ), (2.6)

and (after few calculation)

Φ(k) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k

∈ IR2n×2n, (2.7)

H(k − τ) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k−τ−1

∈ IR2n×2n, (2.8)

U(τ) =




P∑

h=1

χchrhpτ
h

P∑

h=1

χchrhpτ
h



∈ IR2n. (2.9)
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Observe that XL(k) in (2.6) does not depend on the vector pk
h, but uniquely on the initial point X(0). On

the contrary, XF (k) in (2.6) depends on the vector pk
h and is independent of X(0). The latter observation

allows us to compute separately the two terms and will be heavily used later on. In order to carry out our
conclusions, in the next two sections we compute XL(k) by investigating the eigenpairs of matrix Φ(k) in
(2.7).

3 Computation of the free response XL(k)

Let us consider the following position in (2.7) and (2.8)

a = χw, ω =
P∑

h=1

χchrh, (3.1)

so that for any λ ∈ C

Φ(1)− λI =




(a− λ)I −ωI

aI (1− ω − λ) I


 ,

whose Schur complement is given by (1 − ω − λ + aω/(a − λ))I. We aim at computing the 2n eigenvalues
λ(1), . . . , λ(2n) of Φ(1); thus, assuming for a while λ(l) 6= a, l = 1, . . . , 2n, we obtain

det (Φ(1)− λI) = det




(a− λ)I −ωI

aI (1− ω − λ) I




= det




I 0

a

a− λ
I I


 det




(a− λ)I −ωI

0
(

1− ω − λ +
aω

a− λ

)
I




= (a− λ)n

[
(1− ω − λ) +

aω

a− λ

]n

=
[
λ2 − (1− ω + a)λ + a

]n
. (3.2)

Therefore, Φ(1) has at most two distinct eigenvalues, each with algebraic multiplicity n, i.e.

λ(1) = · · · = λ(n) = λ1 =
1− ω + a− [

(1− ω + a)2 − 4a
]1/2

2

λ(n+1) = · · · = λ(2n) = λ2 =
1− ω + a +

[
(1− ω + a)2 − 4a

]1/2

2
.

(3.3)

Observe that either λ1 = a or λ2 = a if and only if a = 0 or ω = 0. However, a 6= 0 and ω 6= 0 is a very
common assumption in PSO literature [CK02, KE95]. Thus, without loss of generality λ1 6= a and λ2 6= a,
and in accordance with the literature we may consider the following.

Assumption 3.1 We assume in (3.1) a 6= 0 and ω > 0. 2

Moreover, pΦ(λ) = (λ − λ1)(λ − λ2) is the minimal polynomial of matrix Φ(1) and det[Φ(1)] = an, so that
for n = 1 we obtain det[Φ(1)] = λ1λ2 = a. By considering the quantity ∆ = (1− ω + a)2 − 4a in (3.3), the
following cases are analyzed:

• a < 0 which yields ∆ > 0, thus λ1, λ2 are real and distinct (one is positive and the other is negative);

• a > 0 which yields condition ∆ ≥ 0 as long as (see Assumption 3.1)

0 < ω ≤ (1−√a)2 or ω ≥ (1 +
√

a)2, (3.4)

which generates the following subcases:
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step

[X
L

(k
)]

n+
1

20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

ω
a = 0.9

= 0.4

k

Figure 3.1: The (n + 1)-th entry of XL(k), with 0 < a < 1 and (1−√a)2 < ω < (1 +
√

a)2. Eigenvalues λ1

and λ2 in (3.3) are complex conjugate: pseudoperiodic modes.

(1) 0 < ω < (1−√a)2 =⇒ λ1 and λ2 are real, distinct and both positive;

(2) ω = (1−√a)2 or ω = (1 +
√

a)2 =⇒ λ1 = λ2 =
1− ω + a

2
= ±√a;

(3) ω > (1 +
√

a)2 =⇒ λ1 and λ2 are real, distinct and both negative.

To summarize the previous considerations in terms of dynamic analysis [S97] we have:

• if a > 0 and (1 − √a)2 < ω < (1 +
√

a)2 then λ1 and λ2 are complex conjugate (see Fig. 3.1), so
that they generate natural pseudoperiodic modes (this generalizes the results in [K98]). If a > 0 and
0 < ω < (1 − √a)2 then we have exactly 2n natural aperiodic modes (see Fig. 3.2). Finally if a > 0
and ω > (1 +

√
a)2 then we have exactly 2n natural alternating modes (see Fig. 3.3);

• if a < 0 we have exactly n natural aperiodic modes and n natural alternating modes.

According with (2.6) [S97],

XL(k) = Φ(k)X(0) = Φ(1)kX(0) =




aI −ωI

aI (1− ω) I




k

X(0), (3.5)

and from Assumption 3.1 λq 6= a, q = 1, 2, then

rk [Φ(1)− λqI] = rk







I 0

a

a− λq
I I







(a− λq)I −ωI

0 0





 = n,

which implies that the algebraic multiplicity and the geometric multiplicity of eigenvalues λ1 and λ2 coincide
with n, i.e. the unsymmetric matrix Φ(1) is diagonalizable and a basis of 2n real eigenvectors of Φ(1) exists.
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step

[X
L

(k
)]

n+
1

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

1.2

ω
a = 0.1

= 0.4

k

Figure 3.2: The (n + 1)-th entry of XL(k), with 0 < a < 1 and 0 < ω < (1−√a)2. Eigenvalues λ1 and λ2

in (3.3) are real and positive: aperiodic modes.

step

[X
L

(k
)]

n+
1

20 40 60 80 100

-2E+11

-1E+11

0

1E+11

2E+11

ω
a = 0.1

= 2.5

k

Figure 3.3: The (n + 1)-th entry of XL(k), with 0 < a < 1 and ω > (1 +
√

a)2. Eigenvalues λ1 and λ2 in
(3.3) are real and negative: alternating modes.
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v1 =




1
0
...
0

(a− λ1)/ω
0
...
0








n





n

, . . . , vn =




0
...
0
1
0
...
0

(a− λ1)/ω








n





n

vn+1 =




1
0
...
0

(a− λ2)/ω
0
...
0








n





n

, . . . , v2n =




0
...
0
1
0
...
0

(a− λ2)/ω








n





n.

Table 3.1: The 2n eigenvectors of matrix Φ(1) when Assumption 3.2 holds.

3.1 Computing the eigenvectors of Φ(1)

According with the last considerations of Section 3, 2n eigenvectors of matrix Φ(1) exist and without loss of
generality they have the form

vi =




v1
i

v2
i


 , v1

i , v2
i ∈ IRn, i = 1, . . . , 2n.

Then, to compute the eigenvectors of Φ(1) we impose relations

0 =
[
Φ(1)− λ(i)I

]
vi =




I 0

a

a− λ(i)
I I







(a− λ(i))I −ωI

0 0







v1
i

v2
i


 ,

so that from Assumption 3.1 we explicitly obtain the 2n eigenvectors in Table 3.1. These eigenvectors are
linearly independent, provided that λ1 6= λ2; the latter condition is not restrictive for our purposes, therefore
from (3.4) we consider the following.

Assumption 3.2 We assume in (3.1) ω 6= (1 − √a)2 and ω 6= (1 +
√

a)2 for any a > 0, so that the 2n
eigenvectors of matrix Φ(1) are linearly independent. 2

Therefore, the matrix V = [v1 · · · vnvn+1 · · · v2n] ∈ IR2n×2n exists, such that V −1Φ(1)V = Λ, with

Λ =




λ1I

λ2I


 ∈ IR2n×2n

and after few calculation

V =




I I

a− λ1

ω
I

a− λ2

ω
I


 with V −1 =

1
λ1 − λ2




(a− λ2)I −ωI

−(a− λ1)I ωI


 .
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γ1(k) =





λk
1(a− λ2)− λk

2(a− λ1)
λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k − 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex conjugate,

γ2(k) =





ω(λk
1 − λk

2)
λ1 − λ2

ωρk−1 sin kθ

sin θ

λ1, λ2 real

λ1, λ2 complex conjugate,

γ3(k) =





(λk
1 − λk

2)
λ1 − λ2

(a− λ1)(a− λ2)
ω

ρk sin kθ

sin θ

(
ρ2 − 2ρ cos θ + 1

ω

)
λ1, λ2 real

λ1, λ2 complex conjugate,

γ4(k) =





λk
1(a− λ1)− λk

2(a− λ2)
λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k + 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex conjugate.

Table 3.2: The coefficients γi(k), i = 1, . . . , 4 in (3.6).

The previous results yield from (3.5)

XL(k) = V ΛkV −1X(0)

=
1

λ1 − λ2

n∑

i=1

[
λk

1X(0)T ((a− λ2)ei − ωen+i) vi − λk
2X(0)T ((a− λ1)ei − ωen+i) vn+i

]

=
1

λ1 − λ2

n∑

i=1

[
λk

1 ((a− λ2)X(0)i − ωX(0)n+i) vi − λk
2 ((a− λ1)X(0)i − ωX(0)n+i) vn+i

]
,

where ei ∈ IR2n is the unit vector with 1 in position i, and X(0)i is the i-th entry of X(0), i.e.

X(0) =




X(0)1
...

X(0)2n


 .

Furthermore, from Table 3.1 and for i = 1, . . . , n




vi = ei +
a− λ1

ω
en+i

vn+i = ei +
a− λ2

ω
en+i,

then

XL(k) =
n∑

i=1

[γ1(k)X(0)iei − γ2(k)X(0)n+iei + γ3(k)X(0)ien+i − γ4(k)X(0)n+ien+i] , (3.6)

where coefficients γi(k), i = 1, . . . , 4 are given in Table 3.2. Observe that the first value of each coefficient
γ1(k), . . . , γ4(k) refers to real eigenvalues λ1 and λ2, while the second value holds in case λ1 and λ2 are
conjugate (i.e. λ1 = ρe−jθ, λ2 = ρejθ, with a = ρ2). In the end, from (3.6) we obtain

XL(k) =
n∑

i=1

[γ1(k)X(0)i − γ2(k)X(0)n+i] ei + [γ3(k)X(0)i − γ4(k)X(0)n+i] en+i. (3.7)
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Remark 3.1 Relation (3.7) suggests the following remarkable conclusions:

• the free response XL(k) in (2.5) has the same formal expression for each particle, and is uniquely
dependent on the initial point X(0) of the particle;

• by simply imposing X(0)i = X(0)n+i = 0 in (3.7), the free response of a particle has zero entries on
the i-th and (n + i)-th axis. Thus, according with the free response in (3.7), each particle’s trajectory
has nonzero projection on any subspace of IR2n, provided that the initial point X(0) is suitably chosen.

• if the eigenvalues λ1 and λ2 are complex conjugate, i.e. λ1 = ρe−jθ and λ2 = ρejθ, then the phase θ is
given by

θ = arctg

[(
4a

(1− ω + a)2
− 1

)1/2
]

. (3.8)

Thus, the circular trajectories have the frequency θ/(2π), which might be suitably set in order to widely
explore the state space. 2

The importance of the latter considerations relies on the role played by XL(k) and XF (k) in the overall
trajectory. From the expression of the coefficients γ1(k), . . . , γ4(k) in relation (3.7), it is clear that if |λ1| ≥ 1
or |λ2| ≥ 1 we might have ‖XL(k)‖2 → ∞ for any infinite subsequence of k. Thus, in order to impose
non-diverging trajectories, we have the following

Lemma 3.1 Consider the eigenvalues λ1 and λ2 in (3.3) and let



|λ1| < 1

|λ2| < 1,
(3.9)

then
lim

k→∞
XL(k) = 0, (3.10)

regardless of the choice of the initial point X(0).

Proof
From (3.7) and Table 3.2, taking the limit k →∞ we obtain (3.10). 2

From the latter lemma, observe that the free response XL(k) of each particle does not affect the limit
points of the sequence {X(k)}. However, a suitable choice of the starting point X(0) of any particle may
guarantee an improved exploration of the state space. The latter issue is noteworthy and plays a key role
within global optimization frameworks, in order to ensure the convergence to any global minimum [P96].

In the light of the latter lemma the next proposition provides, under mild assumptions, a relation between
the index k and the quantities ‖XL(k)‖1, ‖XL(0)‖1. We prove the latter result for a wide set of parameters
a and ω in (3.1), which is relevant in the applications.

Proposition 3.2 Let 0 < a < 1 and (1 −√a)2 < ω < (1 +
√

a)2 in (3.1). Let 0 < εk < 1 with k ≥ 0, and
assume

k ≥ 1 +
ln

(
ω| sin θ|εk

8

)

ln ρ
for any 0 < ω < 1,

k ≥ 1 +
ln

(
| sin θ|εk

8

)

ln ρ
for any ω ≥ 1,

(3.11)

where λ1 = ρe−jθ and λ2 = ρejθ are the eigenvalues of Φ(1)k. Then,

‖XL(k)‖1 ≤ εk‖XL(0)‖1. (3.12)
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Proof
The hypothesis straightforwardly yields ρ =

√
a < 1 and 0 < ω < 4. Then, from (3.6)

‖XL(k)‖1 ≤
n∑

i=1

{
ρk−1

| sin θ| [2|XL(0)i|+ 4|XL(0)n+i|] +
ρk

| sin θ|
[

4
ω
|XL(0)i|+ 2|XL(0)n+i|

]}
,

which yields

‖XL(k)‖1 ≤ 4ρk−1

ω| sin θ| [2‖XL(0)‖1] =
8
ω

ρk−1

| sin θ| ‖XL(0)‖1, for 0 < ω < 1,

‖XL(k)‖1 ≤ 4ρk−1

| sin θ| [2‖XL(0)‖1] = 8
ρk−1

| sin θ| ‖XL(0)‖1, for ω ≥ 1.

Then, after few calculation we see that the inequalities

8
ω

ρk−1

| sin θ| ‖XL(0)‖1 ≤ εk‖XL(0)‖1, for 0 < ω < 1,

8
ρk−1

| sin θ| ‖XL(0)‖1 ≤ εk‖XL(0)‖1, for ω ≥ 1,

can be respectively satisfied if relations (3.11) hold. 2

Finally observe that the equivalence among norms, provides a relation between the quantities ‖XL(k)‖2
and ‖XL(0)‖2, similar to (3.12).

4 Hints for the starting point of each particle

According with Remark 3.1, in this section we give some theoretical indications about the choice of the
initial point X(0) of each particle, which is a crucial issue in PSO. In particular, let the set L in (1.1) satisfy
L = {x ∈ IRn : ‖x‖α ≤ L, L > 0, α > 0} and let us indicate X(k)(j) the trajectory of the j-th particle.
From (2.5) X(k)(j) linearly depends on the contribution of the free response XL(k)(j), i.e. it depends on the
initial point X(0)(j).

In this section we assume that exactly n particles compose the swarm, though with a similar reasoning
our results may be extended to smaller/larger sets of particles. We aim at assessing the initial points X(0)(j),
j = 1, . . . , n, of the particles, in such a way that the state space IR2n is explored as widely as possible by the
trajectories {X(k)(j)}. We propose a set of starting points {X(0)(j)} such that for any fixed index k, the
sequence {XL(k)(j)} is scattered in the state space IR2n.
To the latter purpose we consider in (3.1) for any particle j = 1, . . . , n the parameters aj , wj in place of a,
w. Accordingly, coefficients γ1(k), . . . , γ4(k) in (3.7) are given for the j-th particle by γ1(k)(j), . . . , γ4(k)(j).

Consider the scalars α(j), β(j) ∈ IR, with |α(j)| + |β(j)| 6= 0, and the vector tj ∈ IRn, j = 1, . . . , n, such
that

tj =
√

n

n

n∑

i=1

ei −
√

n

2
ej . (4.1)

Then, let the vector X(0)(j) be given by

X(0)(j) =




α(j)tj

β(j)tj


 , j = 1, . . . , n. (4.2)

Proposition 4.1 Consider the set of initial points {X(0)(j)} defined in (4.2). Consider in (3.1) for any
particle j the parameters aj, wj in place of parameters a, w, and let the Assumption 3.2 hold. Then for any
k ≥ 0 the following relations hold

[
XL(k)(j)

]T

XL(k)(h) = 0, for any 1 ≤ j 6= h ≤ n. (4.3)
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Figure 4.1: Random choice of initial points X(0)j , j = 1, 2, with n = 2 (‘Six-humps camel-back’ function
[DS78]). Particle # 1 and Particle # 2 substantially overlap: the global minimum is not detected.
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Figure 4.2: Choice (4.2) of initial points X(0)j , j = 1, 2, with n = 2 (‘Six-humps camel-back’ function
[DS78]). The two particles generate independent trajectories: the global minimum is detected.
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Proof
From Assumption 3.2 relation (3.7) is defined. Thus, by simple substitution from (4.1) and (4.2), we obtain

XL(k)(j) =




[
α(j)γ1(k)(j) − β(j)γ2(k)(j)

]
tj

[
α(j)γ3(k)(j) − β(j)γ4(k)(j)

]
tj




XL(k)(h) =




[
α(h)γ1(k)(h) − β(h)γ2(k)(h)

]
th

[
α(h)γ3(k)(h) − β(h)γ4(k)(h)

]
th


 ,

and since tTj th = 0, for 1 ≤ j 6= h ≤ n, relations (4.3) hold. 2

We remark that the choice (4.1)-(4.2) generates at step k vectors XL(k)(1), . . . , XL(k)(n), which form an
orthogonal basis in the state subspace of the positions. In Figg. 4.1 and 4.2 we show an example with n = 2
(i.e. XL(k)(j) ∈ IR4, j = 1, 2, k ≥ 0) and two particles (Particles # 1 and # 2 are sketched in the two
dimensional subspace of positions with empty triangles and filled circles respectively; we set a1 = a2 = 0.9 and
ω1 = ω2 = 0.4 in (3.1) for both particles). On the left sides of the figures only the free responses XL(k)(1)

and XL(k)(2) are drawn, while on the right sides the full trajectories X(k)(1) and X(k)(2) are reported.
Moreover, in Fig. 4.1 the initial points X(0)(1) and X(0)(2) are randomly chosen, while in Fig. 4.2 X(0)(1)

and X(0)(2) are chosen as suggested in (4.2) (this explains the perfect orthogonality of the free responses).
Observe that in the first case the algorithm fails to converge, because the trajectories substantially move
along the segment joining X(0)(1) and X(0)(2). On the contrary, in Fig. 4.2 the orthogonality of the free
responses of the two particles (left side) determines the convergence (Particle #2 is attracted by Particle
#1 but from (4.3) they do not overlap). The latter result may be substantially interpreted as follows. At
least for small values of parameter k, the choice (4.2) tends to preserve orthogonality among the trajectories.
This helps the particles to be ‘distributed’ in the state space, inasmuch as for any k the set of positions
{xk

1 , . . . , xk
P } (see (2.3)) is likely an independent set.

Finally, we can readily prove that replacing the sequence {tj} in 4.1 with any orthogonal sequence of n
nonzero vectors, the result of Proposition 4.1 still holds.

5 Conditions for non-diverging trajectories

In this section we consider the iteration (2.3), where the parameters χk
j , wk

j , ck
h,j , rk

h,j , are possibly non-
constant at each iteration1 k ≥ 0. Let the parameter wk

j in (2.3) be given by

wk
j = φj(k)wa

j + [1− φj(k)] wb
j , (5.1)

where 0 < φj(k) ≤ 1, wb
j ≥ 0, wa

j ≥ 0. The expression in (5.1) includes the proposals for coefficient wk
j in

[SE98, KE95, CK02, ZMZQ03], where there is not full agreement about both the role and the way to assess
wk

j .
Regardless of possible heuristic interpretations of the role played by parameter wk

j in (2.3), here we analyze
the computation of the eigenvalues λ1 and λ2 in (3.3), when the coefficient wk

j is possibly calculated as in
(5.1). Therefore the coefficient a in (3.1) (as well as the coefficient ω and the eigenvalues λ1 and λ2) are
affected by wk

j , so that at step k we have to consider in (3.1) the parameters

ak
j = χk

j wk
j

ωk
j =

p∑

h=1

χk
j ck

h,jr
k
h,j

(5.2)

1This implies that the linear system (2.3) may not be time-invariant any more for the j-th particle. Anyway, from the
causality property of system (2.6) [S97], for any particle we can equivalently consider at step k a new linear system, with the
same parameters of (2.6), and whose starting point is X(k − 1) instead of X(0). For the particle j the vector X(k − 1) is

computed at step k − 1 of (2.6), with the parameters χk−1
j , wk−1

j , ck−1
h,j

, rk−1
h,j

.
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in place of a and ω. Moreover, from (3.2) λ1λ2 = ak
j and from Lemma 3.1 we have to impose at each iteration

conditions (3.9), in order to obtain (3.10). Therefore the parameter ak
j should satisfy

|ak
j | < 1. (5.3)

This result is used in the following proposition.

Proposition 5.1 Consider iteration (2.3) and relation (5.2), let at step k ≥ 0

0 < |ak
j | < 1, j = 1, . . . , P

0 < ωk
j < 2(ak

j + 1), j = 1, . . . , P,
(5.4)

with ωk
j 6= (1±

√
ak

j )2 for any ak
j > 0. Then, for any k ≥ 0 and 1 ≤ j ≤ P we have |λ1| < 1 and |λ2| < 1 in

relation (3.9).

Proof
We distinguish two cases: −1 < ak

j < 0 and 0 < ak
j < 1. In the first case, imposing |λ1| < 1 and |λ2| < 1,

and considering that λ1 and λ2 are real, after some tedious calculation we obtain for k ≥ 0 and 1 ≤ j ≤ P
conditions

−1 < ak
j < 0, 0 < ωk

j < 2(ak
j + 1).

In the second case we consider two sub-cases:

(1) 0 < ak
j < 1, 0 < ωk

j < (1−
√

ak
j )2 or (1 +

√
ak

j )2 < ωk
j < 2(ak

j + 1),

(2) 0 < ak
j < 1, (1−

√
ak

j )2 < ωk
j < (1 +

√
ak

j )2.

If (1) holds λ1 and λ2 are real, so that again a long but trivial computation yields |λ1| < 1 and |λ2| < 1. On

the other hand, if (2) holds then from (3.3) λ1 and λ2 are complex conjugate with |λ1| = |λ2| =
√

ak
j < 1.

This completes the proof. 2

Remark 5.1 From Proposition 5.1 observe that (5.3) is not a sufficient condition to impose non-diverging
particle trajectories. Moreover, the particle trajectory might be non-diverging as long as an index k̄ exists,
such that the hypotheses in Proposition 5.1 hold for k ≥ k̄. Clearly for k̄ = 0 we again obtain the results of
Proposition 5.1. On this guideline the results of this section extend those in [SE98, CK02].

6 Computation of the forced response

In this section we focus on the forced response of the general particle, whose expression is given from (2.6)
and (2.5) by

XF (k) =
k−1∑
τ=0

H(k − τ)U(τ) =
k−1∑
τ=0

Φ(1)k−τ−1U(τ), (6.1)

so that, for k → ∞ the sum in (6.1) represents a convolution between the impulsive response matrix
H(k) = Φ(1)k−1 ∈ IR2n×2n and the input vector U(k) ∈ IR2n. The usual approach in literature for handling
relation (6.1) is the introduction of a proper linear operator: the Z-transform [C99]. The Z-transform of a
sequence of real matrices {M(k)}, M(k) ∈ IRm×q, k ∈ Z, m ≥ 1, q ≥ 1, is the linear operator F (z) such
that F : {M(k)} → Cm×q, with

F (z) = Z[M(k)] def=
+∞∑

k=−∞
M(k)z−k, z ∈ C. (6.2)
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It can be proved [AM97] that for k →∞, by applying the Z-transform F to both the sides of (6.1), we can
reduce the convolution to the simple matrix-vector product

X̂F (z) = Ĝ(z)Û(z), (6.3)

where

X̂F (z) = Z [XF (k)]
Ĝ(z) = Z

[
Φ(1)k−1

]
(6.4)

Û(z) = Z [U(k)] .

Observe that the power series (6.2) converges in a suitable Region Of Convergence (ROC) which depends
on the sequence {M(k)}. In particular, the second relation (6.4) holds (i.e. the Z-transform Z

[
Φ(1)k−1

]
converges) as long as

|z| > ‖Φ(1)‖2. (6.5)

In addition, it can be proved [S97] that introducing the Heavyside function

δ−1(k) =
{

0 k < 0
1 k ≥ 0,

we have

Ĝ(z) = Z
[
Φ(1)k−1

]
= Z

[
Φ(1)k−1δ−1(k − 1)

]
=

Z
[
Φ(1)k

]

z
= (zI − Φ(1))−1. (6.6)

Finally, by applying the inverse Z-transform [S97] to X̂F (z) we can compute XF (k) = Z−1
[
X̂F (z)

]
.

Furthermore, observe that the expression of U(τ) in relation (6.1) is not known, indeed from (2.9) U(k)
depends on {pk

h}, h = 1, . . . , P , thus its Z-transform Û(z) may be of very difficult computation, even for
special cases.
The difficult computation of Û(z) implies that the convergence properties of the series in (6.1) can be hardly
investigated. As a consequence, for any index 1 ≤ j ≤ P the convergence of the sequence {xk

j } cannot
be ensured in the general case. Anyway, as recalled in the Introduction, PSO often provides a reasonable
balance between the computational cost and the precision of the solution. Thus, it may be worth for several
real problems (e.g. shape design optimization), which require a relatively small number of iterations. This
implies that in (2.5) a range of values for k is considered, such that the free response XL(k) is significantly
bounded away from zero, and the leading role of the forced response XF (k) should be reconsidered.
On this guideline, in Section 7 we will carry out some convergence results, which provide conditions for
assessing the coefficients in iteration (2.3).

7 Preliminary convergence results

In this section we focus on problem (1.1) and we study some convergence properties of the sequences {xk
j },

j = 1, . . . , P in (2.3), when no assumptions hold on f(x), except the continuity. In respect to the previous
section, here we also give conditions on the sequences {χk

j }, {wk
j }, {ck

h,j}, {rk
h,j} in (2.3), which depend on

indices h, j = 1, . . . , P and k = 0, 1, . . .
We also highlight that in accordance with the final considerations of the previous section, here we substan-
tially impose in our analysis some conservative conditions on the forced response XF (k). In particular, in
order to solve (1.1) with PSO, we have to guarantee that suitable PSO parameters exist such that the set
L is bounded. This is achieved here by providing reasonable assumptions on PSO parameters, so that the
robust and bounded set L̂ exists, which satisfies {xk

j } ⊆ L̂, for any j and k.

Assumption 7.1 Consider the global optimization problem (1.1) and iteration (2.3) with position (2.2).
Let k̂ ≥ 0 be an index such that for j = 1, . . . , P , ‖xk̂

j ‖ ≤ d, ‖vk̂
j ‖ ≤ d and ‖pk̂

j ‖ ≤ d, with d < ∞. Let
0 ≤ ε < 1 and

L̂ =
{

y ∈ IRn : ‖y‖ ≤ d

1− ε

}
, (7.1)
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with f(x) continuous on the robust and bounded set L̂. Assume that for any k ≥ k̂ and j = 1, . . . , P the
sequences {χk

j }, {wk
j }, {ck

h,j}, {rk
h,j} satisfy:

(H1) |χk
j wk

j | ≤ ε < 1,

(H2)
P∑

h=1

|χk
j ck

h,jr
k
h,j | ≤

(
ε− |χk

j wk
j |

)
εk−k̂

2/(1− ε)
, h = 1, . . . , P, pk

h 6= xk
j .

2

The next theorem proves that when solving (1.1), the PSO iteration (2.3) may generate feasible sequences
of points {xk

j } in a suitable robust and bounded set L̂, such that L̂ ⊇ L.

Theorem 7.1 Consider iteration (2.3) and suppose Assumption 7.1 holds. Then, for k ≥ k̂ we have:

(a) {xk
j } ⊂ L̂, {pk

j } ⊂ L̂, j = 1, . . . , P ,

(b) ‖vk+1
j ‖ ≤ εk+1−k̂d, j = 1, . . . , P ,

(c) lim
k→∞

‖vk+1
j ‖ = 0, j = 1, . . . , P .

Proof
Observe that by definition pk

h ∈ Pk
h =

{
z ∈ IRn : z = arg mink̂≤l≤k{f(xl

h), f(pk̂
h)}

}
, h = 1, . . . , P and by

the definition of vk+1
j in (2.3) we have

‖vk+1
j ‖ ≤

∣∣χk
j wk

j

∣∣ ‖vk
j ‖+

∥∥∥∥∥
P∑

h=1

χk
j ck

h,jr
k
h,j(p

k
h − xk

j )

∥∥∥∥∥ , k ≥ k̂, j = 1, . . . , P. (7.2)

Now we prove (a) and (b) by induction. For k = k̂ and j = 1, . . . , P we have

‖vk̂+1
j ‖ ≤

∣∣∣χk̂
j wk̂

j

∣∣∣ d +
P∑

h=1

∣∣∣χk̂
j ck̂

h,jr
k̂
h,j

∣∣∣
∥∥∥pk̂

h − xk̂
j

∥∥∥ ≤
∣∣∣χk̂

j wk̂
j

∣∣∣ d +

(
ε−

∣∣∣χk̂
j wk̂

j

∣∣∣
)

2d

2/(1− ε)
≤ εd,

‖xk̂+1
j ‖ ≤ ‖xk̂

j ‖+ ‖vk̂+1
j ‖ ≤ (1 + ε)d,

and ‖pk̂+1
j ‖ ≤ max

{
‖pk̂

j ‖, ‖xk̂+1
j ‖

}
= (1 + ε)d; thus, (a) and (b) hold with k = k̂. Suppose now xk

j , pk
j ∈ L̂

and ‖vk
j ‖ ≤ εk−k̂d, for k > k̂; then, from Assumption 7.1 and relation (7.2):

‖vk+1
j ‖ ≤ ∣∣χk

j wk
j

∣∣ ‖vk
j ‖+

(
ε− ∣∣χk

j wk
j

∣∣) εk−k̂
(

2
1−ε

)
d

(
2

1−ε

)

≤ ∣∣χk
j wk

j

∣∣ εk−k̂d +
(
ε− ∣∣χk

j wk
j

∣∣) εk−k̂d = εk+1−k̂d, (7.3)

‖xk+1
j ‖ =

∥∥∥∥∥∥
xk̂

j +
k+1∑

h=k̂+1

vh
j

∥∥∥∥∥∥
≤ ‖xk̂

j ‖+
k+1∑

h=k̂+1

‖vh
j ‖ ≤ d +

k+1∑

h=k̂+1

εh−k̂d

≤ d +
d

εk̂




k+1∑

h=0

εh −
k̂∑

h=0

εh


 = d +

d

εk̂

(
1− εk+2

1− ε
− 1− εk̂+1

1− ε

)

= d +
d

εk̂

(
εk̂+1 − εk+2

1− ε

)
= d +

ε− εk+2−k̂

1− ε
d ≤ d +

ε

1− ε
d =

1
1− ε

d, (7.4)
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so that again (a) and (b) hold. Finally, taking the limit in (b) we obtain (c). Therefore, relations (a), (b)
and (c) hold for any infinite subsequence Kj ⊆ {k̂, k̂ + 1, . . .} of index k. 2

The hypotheses (H1)-(H2) at step k̂ are theoretically effective in order to ensure that PSO iteration (2.3)
is well suited for problem (1.1). However, (H1) is necessary from Proposition 5.1 and Lemma 3.1, but (H2)
may be restrictive for several practical implementations, since it imposes for any k ≥ k̂ small stepsizes along
the direction (pk

h − xk
j ) in (2.3). Anyway, since k̂ is arbitrary, the latter drawback may be not so relevant.

Corollary 7.2 Consider iteration (2.3) with position (2.2) and suppose Assumption 7.1 holds. Then, for
j = 1, . . . , P :

1. the sequence {xk
j } admits limit points and any limit point of {xk

j } belongs to L̂;

2. the sequences {pk
g} and {pk

j } admit limit points and any limit point of {pk
g} and {pk

j } belongs to L̂;

3. if {xk
j }Kj

is an infinite subsequence of {xk
j } and Kj ⊆ {k̂, k̂ + 1, . . .}, then

lim
k→∞, k∈Kj

‖xk+1
j − xk

j ‖ = 0. (7.5)

Proof
From (a) of Theorem 7.1 and the compactness of L̂ we obtain 1.. As regards 2., it is an immediate con-
sequence of 1. and relations {pk

g} ⊆ {pk
j } ⊆ {xk

j } ⊂ L̂. Finally, (2.3) and (c) of Theorem 7.1 give 3., for
j = 1, . . . , P . 2

Observe that since relation (7.5) holds for any infinite subsequence Kj of {k̂, k̂ + 1, . . .}, then also the
following stronger relation holds:

lim
k→∞

‖xk+1
j − xk

j ‖ = 0, j = 1, . . . , P.

The latter result substantially summarizes the convergence properties of the sequences {xk
j }, j = 1, . . . , P , in

the compact set L̂. In other words, as long as the hypotheses of Theorem 7.1 hold, we can ensure that when
solving (1.1) any subsequence {xk

j }Kj ⊆ {xk
j } remains in L̂ and converges to a point of L̂. The following

corollary completes the latter result. Moreover it provides suitable finite values of parameter ε in Theorem
7.1, in order to allow the convergence of any subsequence of {xk

j }, j = 1, . . . , P , to promising limit points.

Corollary 7.3 Let k̂ ≥ 0 be an index in (2.3) such that for j = 1, . . . , P , ‖xk̂
j ‖ ≤ d, ‖vk̂

j ‖ ≤ d and ‖pk̂
j ‖ ≤ d,

with d < ∞. Let pk
g ∈ Pk

g =
{

z ∈ IRn : z = arg mink̂≤l≤k, h=1,...,P {f(xl
h), f(pk̂

g)}
}
, for k ≥ k̂, and suppose

Kg ⊆ {k̂, k̂ + 1, . . .} is an infinite subsequence of indices such that

lim
k→∞, k∈Kg

xk
j = lim

k→∞, k∈Kg

pk
g = pg. (7.6)

Then, if (H1)-(H2) hold, for j = 1, . . . , P , there exists a value ε = εj
g such that

‖xk̂
j − pg‖ = lim

k→∞, k∈Kg

∥∥∥∥∥∥

k∑

i=k̂

vi+1
j

∥∥∥∥∥∥
= lim

k→∞, k∈Kg

k∑

i=k̂

∥∥vi+1
j

∥∥ . (7.7)

Proof
From Theorem 7.1 we already know that {pk

g} ⊂ L̂, where L̂ is defined in (7.1), so that the definition of Pk
g

is well posed. Then, by the definition of xk+1
j in (2.3) ‖xk̂

j − xk+1
j ‖ =

∥∥∥∑k
i=k̂ vi+1

j

∥∥∥, moreover from (7.6) and
Corollary 7.2

lim
k→∞, k∈Kg

xk+1
j = lim

k→∞, k∈Kg

pk+1
g = pg ∈ L̂,
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thus

lim
k→∞, k∈Kg

‖xk̂
j − xk+1

j ‖ = lim
k→∞, k∈Kg

‖xk̂
j − pk+1

g ‖ = ‖xk̂
j − pg‖ = lim

k→∞, k∈Kg

∥∥∥∥∥∥

k∑

i=k̂

vi+1
j

∥∥∥∥∥∥
.

From (b) of Theorem 7.1

‖xk̂
j − pg‖ = lim

k→∞, k∈Kg

∥∥∥∥∥∥

k∑

i=k̂

vi+1
j

∥∥∥∥∥∥
≤ lim

k→∞, k∈Kg

k∑

i=k̂

(εj
g)

i+1−k̂d

≤ (εj
g)

1−k̂d lim
k→∞, k∈Kg




k∑

i=0

(εj
g)

i −
k̂−1∑

i=0

(εj
g)

i




= (εj
g)

1−k̂d

(
1

1− εj
g

− 1− (εj
g)

k̂

1− εj
g

)
=

(
εj
g

1− εj
g

)
d. (7.8)

Thus, imposing in (7.8)

εj
g =

‖xk̂
j − pg‖

d + ‖xk̂
j − pg‖

, j = 1, . . . , P

and observing that εj
g < 1, we obtain (7.7). 2

The following results complete our preliminary convergence analysis for iteration (2.3), and partially
recall the analysis developed in Section 6. We highlight that in order to provide stronger convergence results
with respect to Theorem 7.1 and its corollaries, in the following we reinforce the hypotheses.

Lemma 7.4 Let λ1 and λ2 in (3.3) be the distinct eigenvalues of matrix Φ(1) in (2.7). If |z| > ‖Φ(1)‖2,
we have

|z| > |λ1| and |z| > |λ2|.
Proof
For ‖Φ(1)‖2 we have

‖Φ(1)‖2 ≥ inf
‖·‖β

{‖Φ(1)‖β} = max{|λ1|, |λ2|}.

Thus, the statement follows from the hypothesis. 2

Consider relation (2.6); from the property of stationarity we obtain for k > k̂ ≥ 0

X(k) = Φ(k)X(0) +
k−1∑
τ=0

H(k − τ)U(τ) = Φ(k − k̂)X(k̂) +
k−1∑

τ=k̂

H(k − τ)U(τ)

= Φ(k − k̂)X(k̂) +
k−k̂−1∑

τ̄=0

H(k − k̂ − τ̄)U(k̂ + τ̄).

Moreover, in the hypotheses of Proposition 5.1, from Lemma 3.1, relation (2.5) yields for any infinite subse-
quence K

lim
k→∞, k∈K

X(k) = lim
k→∞, k∈K

XF (k) = lim
k→∞, k∈K

k−k̂−1∑
τ̄=0

H(k − k̂ − τ̄)U(k̂ + τ̄).

Theorem 7.5 Suppose Assumption 7.1 holds. Let in (2.3) and (2.2) for j = 1, . . . , P

χk
j wk

j = const., χk
j 6= 0, k > k̂,

χk
j ck

h,jr
k
h,j = 0, χk

j ck
g,jr

k
g,j = const. k > k̂, h = 1, . . . , P, h 6= g, pk

h 6= xk
h.

pk
g = pg ∈ L̂, k > k̂.
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Let Assumption 3.2 hold with ω =
∑P

h=1 χk
j ck

h,jr
k
h,j and a = χk

j wk
j , for any k > k̂ and j = 1, . . . , P . Then,

lim
k→∞

xk
j = pg, j = 1, . . . , P. (7.9)

In addition, if χk
j wk

j = 0, k > k̂ in (2.3), then the sequences {xk
j }, j = 1, . . . , P , are sublinearly convergent.

Proof
From Section 6 the ROC of Ĝ(z) in (6.6) is given by {z ∈ C : |z| > ‖Φ(1)‖2, γ > 0}, so that from Lemma
7.4 we are ensured that z 6= λ1 and z 6= λ2. Thus, (6.3) and (6.6) yield for the j-th particle

(zI−Φ(1))−1 =




(z − aj)I ωjI

−ajI (z + ωj − 1)I



−1

=
1

z2 − (1− ωj + aj)z + aj




(z + ωj − 1)I −ωjI

ajI (z − aj)I


 ,

(7.10)
where we set aj = χk

j wk
j and ωj = χk

j ck
g,jr

k
g,j , for any k > k̂.

Furthermore, from the hypotheses and (2.9) we have in (6.3) [S97]

Û(z) = Z







ωjpg

ωjpg


 δ−1(k)


 =

z

z − 1




ωjpg

ωjpg


 ,

so that

X̂F (z) =
z

z − 1
(zI − Φ(1))−1




ωjpg

ωjpg


 . (7.11)

Consequently, the matrices R0, R1, R2 ∈ C2n×2n exist such that from (3.2), (3.3), (7.10) and Assumption
3.2

z

z − 1
(zI − Φ(1))−1 =

R0

z − 1
+

R1

z − λ1
+

R2

z − λ2
,

where

R0 = lim
z→1

(z − 1)


 z

(z − 1)(z − λ1)(z − λ2)




(z + ωj − 1)I −ωjI

ajI (z − aj)I







=
1

(1− λ1)(1− λ2)




ωjI −ωjI

ajI (1− aj)I


 ,

and similarly

R1 =
λ1

(λ1 − 1)(λ1 − λ2)




(λ1 + ωj − 1)I −ωjI

ajI (λ1 − aj)I


 ,

R2 =
λ2

(λ2 − 1)(λ2 − λ1)




(λ2 + ωj − 1)I −ωjI

ajI (λ2 − aj)I


 .

Finally, by applying the inverse Z-transform [S97] to X̂F (z) in order to get XF (k) = Z−1
[
X̂F (z)

]
, and

recalling the property of stationarity, we simply obtain

XF (k) = Z−1[X̂F (z)] =
[
R0 + (λ1)k−k̂R1 + (λ2)k−k̂R2

]



ωjpg

ωjpg


 , k > k̂.
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Observe that from the hypotheses and Lemma 3.1 |λ1| < 1 and |λ2| < 1, then

lim
k→∞

X(k) = lim
k→∞

XF (k) = R0




ωjpg

ωjpg


 . (7.12)

Thus, since ωj/[(1− λ1)(1− λ2)] = 1

R0




ωjpg

ωjpg


 =

ωj

(1− λ1)(1− λ2)




ωjI −ωjI

ajI (1− aj)I







pg

pg


 =




0

pg


 ,

which proves (7.9).
As regards the rate of convergence of the sequence {xk

j } in the index k, assuming also χk
j wk

j = 0 in (2.3)
we obtain for k > k̂

vk+1
j = ωj(pg − xk

j )

xk+1
j = xk

j + vk+1
j ,

which yields
‖xk+1

j − pg‖ ≤ ‖xk
j − pg‖+ |ωj |‖xk

j − pg‖ = (1 + |ωj |)‖xk
j − pg‖,

and proves the sublinear convergence of the sequences {xk
j }, j = 1, . . . , P . 2

We conclude the section by observing that from Theorem 7.5, the poor rate of convergence of the sequences
{xk

j }, j = 1, . . . , P , suggests to combine the PSO iteration (2.3) with a faster local optimization method.
Indeed, in order to speed up the convergence in the last iterations, the use of methods which efficiently
exploit the local information of the objective function is advisable (see also [CLLPP05]).

8 Use of random coefficients in PSO algorithm

In (2.3) we considered a very general PSO iteration, which includes as special cases the proposals in [CK02,
KE95]. Furthermore, in iteration (2.3) we provisionally assumed that the coefficients rk

h,j , h, j = 1, . . . , P
were real constants in [0, 1], for any k ≥ 0. In this section we generalize the latter assumption and consider
that for h, j = 1, . . . , P , the coefficient rk

h,j is a random parameter with uniform distribution in the interval
[0, 1]. We aim at recasting the results of the previous sections with the latter new position2.
On this guideline observe that in particular the analysis in Sections 3-5 still holds, since the inequalities
involved are also satisfied with rk

h,j randomly distributed in [0, 1]. Indeed, whenever (5.4) holds with (see
(5.2)) rk

h,j = 1, then it also holds if rk
h,j is randomly distributed in [0, 1], since ak

j does not depend on rk
h,j .

We only urge to precise, reasoning as in the proof of Proposition 5.1, that replacing ‘rk
h,j = 1’ with ‘rk

h,j

randomly distributed in [0, 1]’, may modify the natural modes associated with eigenvalues λ1 and λ2. Thus,
Lemma 3.1 and Proposition 5.1 still hold: this result details more accurately the conclusions in [K98], i.e.
the above introduction of randomness for coefficients rk

h,j, h = 1, . . . , P , may not be responsible for instability
on its own. However, at step k random coefficients may cause complex eigenvalues λ1 and λ2 to become
real, so that the particles trajectory may be modified during the iterations. This also implies that if the free
response of the trajectory (2.3) of particle j is non-diverging with rk

h,j = 1, then it also does not diverge
with rk

h,j uniformly distributed in [0, 1] (see for instance Figg. 8.1, ........... where rk
h,j = 1 -empty circles-

and rk
h,j is randomly chosen in [0, 1] -filled circles-). The latter conclusion is an immediate consequence of

relation (5.4), where the sequences {ωk
j } (and not directly {rk

h,j}) are responsible to yield relation (3.9).
On the contrary, in those cases where the improper choice of deterministic coefficients in (2.3) causes

diverging trajectories (empty circles in Fig. 8.2), the use of randomly chosen coefficient rk
h,j in [0, 1] may

yield convergence (filled circles in Figg. 8.2, ...........).
Furthermore, the considerations on the forced response in Section 6 still apply with obvious modifications.

2The contents of footnote 1 apply here too, with trivial adaptations.
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step k

[
x jk

]
2

20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5

ω
a = 0.1

= 0.4

Figure 8.1: Comparison of the converging path of the component
[
xk

j

]
2
, when choosing in (2.3) rk

h,j = 1
(empty circles) and rk

h,j randomly distributed in [0, 1] (filled circles). Observe also that in the filled circles
line, at each iteration the frequency is altered according with relation (3.8). Parameters a and ω in (3.1) are
reported.

Of course these conclusions do not include any statistical analysis on the trajectory of the particles. In
particular, we guess that a detailed investigation of the statistical properties of the sequences {vk

j } and {xk
j },

j = 1, . . . , P , in terms of the random sequences {rk
h,j}, could provide helpful indications on determining the

probability of convergence to global minima [P96]. In our opinion the latter issue deserves an appropriate
study.

9 Conclusions and future work

In this paper a generalized version of Particle Swarm Optimization (PSO) algorithm is analyzed, and several
conditions on its coefficients arise from our study. In particular, we provide sufficient conditions in order to
avoid diverging paths of the particles, so that the PSO algorithm is suited for global optimization problem
(1.1). Furthermore, our preliminary convergence analysis is in our knowledge one of the first attempts to
investigate asymptotic properties of the particles trajectories, either in a deterministic or stochastic frame-
work. This gives us a foundation for our future work, since a rigorous and (possibly) complete convergence
analysis must be carried out. In particular, it is not clear the relation between the limit points of particles
trajectories and the stationary points of the objective function to be minimized in (1.1).

Then, an extension to global optimization problems with special structure of the feasible set L, seems
the further necessary step. Indeed, in our opinion the PSO literature often contains examples of constrained
problems where the use of heuristics covers up both aspects and limits of PSO iteration.

An extensive numerical experience, on both test problems and real applications of ship design, will be the
key aspect of a forthcoming paper. There, we will use our theoretical results to give more precise indications
on the choice of PSO coefficients. A comparison with the other proposals in the literature is also necessary,
in order to test our approach in terms of efficiency and effectiveness.

We are also concerned with considering further generalizations of iteration (2.3), aiming at reducing the
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step k

[
x jk

]
2
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ω
a = 0.1

= 2.5

Figure 8.2: Path of the component
[
xk

j

]
2

when choosing in (2.3) rk
h,j = 1 (diverging empty circles) and rk

h,j

randomly distributed in [0, 1] (converging filled circles). Parameters a and ω in (3.1) are reported.

overall cost of the method. One possibility is given by updating the speed vk+1
j in (2.3) as

vk+1
j = χk

j

[
wk

j vk
j +

P∑

h=1

ck
h,jr

k
h,j(q

k
h − xk

j )

]
, (9.1)

where
qk
h = argminl∈Kk

h
{f(xl

h)}, Kk
h ⊆ Kk = {0, 1, 2, . . . , k}, h = 1, . . . , P.

In other words we evaluate the objective function only at points in the subsets {qk
h}, h = 1, . . . , P , instead

of considering the (possibly) larger sets {pk
h}. We guess that this may imply a save in terms of function

evaluations, whenever k increases. Thus, adopting an adaptive scheme to generate the subsets Kk
h, h =

1, . . . , P , the overall cost of the method might decrease. On the other hand the extension in (9.1) also allows
more freedom of the particles trajectories, along with the possibility of skipping local minima. The latter
approach suggests a further investigation in the context of derivative free methods, not to mention the more
general context of direct search methods [KLT03] (see also [GP05]).

Finally, the possibility of clustering the particles, in order to possibly detect multiple global minima, is
another issue of interest.
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