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Abstract This paper deals with an analysis of the Conjugate Gradient (CG) method
(Hestenes and Stiefel in J Res Nat Bur Stand 49:409–436, 1952), in the presence
of degenerates on indefinite linear systems. Several approaches have been proposed
in the literature to issue the latter drawback in optimization frameworks, including
reformulating the original linear system or recurring to approximately solving it. All
the proposed alternatives seem to rely on algebraic considerations, and basically pur-
sue the idea of improving numerical efficiency. In this regard, here we sketch two
separate analyses for the possible CG degeneracy. First, we start detailing a more
standard algebraic viewpoint of the problem, suggested by planar methods. Then,
another algebraic perspective is detailed, relying on a novel recently proposed theory,
which includes an additional number, namely grossone. The use of grossone allows to
work numerically with infinities and infinitesimals. The results obtained using the two
proposed approaches perfectly match, showing that grossone may represent a fruitful
and promising tool to be exploited within Nonlinear Programming.
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1 Introduction

In this paper we deal with the solution of indefinite linear systems, by iterativemethods
uniquely based on generating conjugate directions. As a consequence, here we will
not directly consider Lanczos-based iterations too, unless in their connection with the
generation of conjugate vectors.

In particular, we study the specific behaviour of the CG in case of degeneracy, since
it has relevant implications when solving Numerical Analysis problems and within
Optimization frameworks. In this regard, the current literature of Krylov subspace
methods (see e.g. [46] or [13]) provides plenty of applications where the CG is used
and it can possibly fail to yield reliable solutions. In addition, both unconstrained and
constrained optimization frameworks include problems where the search of stationary
points of convex and nonconvex functions is sought, requiring the solution of a positive
definite or indefinite symmetric system.

We recall that the CG (see the scheme in Table 1) iteratively generates a sequence
of approximate solutions {yk} to the symmetric linear system Ay = b, until a stop
condition based on the current residual rk = b − Ayk is met, so that the current
approximate solution yk is used. Unfortunately, on specific indefinite linear systems,
anddepending on the choice of the initial iterate y0, theCGmayexperience a premature
undesired stop. As well known (see also [3] for the consequences in optimization
frameworks), when this scenario occurs, an algebraic drawback takes place during the
CG iteration: namely a division by a small amount is involved. This situation is usually
addressed in the literature as a pivot breakdown, and corresponds to the fact that at
Step k the search direction pk yields pTk Apk = 0, i.e. the stepsize αk along pk can
not be computed. As a consequence, the CG stops beforehand and the current iterate
yk may be far from being a solution of the linear system (equivalently the quantity
‖rk‖might be significantly nonzero). From a different perspective, some comments on
the contents of the current paragraph can be found also in [16], where illconditioning
for nonlinear programming problems is partially addressed, combining ideas from
quasi-Newton methods and preconditioning.

Table 1 The CG algorithm for
solving the symmetric linear
system Ay = b, A ∈ R

n×n

The Conjugate Gradient (CG) method

Data: Set k = 0, y0 = 0, r0 = b − Ay0. If r0 = 0, then STOP.
Else, set p0 = r0

Step k: Compute αk = rTk pk/p
T
k Apk , yk+1 = yk + αk pk ,

rk+1 = rk − αk Apk
If rk+1 = 0, then STOP. Else, set

βk = −rTk+1Apk/p
T
k Apk = ‖rk+1‖2/‖rk‖2, and

pk+1 = rk+1 + βk pk , k = k + 1

Go to Step k
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In this work we specifically address the pivot breakdown of the CG, from a different
novel perspective. Our analysis includes an algebraic approach which encompasses
an extension of real numbers. In some sense our analysis can be unusual for the CG,
since the literature of the last decades has mainly focused on its performance and on
the stability of its iterative process in Table 1. Nevertheless, we are convinced that
a proper investigation of the ultimate algebraic reasons of CG degeneracy should be
fruitfully exploited, in order to prevent pivot breakdowns and further improve it.

The paper is organized as follows. In Sect. 2 we highlight an algebraic perspec-
tive for the CG, when applied to solve indefinite linear systems. In Sect. 3, starting
from some preliminary considerations, we infer geometric results on the CG degener-
acy, in connection with the so called Planar-CG methods from the literature. Sect. 4
introduces an extension of the Cartesian space, including advances using the recently
introduced numeral grossone; this section also contains specific algebraic properties
of the resulting extended real space. Then, Sect. 5 reports a novel algebraic perspective
for the CG degeneracy, which strongly relies on the use of grossone and the results
reported in Sect. 4. Finally, a section of conclusions and an Appendix complete the
paper.

As regards the notation, ‖ · ‖ indicates the Euclidean norm. With |λm(A)| and
|λM (A)|we respectively indicate the smallest and the largest modulus of an eigenvalue
of matrix A ∈ R

n×n . Finally, the symbol ① indicates the numeral grossone, whose
formal properties are better detailed in Sect. 4.

2 An algebraic approach using the CG for indefinite linear systems, in
optimization frameworks

In the previous section we remarked the role played by conjugate directions within
nonlinear programming frameworks. This has also motivated, in the literature of
optimization, the interest for possibly rearranging indefinite linear systems, whose
approximate solution by iterativemethodsmay provide suitable gradient-related direc-
tions (see [27]), based on conjugate directions. In this regard, the proposals in [14,15]
directly aim at using theCG for building a suitable search direction based on conjugacy
among vectors. As by product, the proposals in [14,15] indirectly rely on a modified
linear system, as detailed in the next proposition (which refers to the CG in Table 1).

The next novel result in the literature considers that, on indefinite linear systems,
a certain number of CG iterations can be performed before halting. The conjugate
directions generated in these iterations are subject to an interesting interpretation.
Namely, we can show that these conjugate directions can be suitably combined to yield
a solution, of both the indefinite linear system Ax = b and an auxiliary positive definite
linear system Ãx = b. The relevant implications of the latter result, in optimization
frameworks, are detailed in the end of the present section.

Proposition 2.1 Consider the nonsingular indefinite linear system Ay = b, with
A ∈ R

n×n. Suppose the CG in Table 1 is applied for its solution, and assume it
generates up to Step n the (nonzero) conjugate directions p1, . . . , pn, satisfying
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pTi Api �= 0,

pTi Ap j = 0, 1 ≤ i �= j ≤ n,

A

(
n∑

i=1

αi pi

)

= b.

Let us reorder the set {p1, . . . , pn} so that n = P + N and {p1, . . . , pn} = P1∪ P2,
where

P1 = {p1, . . . , pP } with pTi Api > 0, i = 1, . . . , P;
P2 = {pP+1, . . . , pP+N } with pTi Api < 0, i = P + 1, . . . , P + N .

Then, there exists a positive definite matrix Ã ∈ R
n×n such that:

(i) Ã−1 is given by

Ã−1 =
P∑

i=1

1

pTi Api
pi p

T
i −

P+N∑

i=P+1

1

pTi Api
pi p

T
i ;

(ii) if pi ∈ P1 then Ã−1(Api ) = pi ;
(iii) if pi ∈ P2 then Ã−1(Api ) = −pi ;
(iv) pTi Ã p j = 0, for any 1 ≤ i �= j ≤ n;

(v) setting dP =
P∑

i=1

αi pi and dN = −
P+N∑

i=P+1

αi pi , then the saddle point d∗ of the

function f (d) = 1/2dT Ad−bT d is given by d∗ = dP −dN , while the minimum
point d∗∗ of the function g(d) = 1/2dT Ãd − bT d is given by d∗∗ = dP + dN .

Proof The proof can be found in the Appendix. �	
The latter proposition shows that in practice, the computation of dP and dN , i.e.
separating the contribution of positive and negative curvature (conjugate) directions,
allows equivalently to build Newton’s direction (namely dP + dN ) of the positive
definite linear system Ãd = b. Thus, there is a correspondence between the stationary
point of the quadratic functional 1/2dT Ad − bT d and the minimum point of the
convex auxiliary functional 1/2dT Ãd − bT d. The latter property is much appealing
in optimization frameworks, when A = ∇2 f (y) and b = −∇ f (y), since the vector
dP − dN solves Newton’s equation

∇2 f (y)d + ∇ f (y) = 0

but might not be gradient-related. On the contrary, dP + dN is a gradient-related
direction (see also [10]), which easily allows to state global convergence properties
for the overall optimization framework.
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The observations in this section prove that the use of conjugate directions may be
quite useful in both the positive definite and the indefinite case, since they can be
suitably combined to provide search directions in Nonlinear Programming schemes.
However, we also remark that in case the CG degenerates at iteration k, namely
pTk Apk ≈ 0, then the above analysis fails and the CG stops prematurely, so that
the contents in this section are yet unable to fully cope with the degenerate case of the
CG.

3 Geometric consequences of CG degeneracy on indefinite linear systems

In this section we briefly analyze some algebraic and geometric implications of pos-
sible CG failures, when the CG is applied to an indefinite linear system Ay = b. The
case when possibly A is positive definite follows as a consequence. In particular, we
want to recall some properties satisfied by theCGwhen at Step k a degenerate or nearly
degenerate situation occurs, namely pTk Apk ≈ 0. The couple of results we report here
will be suitably reinterpreted from an alternative standpoint, using grossone in Sect. 5.

When the matrix A is positive definite, at any Step k of the CG we have
λm(A)‖pk‖2 ≤ pTk Apk , so that the quantity pTk Apk may be suitably bounded from
below. Conversely, in case A is indefinite nonsingular, such a bound does not hold,
being potentially pTk Apk = 0. Nevertheless, we can say (see the analysis in [9] for
details) that in case the matrix A is indefinite nonsingular and at Step k we have

pTk Apk > εk‖pk‖2, εk > 0,

with ‖pk‖ < +∞ and ‖pk+1‖ < +∞, then the angle ̂pk, pk+1 between the directions
pk and pk+1 satisfies the relations

π

2
− arccos

(
εk

|λM (A)|
)

≤ | ̂pk, pk+1| ≤ π

2
+ arccos

(
εk

|λm(A)|
)

, (3.1)

showing that when εk is sufficiently bounded away from zero, then pk and pk+1 may
not become parallel. On the contrary, if pk and pk+1 tend to be parallel, from (3.1) we
have that εk → 0.

As a second fact, in the next proposition we specifically investigate the norm of the
directions generated by the CG, in a nearly degenerate case.

Proposition 3.1 Consider the indefinite nonsingular linear system Ay = b, with
A ∈ R

n×n, suppose the CG is applied for its solution, and let at Step k be ‖rk‖ =
‖b − Ayk‖ ≥ ε > 0, with 0 < ‖pk‖ < +∞. Then, setting γ = pTk Apk, we have

lim
γ→0

‖pk+1‖ = +∞.

Proof By the hypotheses ‖rk‖ ≥ ε. Then, using well-known properties of the CG and
recalling the expression βk = − rTk+1Apk/γ , we have
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pTk+1 pk = (rk+1 + βk pk)
T pk = βk‖pk‖2 = − (rk − αk Apk)T Apk

γ
‖pk‖2

= − (pk − βk−1 pk−1 − αk Apk)T Apk
γ

‖pk‖2 = αk
‖Apk‖2

γ
‖pk‖2 − ‖pk‖2.

Thus, since rTk pk = ‖rk‖2 and by direct computation ‖pk‖2 = ‖rk‖2+β2
k−1‖pk−1‖2,

then ‖rk‖ ≤ ‖pk‖ < +∞ so that

pTk+1 pk
‖pk‖ = cos( ̂pk, pk+1)‖pk+1‖ = ‖rk‖2‖Apk‖2‖pk‖

γ 2 − ‖pk‖

≥
[
ε2|λm(A)|2‖pk‖2

γ 2 − 1

]

‖pk‖,

which yields by ‖pk‖ ≥ ‖rk‖ ≥ ε

lim
γ→0

|pTk+1 pk |
‖pk‖ = +∞.

Finally, the boundedness of cos( ̂pk, pk+1) and the latter relation yield
limγ→0 ‖pk+1‖ = +∞. �	

3.1 Planar methods as a remedy to CG degeneracy

This section briefly reviews some CG-based Krylov-subspace methods from the liter-
ature, which have been proposed to cope with the case in which the CG degenerates
at Step k, on indefinite nonsingular linear systems. In this section we will not include
also the comprehensive analysis by Oren [28], though it proposes a specific planar
method for CG degeneracy. Indeed, the proposal in [28] does not purely rely on con-
jugate directions, but it starts from considering the family of quasi-Newton methods
in [19]. Nevertheless, the paper [28] deserves much attention in our opinion, since it
also provides to large extent a generalization of some planar methods we are going to
analyze.

A thorough analysis of planar methods if beyond the purposes of this paper.
However, as a preliminary consideration, observe that planar methods work on the
basis of a common similar mechanism, which takes place when pTk Apk = 0 or
pTk Apk ≈ 0 (depending on the planar algorithm utilized). In particular, when either
of the latter conditions holds at step k (planar step), then an additional direction
qk ∈ span{Apk, pk, pk−1} is first generated. Then, a planar step is performed, so that
starting from the current iterate yk the novel point

yk+2 = yk + αk pk + βkqk (3.2)

is computed, in such a way that the Ritz–Galerkin conditions
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(b − Ayk+2)
T qk = (b − Ayk+2)

T pk = 0 (3.3)

are fulfilled. This indirectly guarantees that the residual rk+2 = b − Ayk+2 is also
orthogonal to all the search directions p1, . . . , pk, qk . The conditions (3.3) are used
to compute the coefficients αk and βk in (3.2), and require the solution of a 2 × 2
symmetric linear system with coefficients matrix

⎛

⎝
pTk Apk pTk Aqk

qTk Apk qTk Aqk

⎞

⎠ . (3.4)

Depending on the planar method adopted, analytical conditions are ensured so that
the above 2 × 2 matrix is always nonsingular (though possibly illconditioned).

We urge to recall that basically the planar methods differ with respect to a couple
of choices:

1. the criterion adopted to check at step k for the condition pTk Apk ≈ 0;
2. the computation of the search direction qk at the current k-th planar step.

As regards item 1., the planar methods in [24] and [8] check for the simpler
condition pTk Apk = 0, in order to decide whether the current step k should be a planar
one. This may evidently yield inaccuracies when pTk Apk ≈ 0 but pTk Apk �= 0, so
that in some problems numerical instability may arise. The choice in [24] and [8] also
helps simplify the k-th planar step, skipping some computation.
On the contrary, the planar methods in [17] and [9] (see also [11]) adopt amore general
criterion in item 1., since they both possibly apply a planar step also in case pTk Apk is
nearly zero, preventing numerical instabilities. Note that the latter choice allows more
flexibility, but also requires more computation and an additional difficulty to prove the
nonsingularity of the matrix in (3.4), using algebraic arguments.

As regards item 2., for computational reasons the choice of qk in [24] and [8] is
respectively done in such a way that

qTk Aqk = 0, (3.5)

qTk pk = 0. (3.6)

It can be shown, using algebraic considerations, that by the latter choices the pair of
vectors (pk, qk) at step k identifies a 2-dimensional linear manifold. This in turn is
used to prove that the choice of the criterion (see item 1.) yields a nonsingularmatrix in
(3.4), i.e. equivalently the k-th planar step is well-posed. We strongly remark that [11]
possibly provides an appealing geometric viewpoint, which can be straightforwardly
used to replace and simplify several algebraic considerations in [24] and [8].
On the other hand, at step k the search directionqk is computed by the planarmethods in
[17] and [9] as qk = Apk +σk−1 pk−1, where σk−1 ∈ R and is such that qTk Apk−1 = 0
(or qTk Aqk−1 = 0, depending on the chance that the previous step was the planar
(k − 1)-th step).
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We complete this section by computing the final expression of the iterate yk+2 in (3.2),
at the end of the k-th planar step, using planar algorithms. For the sake of brevity, and
in view of partially anticipating some considerations contained also in Sect.5, we
perform the computation considering only the planar algorithms [24] and [8]. In this
regard, by [24] we have for the k-th planar step:

qk = Apk − (Apk)
T A(Apk)

2‖Apk‖2
pk , αk = − (Apk)

T A(Apk)

2‖Apk‖4
rTk pk , βk = rTk pk

‖Apk‖2
,

so that by (3.2) we finally obtain

yk+2 = yk+αk pk+βk pk+1 = yk− (Apk)T A(Apk)

‖Apk‖4 (rTk pk)pk+ rTk pk
‖Apk‖2 Apk . (3.7)

Similarly, from [8] we have at the k-th planar step (for any γk ∈ R \ {0})

qk = γk Apk, αk = − rTk pk

γ 2
k ‖Apk‖4

qTk Aqk, βk = rTk pk
γk‖Apk‖2 ,

so that again (3.2) yields

yk+2 = yk − rTk pk
‖Apk‖4 (Apk)

T A(Apk)pk + rTk pk
‖Apk‖2 Apk, (3.8)

which coincides, as expected, with (3.7) (an analogous result holds using the planar
methods in [17] and [9].). The latter fact should not sound surprising, inasmuch as
starting from the iterate yk , both [24] and [8] determine yk+2 as the stationary point on
the same 2-dimensional manifold, spanned by pk and Apk . We will see how to large
extent, the use of grossone in Sect. 5 recovers the latter result.

4 Introduction to the algebra of grossone

Moving away from the traditional approaches of calculus, a new computational
methodology allowing one to work numerically with infinities and infinitesimals was
proposed in [31,33,35,39,40]. The method suggests a more accurate lens of observa-
tion of the infinite and infinitesimal quantities, and gives the opportunity to execute
numerical computations with these numbers in a unique framework with finite quan-
tities. This approach proposes a numeral system that uses the same numerals in all
the occasions we need infinities and infinitesimals. It is important to emphasize that
this numeral system avoids situations like ∞ − 1 = ∞ and ∞ + 1 = ∞, providing
results ensuring that if a is a numeral written in this system then for any a (i.e., a can
be finite, infinite, or infinitesimal) it follows a − 1 < a and a + 1 > a. A number
of papers connecting the new approach to the historical panorama of ideas dealing
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with infinities and infinitesimals (see [22,25,43]) has been published, and metamath-
ematical investigations on the new theory and its non-contradictory can be found in
[23,42].

This computationalmethodologyhas already been successfully applied in optimiza-
tion andnumerical differentiation (see [6,7,36,48]) and in a number of other theoretical
and computational research areas such as cellular automata (see [4,5]), percolation
(see [20,21,47]), fractals (see for instance [32,34,37,41,47]), Turing machines and
supertasks (see [29,43,44]), numerical solution of ordinary differential equations (see
[1,26,38], along with [45]).

The new methodology uses an infinite unit of measure expressed by the numeral
① called grossone, that is the number of elements of the set, N, of natural numbers.
Grossone is introduced by describing its properties (similarly, in order to pass from
natural to integer numbers, a new element – zero – is introduced by describing its
properties) postulated by the Infinite Unit Axiom consisting of three parts: Infinity,
Identity, and Divisibility (see below). This axiom is added to axioms for real numbers.
Moreover, it is postulated that associative and commutative properties ofmultiplication
and addition, distributive property of multiplication over addition, existence of inverse
elements with respect to addition and multiplication hold for grossone, as for finite
numbers and for all numbers involving grossone.

Infinity Any finite natural number n is less than grossone, i.e., n < ①.
Identity The following relations link ① to identity elements 0 and 1

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0.

(4.1)

Divisibility For any finite natural number n the sets Nk,n, 1 ≤ k ≤ n, being the nth
parts of the set N of natural numbers, have the same number of elements

indicated by the numeral ①
n where

Nk,n = {k, k + n, k + 2n, k + 3n, . . .}, 1 ≤ k ≤ n,

n⋃

k=1

Nk,n = N. (4.2)

To express infinite and infinitesimal numbers on a computer a numeral positional
system with the infinite base ① is used. A number C in this positional system is
represented through groups corresponding to powers of ①:

C = cpm①pm + · · · + cp1①
p1 + cp0①

p0 + cp−1①
p−1 + · · · + cp−k①

p−k . (4.3)

Then, the record

C = cpm①pm . . . cp1①
p1cp0①

p0cp−1①
p−1 . . . cp−k①

p−k (4.4)

represents the number C , where all numerals ci �= 0 belong to a traditional numeral
system and are called grossdigits. They express finite positive or negative numbers,
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and show howmany corresponding units①pi should be added or subtracted in order to
form the number C . Grossdigits can be expressed by several symbols using positional
systems, the form Q

q where Q and q are integer numbers, or in any other finite numeral
system.

Numbers pi in (4.4) called grosspowers can be finite, infinite, and infinitesimal
(the introduction of infinitesimal numbers will be given soon), they are sorted in the
decreasing order

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k

with p0 = 0. In the traditional positional systems with finite bases there exists a con-
vention: a digit ai shows howmany powers bi are present in the number, and the radix
b is not written explicitly. In the record (4.4), we write ①pi explicitly because in the
new numeral positional system the number i in general is not equal to the grosspower
pi . This gives possibility to write, for example, the infinite number 34.7①36.7 15.1①8.9

having grosspowers p2 = 36.7, p1 = 8.9 and grossdigits c36.7 = 34.7, c8.9 = 15.1,
without indicating grossdigits equal to zero corresponding to grosspowers less than
36.7 and greater than 8.9. Note also that if a grossdigit cpi = 1 then we often write
①pi instead of 1①pi .

The term having p0 = 0 represents the finite part of C because, due to (4.1), we
have c0①

0 = c0. The terms having finite positive grosspowers represent the simplest
infinite parts ofC . Analogously, terms having negative finite grosspowers represent the
simplest infinitesimal parts ofC . For instance, the number①−1 = 1

①n
is infinitesimal.

It is the inverse element with respect to multiplication for ①, being

①−1 · ① = ① · ①−1 = 1. (4.5)

Note that all infinitesimals are not equal to zero. Particularly, 1
①

> 0 because it is a
result of division of two positive numbers.

5 A novel algebraic perspective for CG degeneracy using grossone

This section is devoted to investigate potential advances for Krylov-based methods, by
adopting the recently defined extension of real numbers using Grossone (see [31,35,
40] and [39]), and its applications in optimization (see [2,6,7,36,48]). We are indeed
persuaded that modeling CG degeneracy by means of grossone, whose properties are
detailed in Sect. 4, can in general:

• easily recover the standard CG iteration also in the indefinite case, when a CG
degeneracy occurs;

• provide results which perfectly match with the analysis carried on for planar CG
methods;

• simplify the conclusions obtained using some planar methods.

On this purpose, we consider again the standard CG scheme in Table 1, where
A is possibly indefinite nonsingular. Let us consider the formulae therein, for the
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computation at Step k of the steplength αk , the residual rk = b − Axk and the search
direction pk . Then, we consider the following position

pTk Apk = s①, (5.1)

where we set s = O(①−1) if the Step k is a non-degenerate CG step, and we set
s = O(①−2) if the Step k is a degenerate CG step. Moreover, drawing inspiration
from the standard Landau-Lifsitz notation, for example with the symbol O(①−2) we
indicate a term containing powers of① at most equal to−2. Note that in case O(①−2)

then the finite part of pTk Apk is equal to 0, so that the Identity property of Sect. 4 is
fulfilled. Comparing (5.1) with the expression of C in (4.3) we immediately realize
that (5.1) represents a simplified positional expression. Nevertheless, as revealed by
our analysis in the sequel, for our purposes the setting (5.1) seems a (completely)
sufficient choice. In particular, we want to show that the axioms and the basic algebra
reported in Sect. 4 for grossone are well-suited to detail the behaviour of the CG, in
the degenerate case.

We immediately warn the reader about the fact that in practice, the setting (5.1) will
not alter the instructions at the k-th iteration of the CG. Thus, a remarkably valuable
aspect of using grossone to cope with CG degeneracy is that the CG in Table 1 is
faithfully applied ‘as is’, unlike what happens with planar methods. The only effect
of introducing grossone in Table 1 is that, in case of CG degeneracy at Step k, the
expressions of the coefficients and vectors at Step k may explicitly depend on① and/or
its powers. In this regard, in the next section we compute the expressions of the search
directions pk+1 and pk+2, when at Step k of the CG we possibly consider pTk Apk ≈ 0
alongwith the position (5.1) and s = O(①−2). This will explicitly allow us to compare
the use of grossone with the approaches detailed in the previous sections.

5.1 The degenerate Step k of the CG using grossone

Recalling Table 1 and (5.1), since for the CG pTk rk = ‖rk‖2, we immediately have

rk+1 = rk − αk Apk = rk − ‖rk‖2
s①

Apk (5.2)

so that

pk+1 = rk+1 + βk pk = rk − ‖rk‖2
s①

Apk − rTk+1Apk

pTk Apk
pk

= rk − ‖rk‖2
s①

Apk −
[

rk − ‖rk‖2
s①

Apk

]T

Apk
pk
s①

= rk − ‖rk‖2
s①

Apk −
[

pTk Apk − ‖rk‖2
s①

‖Apk‖2
]

pk
s①
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= rk − ‖rk‖2
s①

Apk −
[
s2①2 − ‖rk‖2‖Apk‖2

s2①2

]

pk

= −βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk . (5.3)

Now we need to compute the quantities pTk+1Apk+1 and rTk+1 pk+1. In this regard,
from (5.3) and using the relation pk = rk + βk−1 pk−1, along with the orthogonal-
ity/conjugacy conditions satisfied by the residuals and search directions generated
from the algorithm in Table 1

rTi r j = 0, pTi Ap j = 0, ∀i �= j,

we obtain, after some computation,

pTk+1Apk+1 =
[

−βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk

]T

A

·
[

−βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk

]

= ‖rk‖4
s2①2 (Apk)

T A(Apk) − ‖rk‖4‖Apk‖4
s3①3 + O(①), (5.4)

where the term O(①) in (5.4) just contains terms with powers of ① equal to + 1 and
0. On the other hand, exploiting the conjugacy between pk+1 and pk we also have

rTk+1 pk+1 =
[

rk − ‖rk‖2
s①

Apk

]T

pk+1 = rTk pk+1

= rTk

[

−βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk

]

= −‖rk‖2 + ‖rk‖4‖Apk‖2
s2①2 . (5.5)

Now, using (5.2), (5.4) and (5.5) we obtain

rk+2 = rk+1 − αk+1Apk+1 = rk − ‖rk‖2
s①

Apk − rTk+1 pk+1

pTk+1Apk+1
Apk+1

= rk − ‖rk‖2
s①

Apk −
−‖rk‖2 + ‖rk‖4‖Apk‖2 1

s2①2

‖rk‖4
s2①2 (Apk)T A(Apk) − ‖rk‖4‖Apk‖4

s3①3 + O(①)

·
[

−βk−1Apk−1 − ‖rk‖2
s①

A(Apk) + ‖rk‖2‖Apk‖2
s2①2 Apk

]

;
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when pTk Apk is infinitesimal (i.e. the CG degenerates at Step k) so does s①, and the
latter relation yields

rk+2 = rk − ‖rk‖2
s①

Apk − βk−1
s①

‖Apk‖2 Apk−1 + s①

‖Apk‖2
(

−‖rk‖2
s①

A(Apk)

)

+ s①

‖Apk‖2
(‖rk‖2‖Apk‖2

s2①2 Apk

)

+ O(①−1)

= rk − ‖rk‖2
s①

Apk − βk−1
s①

‖Apk‖2 Apk−1

− ‖rk‖2
‖Apk‖2 A(Apk) + ‖rk‖2

s①
Apk + O(①−1)

= rk − ‖rk‖2
‖Apk‖2 A(Apk) − βk−1

s①

‖Apk‖2 Apk−1 + O(①−1), (5.6)

being as usual O(①−1) a vector with terms containing powers of ① at most equal to
− 1. Recalling that pTk Apk = s① is infinitesimal, the most significant consequence
from (5.2) and (5.6) is that in practice

• the residuals r1, . . . , rk are independent of ①,
• rk+1 depends on ①,
• rk+2 is independent of negative powers of s①,

which implies that applying the standard CG in Table 1, also in case the pivot
breakdown pTk Apk ≈ 0 occurs at Step k, then the sequence of generated residu-

als r1, . . . , rk+2, includes all vectors in R
n apart from rk+1 ∈ R̂

n , provided that the
terms containing s① in (5.6) are neglected. Thus, the algebra related to CG degeneracy
at Step k, detailed in the previous sections of the present paper, can be overcome by
introducing grossone and neglecting the term with s① in (5.6), leaving unchanged the
CG scheme in Table 1.

Furthermore, let us now compute the search direction pk+2, being by (5.2) and
(5.6)

pk+2 = rk+2 + βk+1 pk+1 = rk − ‖rk‖2
‖Apk‖2 A(Apk)

+‖rk+2‖2
‖rk+1‖2 pk+1 − βk−1

s①

‖Apk‖2 Apk−1 + O(①−1)

= rk − ‖rk‖2
‖Apk‖2 A(Apk) + ‖rk+2‖2

−‖rk‖2 + ‖rk‖4‖Apk‖2
s2①2

pk+1

−βk−1
s①

‖Apk‖2 Apk−1 + O(①−1). (5.7)

Now, recalling (5.3) we can write
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pk+2 = rk − ‖rk‖2
‖Apk‖2 A(Apk) − βk−1

s①

‖Apk‖2 Apk−1 + O(①−1)

+ ‖rk+2‖2
−‖rk‖2 + ‖rk‖4‖Apk‖2

s2①2

·
[‖rk‖2‖Apk‖2

s2①2 pk − ‖rk‖2
s①

Apk − βk−1 pk−1

]

= rk − ‖rk‖2
‖Apk‖2 A(Apk) + ‖rk+2‖2

‖rk‖2 pk − βk−1
s①

‖Apk‖2 Apk−1 + O(①−1),

(5.8)

which shows that, similarly to rk+2, also pk+2 can be viewed as an n-real vector which
does not depend on negative powers of ① (i.e. equivalently ‖pk+2‖ < ①). Another
remarkable result from (5.8) is that, neglecting the terms which contain powers of s①
larger or equal to 1, after a simple computation applying Algorithm CG_Plan of [8]
the vector pk+2 in (5.8) coincides with the expression of pk+2 in [8] (a similar result
holds using the algorithm by Luenberger in [24]). This implies that the use of grossone
to deal with a CG degeneracy at Step k does not simply allow to generate the mutually
conjugate directions p1, . . . , pk, pk+2 as planar methods do (see Sect. 3.1), but it also
retrieves the same scaling of the search directions provided by some planar methods.

After some computations, using standard properties of the CG, it is also easy to
verify that the vectors rk+1, pk+1, rk+2, pk+2 in (5.2), (5.3), (5.6) and (5.8) satisfy

{
rTk+2ri = 0, i = 1, . . . , k + 1,
pTk+2Api = 0, i = 1, . . . , k + 1,

(5.9)

so that recurring to grossone in case of pivot breakdown of the CG allows to retrieve
standard CG properties, even in the degenerate case.

In addition, since the expression of pk+1 in (5.3) explicitly includes negative powers
of s①, then we have a perfect matching with the results in Proposition 3.1. Indeed,
being the k-th CG step degenerate, then vectors whose entries contain negative powers
of s① to large extent can be assimilated to vectors with unbounded norm.

Now, in order to verify to what extent the use of grossone completely recovers the
CG iteration also in case of degeneracy at Step k, let us compute the iterate yk+2,
similarly to what we have done in (3.7) and (3.8) using planar methods. After a simple
computation we first obtain from Table 1

yk+2 = yk + αk pk + αk+1 pk+1

where (5.1) yields

αk = ‖rk‖2
pTk Apk

= ‖rk‖2
s①

,

and by (5.4) along with (5.5)

αk+1 = ‖rk+1‖2
pTk+1Apk+1

= rTk+1 pk+1

pTk+1Apk+1
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=
−‖rk‖2 + ‖rk‖4‖Apk‖2 1

s2①2

‖rk‖4
s2①2 (Apk)T A(Apk) − ‖rk‖4‖Apk‖4

s3①3 + O(①)

= − s①

‖Apk‖2 − s2①2

‖Apk‖6 (Apk)
T A(Apk)

+ ‖Apk‖6 − ‖rk‖2[(Apk)T A(Apk)]2
‖rk‖2‖Apk‖10 s3①3 + O(①−4) (5.10)

where O(①−4) represents the sum of terms containing powers of ① smaller or equal
to −4, and the last equality can be verified by direct computation. Then, we obtain
from (5.3)

yk+2 = yk + ‖rk‖2
s①

pk +
[

− s①

‖Apk‖2 − s2①2

‖Apk‖6 (Apk)
T A(Apk)

+ ‖Apk‖6 − ‖rk‖2[(Apk)T A(Apk)]2
‖rk‖2‖Apk‖10 s3①3

+ O(①−4)
]

·
[

−βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk

]

= yk + ‖rk‖2
s①

pk + ‖rk‖2
‖Apk‖2 Apk − ‖rk‖2

s①
pk

− ‖rk‖2
‖Apk‖4 (Apk)

T A(Apk)pk + O(①−1)

= yk + ‖rk‖2
‖Apk‖2 Apk − ‖rk‖2

‖Apk‖4 (Apk)
T A(Apk)pk + O(①−1), (5.11)

which coincides exactly with (3.7) and (3.8) as long as O(①−1) is neglected. This
proves that in case of CG degeneracy at Step k, the use of grossone does not simply
allow to compute residuals and search directions as in (5.9), but it also may provide
exactly the same iterate yk+2 of [24] and [8], independent of grossone. The latter result
can be summarized in the next proposition, highlighting how introducing grossone can
perfectly recover a CG degeneracy, using the algebra of R̂

n in place of R
n .

Proposition 5.1 Consider the indefinite linear system Ay = b, with A ∈ R
n×n, and

suppose the CG in Table 1 is applied for its solution, where at Step k possibly the finite
part of pTk Apk is equal to 0 and the setting (5.1) is adopted. Then, at Step k and Step

k + 1 the CG preserves in R̂
n the same properties of the CG (applied in R

n), ignoring
any degeneracy. Moreover, yk+2 is given by the finite part of (5.11) and pk+2 is given
by the finite part of (5.8).

The resulting CG method in R̂
n (namely CG①), introduced in Proposition 5.1, is

detailed in Table 2. Note that in Table 2, in case at Step k we have pTk Apk ≈ 0, then
the test on rk+1 is unnecessary, being rk+1 computed by (5.2) with s① ≈ 0. Observe
that by comparing (3.7)-(3.8) and (5.11) we can immediately realize the additional
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Table 2 The CG① algorithm
for solving the symmetric linear
system Ay = b, A ∈ R

n×n

The Conjugate Gradient method with grossone (CG①)

Data: Set k = 0, y0 = 0, r0 = b − Ay0, ε > 0, s = O(①−2).
If r0 = 0, then STOP. Else, set p0 = r0

Step k: If ‖pk‖ is finite and |pTk Apk | ≥ ε‖pk‖2 then

Compute αk = rTk pk/p
T
k Apk , yk+1 = yk + αk pk ,

rk+1 = rk − αk Apk
If rk+1 = 0, then STOP

Elseif ‖pk‖ is finite set pTk Apk = s① and compute
rk+1 by (5.2)

Else compute αk = rTk pk/p
T
k Apk , yk+1 = yk + αk pk ,

rk+1 = rk − αk Apk
If the finite part of rk+1 is zero, then STOP

Endif

Set βk = −rTk+1Apk/p
T
k Apk = ‖rk+1‖2/‖rk‖2, and

pk+1 = rk+1 + βk pk , k = k + 1

Go to Step k

contribution given by the use of grossone, with respect to [24] and [8] (indeed, the
term O(①−1) can strongly affect the final iterate yk+2).

5.2 How the use of grossone can underly CG degeneracy

In this section we informally show how the geometry behind CG degeneracy and the
use of grossone, in the nonsingular indefinite case, can also justify the conclusions of
Proposition 3.1. This fact is depicted in Fig. 1, where we have considered the three
iterates ym , yh and yk generated by the CG, along with the corresponding search
directions pm , ph and pk . In Fig. 1 the continuous line represents the level set

{y ∈ R
n : q(y) = ω}, where q(y) = 1

2
yT Ay − bT y, ω ∈ R.

At ym and yh no degeneracy occurs (i.e. the standard CG method in Table 1 applies),
while at yk we have pTk Apk = 0. In particular at ym (a similar conclusion holds for
the iterate yh) no degeneracy of the CG is observed, which is evident by the fact
that the vector pm+1 is geometrically constructed joining ym and y′

m (the latter point
being symmetric of ym with respect to the point y∗, which satisfies Ay∗ = b). On the
contrary, such a reasoning can not be replicated for the computation of pk+1, because
pk is not tangent at yk to the continuous line in Fig. 1. Equivalently, the line yk +αpk ,
α ∈ R, is tangent to another level set (dashed and dotted line), in the point at infinity
yk+1 (for amore rigorous justification of the last statement the reader can refer to [12]).
Then, in order to formally compute the next finite iterate yk+2, the search direction
pk+1 satisfying ‖pk+1‖ → +∞ should be provided, as proved in Proposition 3.1.
Equivalently, when at Step k of CG① in Table 2 the position (5.1) is adopted, then
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Fig. 1 The level set (continuous line) {y ∈ R
n : 1/2yT Ay − bT y = ω}, with ω ∈ R, being A indefinite

nonsingular. The solution point y∗ of Ay = b is in the intersection of the asymptotes (dashed lines).
At the current Step k we have pTk Apk ≈ 0, so that yk+1 approaches a point at infinity, according with
Proposition 3.1. In order to generate the finite point yk+2, the next conjugate direction pk+1 needs to satisfy
‖pk+1‖ → +∞ (dashed arrow in the figure)

pk+1 is computed as in (5.3), so that s① ≈ 0 again yields the conclusion of Proposition
3.1.

6 Conclusions

In this paper we presented an innovative perspective and implementation of the Con-
jugate Gradient method, in the case of degeneracy on indefinite linear systems. The
proposed approach utilizes the new computational methodology based on ① (namely
grossone), proposed by Sergeyev and successfully used in Nonlinear Optimization
frameworks. Our proposal fits the well known scheme of planar methods for CG
degeneracy.

We are persuaded that the analysis detailed in this paper might be also fruitfully
adopted to analyze Nonlinear Conjugate Gradient methods. The latter techniques are
indeed extensions of the CG to non-quadratic functions, and require specific care when
computing the steplength along the current search direction. In this regard, on one hand
the use of grossone can be the right tool to handle numerical instabilities; on the other
hand, the theory of Polarity (see for instance [30]) might suggest useful extensions of
the asymptotic cone (see [12]).
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Appendix

Proof of Proposition 2.1 Recalling that n = P + N , let us consider for Ã−1 the
positive definite matrix

Ã−1 =
P∑

i=1

1

pTi Api
pi p

T
i −

P+N∑

i=P+1

1

pTi Api
pi p

T
i ;

then (ii)–(iii) follow from the conjugacy of the directions p1, . . . , pn with respect to
A. Moreover, we have after a brief arrangement

Ã−1 = V

⎛

⎜
⎜
⎝

diagpi∈P1

{
1

pTi Api

}

∅

∅ − diagpi∈P2

{
1

pTi Api

}

⎞

⎟
⎟
⎠ V T , (6.1)

being

V =
(

p1
... · · · ... pP

... pP+1
... · · · ... pP+N

)

∈ R
n×n

a nonsingular matrix. Then, by (6.1) we obtain

Ã = V−T
(
diagpi∈P1{pTi Api } ∅

∅ − diagpi∈P2{pTi Api }
)

V−1

hence

V T ÃV =
(
diagpi∈P1

{
pTi Api

} ∅
∅ − diagpi∈P2

{
pTi Api

}

)

, (6.2)

showing that (iv) holds. Finally, by Table 1 and the properties of the CG, let us consider
the expression of the coefficients

αi = ‖ri‖2
pTi Api

= rT0 pi
pTi Api

= bT pi
pTi Api

, i ≥ 1.

Then, (6.2) implies
{
pTi Ã pi = pTi Api , ∀pi ∈ P1,
pTi Ã pi = −pTi Api , ∀pi ∈ P2.

(6.3)

Now, to prove (v) it suffices to show that the condition Ã(dP + dN ) = b holds, i.e.

Ã(dP + dN ) = b ⇐⇒
[
b − Ã(dP + dN )

]T
pi = 0, i = 1, . . . , P + N .
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The result follows by (6.3), being either

[
b − Ã(dP + dN )

]T
pi = bT pi − αi pTi Ã pi = bT pi

− bT pi

pTi Ã pi
pTi Ã pi = 0, ∀i = 1, . . . , P,

or

[
b − Ã(dP + dN )

]T
pi = bT pi + αi pTi Ã pi = bT pi

+ bT pi

−pTi Ã pi
pTi Ã pi = 0, ∀i = P + 1, . . . , P + N .

�	
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