
Chapter 4
Krylov-Subspace Methods for Quadratic
Hypersurfaces: a Grossone–based
Perspective

Giovanni Fasano

Abstract We study the role of the recently introduced infinite number grossone, to
deal with two renowned Krylov-subspace methods for symmetric (possibly indefi-
nite) linear systems. We preliminarily explore the relationship between the Conju-
gate Gradient (CG) method and the Lanczos process, along with their specific role
of yielding tridiagonal matrices which retain large information on the original linear
system matrix. Then, we show that on one hand there is not immediate evidence of
an advantage from embedding grossone within the Lanczos process. On the other
hand, coupling the CG with grossone shows clear theoretical improvements. Further-
more, reformulating the CG iteration through a grossone-based framework allows to
encompass also a certain number of Krylov-subspace methods relying on conjugacy
among vectors. The last generalization remarkably justifies the use of a grossone-
based reformulation of the CG to solve also indefinite linear systems. Finally, pairing
the CG with the algebra of grossone easily provides relevant geometric properties of
quadratic hypersurfaces.

1.1 Introduction

We consider the iterative solution of indefinite linear systems by Krylov-subspace
methods. After a preliminary analysis, where a couple of renowned methods are
briefly detailed and compared, we directly focus on those algorithms based on the
generation of conjugate vectors, and we disregard those methods which rely on
generating Lanczos vectors.
More specifically, we analyze the behaviour of the Conjugate Gradient (CG)

method in case of degeneracy, since it yields relevant implications when solving
symmetric linear systems within Nonconvex Optimization problems. In this regard,
the current literature on Krylov-subspace methods (see e.g. [27]) reports plenty of

Giovanni Fasano
University Ca’ Foscari of Venice, Department of Management, e-mail: fasano@unive.it

1

2 Giovanni Fasano

applications in nonlinear programming, where the CG is used and it can possibly
prematurely halt on the solution of indefinite linear systems (e.g. Newton’s equation
for nonconvex problems).
We recall that the CG iteratively computes the sequence {𝑥𝑘 }, where 𝑥𝑘 approxi-

mates at step 𝑘 the solution of the symmetric linear system 𝐴𝑥 = 𝑏, being 𝐴 ∈ R𝑛×𝑛.
The stopping rule of the CG is based on a Ritz-Galerkin condition, i.e. the norm
of the current residual 𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 is checked, in order to evaluate the quality
of the current approximate solution 𝑥𝑘 . Unexpectedly, the unfortunate choice of the
initial iterate 𝑥1 may cause a premature undesired stop of the CG on specific indef-
inite linear systems. As well known, the last drawback may have a direct dramatic
impact on optimization frameworks: a so called gradient-related direction cannot
be computed and possibly inefficient arrangements need to be considered. When a
premature stop of the CG occurs it corresponds to an unexpected numerical failure:
namely a division by a small quantity is involved. This situation is usually addressed
in the literature as a pivot breakdown, and corresponds to the fact that the steplength
along the current search direction selected by the CG tends to be unbounded. As a
consequence, the CG stops beforehand and the current iterate 𝑥𝑘 may be far from a
solution of the linear system (i.e. the quantity ‖𝑟𝑘 ‖ might be significantly nonzero).
This paper specifically addresses the pivot breakdown of the CG, from a perspec-

tive suggested by the recent introduction of the numeral grossone [37]. We urge to
remark that a comprehensive description of the grossone-based methodology can be
found in [42], and it should be stressed that it is not formally related to non-standard
analysis (see [43]).
Our perspective is definitely unusual for the CG, since the literature of the last
decades has mainly focused on its performance and stability, rather than on the way
to recover its iteration in the indefinite case. Nevertheless, we are convinced that a
proper investigation of the ultimate reasons of CG degeneracy might pursue a couple
of essential tasks:

• to recover the degeneracy and provide gradient-related directions within opti-
mization frameworks;

• to generate negative curvature directions, that allow convergence of optimization
methods to solutions satisfying second order necessary optimality conditions.

As regards the organization of the paper, in Sect. 1.2 we detail similarities and
dissimilarities of two well known Krylov-subspace methods: namely the CG and
the Lanczos process. In Sect. 1.3 we describe one of the main conclusions in the
current paper, i.e. the use of grossone with the CG can help overcoming problems of
degeneracy in the indefinite case. Sect. 1.4 contains details on the second relevant
contribution of this paper, namely the use of grossone for the iterative computation of
negative curvature directions in large scale (unconstrained) optimization frameworks,
where the objective function is twice continuously differentiable. Finally, a section
of conclusions will complete the paper.
As regards the symbols adopted in the paper, we use R𝑝 to represent the set

of the real 𝑝-vectors, while for the sake of simplicity ‖𝑥‖ is used to indicate the
Euclidean norm of the vector 𝑥, in place of ‖𝑥‖2. Given the 𝑛-real vectors 𝑥 and 𝑦,

1 Krylov-Subspace Methods and Grossone 3

Table 1.1 The CG method for solving (1.1) when 𝐴 � 0.

The Conjugate Gradient (CG) method

Step 1: 𝑘 = 1 , 𝑥1 ∈ R𝑛 , 𝑟1 = 𝑏 − 𝐴𝑥1 , 𝑝1 = 𝑟1.
Step 𝑘: If 𝑟𝑘 = 0 then STOP, else

𝑥𝑘+1 = 𝑥𝑘 + \𝑘 𝑝𝑘 , \𝑘 =
𝑟𝑇
𝑘
𝑝𝑘

𝑝𝑇
𝑘
𝐴𝑝𝑘
,

𝑟𝑘+1 = 𝑟𝑘 − \𝑘𝐴𝑝𝑘 ,
𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘 𝑝𝑘 , 𝛽𝑘 = − 𝑟𝑇

𝑘+1𝐴𝑝𝑘

𝑝𝑇
𝑘
𝐴𝑝𝑘

=
‖𝑟𝑘+1 ‖2
‖𝑟𝑘 ‖2

,
𝑘 ← 𝑘 + 1 repeat Step 𝑘.

End if

with 𝑥𝑇 𝑦 we indicate their standard inner product in R𝑛. The symbol 𝑓 ∈ 𝐶ℓ (A)
indicates that the function 𝑓 is ℓ times continuously differentiable on the setA. The
symbol 𝐵 � 0 (respectively 𝐵 � 0) indicates that the square matrix 𝐵 is positive
definite (respectively semidefinite). Finally, _𝑀 (𝐴) (respectively _𝑚 (𝐴)) represents
the largest (respectively smallest) eigenvalue of the square matrix 𝐴.

1.2 The CG method and the Lanczos process for matrix
tridiagonalization

Let us consider the solution of the symmetric linear system

𝐴𝑥 = 𝑏, 𝐴 ∈ R𝑛×𝑛, (1.1)

where the matrix 𝐴 is possibly indefinite and nonsingular. As long as 𝐴 in (1.1) is
positive definite, the CG method [26] iteratively provides a tridiagonalization of it
(see also [22]). A general description of the CG method for solving (1.1) is reported
in Table 1.1 [25], where 𝑟𝑘+1 = 𝑏 − 𝐴𝑥𝑘+1 and the sequences {𝑟𝑖} and {𝑝𝑖} are such
that after 𝑘 + 1 iterations:

𝑟𝑇
𝑖
𝑟 𝑗 = 0, 𝑖 ≠ 𝑗 ≤ 𝑘 + 1, (orthogonality among {𝑟𝑖}),

𝑟𝑇
𝑖
𝑝 𝑗 = 0, 𝑗 < 𝑖 ≤ 𝑘 + 1,

𝑝𝑇
𝑖
𝐴𝑝 𝑗 = 0, 𝑖 ≠ 𝑗 ≤ 𝑘 + 1, (conjugacy among {𝑝𝑖}).

Assume that after 𝑚 steps the CG stops and 𝑟𝑚+1 = 0 (i.e. a solution to the linear
system (1.1) is found), then setting

𝑅𝑚 =

(
𝑟1
‖𝑟1‖

· · · 𝑟𝑚

‖𝑟𝑚‖

)
∈ R𝑛×𝑚, (1.2)

𝑃𝑚 =

(
𝑝1
‖𝑟1‖

· · · 𝑝𝑚

‖𝑟𝑚‖

)
∈ R𝑛×𝑚, (1.3)

4 Giovanni Fasano

along with

𝐿𝑚 =

©«
1 0

−
√
𝛽1

. . .

. . .
. . .

0 −
√
𝛽𝑚−1 1

ª®®®®®¬
∈ R𝑚×𝑚, (1.4)

and

𝐷𝑚 =

©«

1
\1

0
. . .

. . .

0 1
\𝑚

ª®®®®®®¬
∈ R𝑚×𝑚, (1.5)

after an easy computation we have from (1.2)-(1.5)

𝑃𝑚𝐿
𝑇
𝑚 = 𝑅𝑚, (1.6)

𝐴𝑃𝑚 = 𝑅𝑚𝐿𝑚𝐷𝑚, (1.7)

𝐴𝑃𝑚𝐿
𝑇
𝑚 = 𝑅𝑚𝐿𝑚𝐷𝑚𝐿

𝑇
𝑚 =⇒ 𝐴𝑅𝑚 = 𝑅𝑚𝑇

𝐶𝐺
𝑚 , (1.8)

being 𝑇𝐶𝐺
𝑚 = 𝐿𝑚𝐷𝑚𝐿

𝑇
𝑚 ∈ R𝑚×𝑚 the symmetric tridiagonal matrix

𝑇𝐶𝐺
𝑚 =

©«

1
\1

−
√
𝛽1
\1

0

−
√
𝛽1
\1

(
1
\2
+ 𝛽1

\1

) . . .

. . .
. . .

. . .

. . .
(
1

\𝑚−1
+ 𝛽𝑚−2

\𝑚−2

)
−
√
𝛽𝑚−1
\𝑚−1

0 −
√
𝛽𝑚−1
\𝑚−1

(
1
\𝑚
+ 𝛽𝑚−1

\𝑚−1

)

ª®®®®®®®®®®®¬
∈ R𝑚×𝑚. (1.9)

Remark 1 Relation (1.8) underlies a three-term recurrence among the residuals {𝑟𝑖},
being

𝐴
𝑟𝑖

‖𝑟𝑖 ‖
∈ 𝑠𝑝𝑎𝑛{𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1}, 𝑖 ∈ {1, . . . , 𝑚}. (1.10)

1.2.1 Basics on the Lanczos process

Similarly to the previous section, let us now consider the Lanczos process which is
reported in Table 1.2. Unlike the CG method, it was initially conceived to iteratively
solve a symmetric eigenvalue problem in the indefinite case [29], so that after 𝑚
steps it allows to reduce (1.8) into relation

𝐴𝑄𝑚 = 𝑄𝑚𝑇
𝐿
𝑚 , (1.11)

1 Krylov-Subspace Methods and Grossone 5

Table 1.2 The Lanczos process for the tridiagonalization of (1.1), when 𝐴 is possibly indefinite.

The Lanczos process

Step 1: 𝑘 = 0 , 𝑣0 = 𝑏 ∈ R𝑛 , 𝑞0 = 0 , 𝛿0 = ‖𝑏 ‖.
Step 𝑘: If 𝛿𝑘 = 0 then STOP, else

𝑞𝑘+1 =
𝑣𝑘

𝛿𝑘
,

𝑘 ← 𝑘 + 1,
𝛼𝑘 = 𝑞𝑇

𝑘
𝐴𝑞𝑘 ,

𝑣𝑘 = (𝐴− 𝛼𝑘 𝐼)𝑞𝑘 − 𝛿𝑘−1𝑞𝑘−1,
𝛿𝑘 = ‖𝑣𝑘 ‖,
repeat Step 𝑘.

End if

where 𝐴 is the matrix in (1.1), 𝑄𝑚 = (𝑞1 · · · 𝑞𝑚) and 𝑇𝐿
𝑚 is again a tridiagonal

matrix, such that (Sturm sequence of tridiagonal matrices)

_𝑚 (𝐴) ≤ _𝑚

(
𝑇𝐿
𝑚

)
≤ _𝑚

(
𝑇𝐿
𝑚−1

)
≤ · · · ≤ _𝑀

(
𝑇𝐿
𝑚−1

)
≤ _𝑀

(
𝑇𝐿
𝑚

)
≤ _𝑀 (𝐴) .

Moreover, coupling the Lanczos process with a suitable factorization of the matrix
𝑇𝐿
𝑚 , the iterative solution of (1.1) can be pursued.
Indeed, given a symmetric indefinite matrix 𝐴, after 𝑚 ≥ 1 steps the Lanczos

process similarly to (1.2) generates the directions (the Lanczos vectors) 𝑞1, . . . , 𝑞𝑚
satisfying the orthogonality properties

𝑞𝑇𝑖 𝑞 𝑗 = 0, 𝑖 ≠ 𝑗 ≤ 𝑚.

In particular at step 𝑘 ≤ 𝑚 of the iterative procedure, the basis {𝑞1, . . . , 𝑞𝑘 } for the
Krylov subspace K𝑘 (𝑞1, 𝐴) � 𝑠𝑝𝑎𝑛{𝑞1, 𝐴𝑞1, . . . , 𝐴𝑘−1𝑞1} is generated. Then, as
for the CG, the Lanczos process provides a basis ofK𝑘 (𝑞1, 𝐴) which is used to solve
the problem

min
𝑥∈K𝑘 (𝑞1 ,𝐴)

‖𝐴𝑥 − 𝑏‖.

Hence, since
dim [K1 (𝑞1, 𝐴)] < dim [K2 (𝑞1, 𝐴)] < · · · ,

in at most 𝑛 iterations of the CG or the Lanzos process a sufficient information is
available to compute the solution of (1.1).
Similarly to the CG (see (1.8)), in case at step 𝑚 of the Lanczos process we

have 𝑞𝑚+1 = 0 (i.e. K𝑚 (𝑞1, 𝐴) ≡ K𝑚+1 (𝑞1, 𝐴)), then relation (1.11) holds, where
𝑇𝐿
𝑚 ∈ R𝑚×𝑚 is the tridiagonal matrix

6 Giovanni Fasano

𝑇𝐿
𝑚 =

©«
𝛼1 𝛿1 0

𝛿1
. . .

. . .

. . .
. . . 𝛿𝑚−1

0 𝛿𝑚−1 𝛼𝑚

ª®®®®®¬
,

and a conclusion similar to (1.10) holds, replacing 𝑅𝑚 by 𝑄𝑚 and 𝑇𝐶𝐺
𝑚 by 𝑇𝐿

𝑚 .
Moreover, at step 𝑘 ≥ 1 of the Lanczos process we also have

𝑇𝐿
𝑘 = 𝑄𝑇

𝑘 𝐴𝑄𝑘 ,

so that in case the Lanczos process performs 𝑛 steps, the square matrix 𝑄𝑛 turns to
be orthogonal and its columns span R𝑛.
On the other hand, since 𝐴 is nonsingular the problem (1.1) is equivalent to

compute the stationary point of the quadratic functional

𝑞(𝑥) =
1
2
𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥, (1.12)

and the Lanczos method can be a natural candidate for its solution, too. Indeed, if the
Lanczos process stops at step 𝑚 (i.e. 𝛿𝑚 = 0), then replacing 𝑥 = 𝑄𝑚𝑧, with 𝑧 ∈ R𝑚,
into (1.12) and recalling that 𝑞1 = 𝑏/‖𝑏‖, we obtain:

∇𝑞(𝑧) = 𝑄𝑇
𝑚𝐴𝑄𝑚𝑧 −𝑄𝑇

𝑚𝑏 = 𝑇𝐿
𝑚 𝑧 − ‖𝑏‖𝑒1.

Hence, if the solution 𝑧∗ of the tridiagonal system

𝑇𝐿
𝑚 𝑧 − ‖𝑏‖𝑒1 = 0 , 𝑧 ∈ R𝑚, (1.13)

is available, the point 𝑥∗ = 𝑄𝑚𝑧
∗ is both a solution of the original system (1.1) and a

stationary point of (1.12) over the Krylov subspace K𝑚 (𝑏, 𝐴) = 𝑠𝑝𝑎𝑛{𝑞1, . . . , 𝑞𝑚}.

1.2.2 How the CG and the Lanczos process compare: a path to
degeneracy

We urge to give some considerations about the comparison between the CG and the
Lanczos process, in the light of possibly introducing the issue of degeneracy for both
these algorithms:

• the Lanczos process properly does not solve the linear system (1.1); it rather
reformulates (1.1) into the tridiagonal one (1.13). This means that some further
calculations are necessary (i.e. a factorization for the matrix 𝑇𝐿

𝑚) in order to give
the explicit solution of (1.13) and then backtracking to a solution of (1.1). The CG
(similarly for the CG-based methods in [14, 15, 16, 18] – see the next sections)
does not require the last two-step solution scheme, inasmuch as at step 𝑘 it at once

1 Krylov-Subspace Methods and Grossone 7

decomposes the matrix 𝑇𝐶𝐺
𝑘
and computes 𝑥𝑘+1 as

𝑥𝑘+1 ∈ argmin
𝑥∈K𝑘 (𝑏,𝐴)

{‖𝐴𝑥 − 𝑏‖} ;

• since the solution 𝑧∗ of (1.13) yields the solution 𝑥∗ = 𝑄𝑚𝑧
∗ of (1.1), for the

Lanczos process we apparently need to store the matrix 𝑄𝑚, in order to calculate
𝑥∗. However, in case we are just interested about computing the solution 𝑥∗,
the storage of 𝑄𝑚 can be avoided (see e.g. [27], the algorithm SYMMLQ [35]
and the algorithm SYMMBK [3]), by means of a suitable recursion. On the
other hand, in case the Lanczos process were also asked to provide information
on negative curvature directions associated with 𝑞(𝑥) in (1.12), at 𝑥∗, then the
storage of the full rankmatrix𝑄𝑚 seemsmandatory (see also [30]) or an additional
computational effort is required (see the more recent paper [6]). Both the CG and
the CG-based schemes reported in this paper avoid the last additional effort.
Hence, our great interest for specifically pairing grossone with conjugacy.

We also recall that the tridiagonal matrices 𝑇𝐶𝐺
𝑚 and 𝑇𝐿

𝑚 are obtained in a similar
fashion, by the CG and the Lanczos process, respectively. However, in general neither
in case 𝐴 � 0 nor in the indefinite case they coincide, as extensively motivated in the
paper [17]. Furthermore, the CG explicitly performs the Cholesky-like factorization
𝑇𝐶𝐺
𝑚 = 𝐿𝑚𝐷𝑚𝐿

𝑇
𝑚 of 𝑇𝐶𝐺

𝑚 in (1.8), in order to solve the linear system (1.1). The
last matrix decomposition always exists when 𝐴 � 0; conversely, if 𝐴 is indefinite
this decomposition exists if and only if no pivot breakdown occurs, i.e. none of the
diagonal entries of 𝐷𝑚 is near zero (which causes a premature stop of the CG).
On the contrary, if the Lanczos process is applied it cannot stop beforehand also

when 𝐴 is indefinite, because it does rely on any matrix factorization of 𝑇𝐿
𝑚 , meaning

that no pivot breakdown can occur (see also [35]). Therefore, the application of the
Lanczos process is well-posed in the indefinite case, too. In the next sections we show
that the last conclusion motivates the use of grossone to handle pivot breakdown for
the CG. Conversely, no immediate application of grossone algebra for the Lanczos
process seems advisable, inasmuch as no breakdown opportunity can take place.

1.3 Coupling the CG with Grossone: a marriage of interest

Here we motivate the importance of pairing the CG with grossone, in case the
system matrix 𝐴 in (1.1) is indefinite. We first give a geometric viewpoint of the CG
degeneracy (see the next section), then we detail how to recover the last degeneracy
using grossone: this yields a general framework, that is used to describe the issue of
degeneracy also for several CG-based methods, as detailed in [12].

8 Giovanni Fasano

1.3.1 The geometry behind CG degeneracy

When the CG is applied to solve (1.1), with 𝐴 indefinite, by Sect. 1.2.2 a possible
degenerate or nearly degenerate situation may occur, namely 𝑝𝑇

𝑘
𝐴𝑝𝑘 ≈ 0, with

𝑝𝑘 ≠ 0. This implies a couple of results we report here, that will be suitably
reinterpreted in the next sections from an alternative standpoint, using grossone.
Observe that when 𝐴 is positive definite, at any Step 𝑘 of the CG we have

0 < _𝑚 (𝐴)‖𝑝𝑘 ‖2 ≤ 𝑝𝑇
𝑘
𝐴𝑝𝑘 , so that 𝑝𝑇𝑘 𝐴𝑝𝑘 is suitably bounded from below.

Conversely, in case 𝐴 is indefinite (nonsingular), a similar bound does not hold and
possibly we might have 𝑝𝑇

𝑘
𝐴𝑝𝑘 = 0, for a nonzero vector 𝑝𝑘 . Furthermore, in order

to better analyze the (near) degenerate case, when 𝐴 is indefinite nonsingular and at
Step 𝑘 we have |𝑝𝑇

𝑘
𝐴𝑝𝑘 | ≥ Y𝑘 ‖𝑝𝑘 ‖2, Y𝑘 > 0, with ‖𝑝𝑘 ‖, ‖𝑝𝑘+1‖ < +∞, then (see

also [15]) the angle 𝛼𝑘,𝑘+1 between the vectors 𝑝𝑘 and 𝑝𝑘+1 satisfies

𝜋

2
− arccos

(
Y𝑘

|_𝑀 (𝐴) |

)
≤ |𝛼𝑘,𝑘+1 | ≤

𝜋

2
+ arccos

(
Y𝑘

|_𝑚 (𝐴) |

)
. (1.14)

The two side inequality (1.14) suggests that 𝑝𝑘 and 𝑝𝑘+1 may not become parallel
as long as the constant value Y𝑘 is sufficiently bounded away from zero. Conversely
when 𝑝𝑘 and 𝑝𝑘+1 tend to be parallel, it implies from (1.14) that Y𝑘 is approaching
zero. As special cases, we report in Figs. 1.1 and 1.2 the geometry of the directions
when 𝐴 � 0 (Fig. 1.1) and 𝐴 is indefinite (Fig. 1.2), respectively. In Fig. 1.1,
when the eccentricity of the ellipse increases, then a (near) degeneracy may occur,
but since 𝐴 � 0 no degeneracy can be observed, i.e. 𝑝𝑘 and 𝑝𝑘+1 cannot become
parallel. On the contrary, in Fig. 1.2 we have 𝐴 indefinite, so that at Step 𝑘 of the
CG we can experience a degeneracy, with 𝑝𝑇

𝑘
𝐴𝑝𝑘 = 0 and a premature CG halt.

Equivalently, the point 𝑥𝑘+1 approaches a point at infinity and the norm of ‖𝑝𝑘+1‖
becomes unbounded; moreover (see [12]), 𝑝𝑘 and 𝑝𝑘+1 tend to become parallel.

1.3.2 A new perspective for CG degeneracy using Grossone

This section details how the recently defined extension of real numbers based on
grossone (see e.g. [1, 7, 21, 28, 32, 36, 37, 38, 39, 40, 41, 45], along with the related
applications in optimization frameworks [2, 4, 5, 8, 9, 10, 11, 12, 23]), can be suitably
used to model the CG degeneracy. In particular, we show that:

• adopting grossone algebra within the CG allows to recover the CG degeneracy in
the indefinite case;

• coupling the CG with grossone provides results which exactly match the analysis
carried on for the CG-based methods in [14, 31];

• our approach confirms the geometry behind CG degeneracy in the indefinite case,
as underlined by polarity for quadratic hypersurfaces (see also Fig. 1.2 and [18]).

1 Krylov-Subspace Methods and Grossone 9

Fig. 1.1 The geometry behind the conjugate directions 𝑝𝑘 and 𝑝𝑘+1: when 𝐴 � 0 in (1.1) then
without loss of generality in (1.14) we have Y𝑘 ≥ _𝑚 (𝐴) > 0.

On this purpose, let us consider the computation of the steplength 𝛼𝑘 at Step 𝑘 of
Table 1.1. Then, we set

𝑝𝑇𝑘 𝐴𝑝𝑘 = 𝑠¬, (1.15)

where

• 𝑠 = 𝑂 (¬−1) if the Step 𝑘 is a non-degenerate CG step (i.e. if 𝑝𝑇
𝑘
𝐴𝑝𝑘 ≠ 0),

• 𝑠 = 𝑂 (¬−2) if the Step 𝑘 is a degenerate CG step (i.e. if 𝑝𝑇
𝑘
𝐴𝑝𝑘 = 0).

In the last setting, following the standard Landau-Lifsitz notationwe indicate with the
symbol 𝑂 (¬−2) a term containing powers of ¬ at most equal to −2. Observe that in
the last case, standard results for grossone imply that the finite part of 𝑝𝑇

𝑘
𝐴𝑝𝑘 equals

zero (or equivalently 𝑝𝑇
𝑘
𝐴𝑝𝑘 is infinitesimal). To large extent, the grossone-based

expression on the righthand side of (1.15) can be further generalized; nevertheless,
the setting (1.15) both seems simple enough and adequate to prove that the axioms
and the basic algebra of grossone are well-suited to detail the behaviour of the CG,
in the degenerate case.
In particular, a remarkable aspect of our approach is that using grossone to cope

with CG degeneracy does not require to alter the scheme in Table 1.1, which is
therefore almost faithfully applied ‘as is’. This represents an undoubted advantage
with respect to the CG-based methods (namely planar methods) in [14, 15, 16,
25, 31], that indeed need to suitably rearrange the CG iteration in order to dodge
degeneracy. The consequence of introducing grossone in Table 1.1 is analyzed in the
next Sect. 1.3.3, where in case of CG degeneracy at Step 𝑘 , the expressions of the
coefficients and vectors at Step 𝑘 explicitly depend on ¬ and its powers.

10 Giovanni Fasano

Fig. 1.2 The geometry of conjugate directions with 𝐴 indefinite nonsingular in (1.1): since
|𝑝𝑇

ℎ
𝐴𝑝ℎ | is sufficiently bounded away from zero then 𝑝ℎ and 𝑝ℎ+1 are conjugate and do not

tend to become parallel. Conversely, when 𝑝𝑇
𝑘
𝐴𝑝𝑘 ≈ 0 then 𝑝𝑘 and 𝑝𝑘+1 tend to become parallel.

1.3.3 Grossone for the degenerate Step 𝒌 of the CG

From Table 1.1, the position (1.15) and the properties of the CG, when 𝐴 is indefinite
and the Step 𝑘 is degenerate we have

𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 = 𝑟𝑘 −
‖𝑟𝑘 ‖2
𝑠¬

𝐴𝑝𝑘 , (1.16)

so that after a few arrangements (see [12])

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘 𝑝𝑘 = −𝛽𝑘−1𝑝𝑘−1 −
‖𝑟𝑘 ‖2
𝑠¬

𝐴𝑝𝑘 +
‖𝑟𝑘 ‖2‖𝐴𝑝𝑘 ‖2

𝑠2¬2
𝑝𝑘 . (1.17)

We highlight that the CG degeneracy implies 𝑠¬ to be infinitesimal, so that ‖𝑝𝑘+1‖
tends to be unbounded. The last result matches the geometric perspective reported
in Sect. 1.3.1. Then, from (1.17) and the orthogonality/conjugacy conditions among
vectors generated by the CG we can also infer

𝑟𝑇𝑖 𝑟 𝑗 = 0, 𝑝𝑇𝑖 𝐴𝑝 𝑗 = 0, ∀𝑖 ≠ 𝑗 ,

along with

1 Krylov-Subspace Methods and Grossone 11

𝑝𝑇𝑘+1𝐴𝑝𝑘+1 =
‖𝑟𝑘 ‖4

𝑠2¬2
(𝐴𝑝𝑘)𝑇 𝐴(𝐴𝑝𝑘) −

‖𝑟𝑘 ‖4‖𝐴𝑝𝑘 ‖4

𝑠3¬3
+𝑂 (¬), (1.18)

(we recall that 𝑂 (¬) in (1.18) sums up powers of ¬ equal to +1 and 0), and

𝑟𝑇𝑘+1𝑝𝑘+1 = −‖𝑟𝑘 ‖
2 + ‖𝑟𝑘 ‖

4‖𝐴𝑝𝑘 ‖2

𝑠2¬2
. (1.19)

From (1.16), (1.18)–(1.19) and recalling that when 𝑝𝑇
𝑘
𝐴𝑝𝑘 is infinitesimal so does

𝑠¬, we obtain after some computation

𝑟𝑘+2 = 𝑟𝑘 −
‖𝑟𝑘 ‖2
‖𝐴𝑝𝑘 ‖2

𝐴(𝐴𝑝𝑘) − 𝛽𝑘−1
𝑠¬

‖𝐴𝑝𝑘 ‖2
𝐴𝑝𝑘−1 +𝑂 (¬−1). (1.20)

A noteworthy consequence of (1.16)–(1.17) and (1.20) is that in practice

• 𝑟1, . . . , 𝑟𝑘 are independent of ¬,
• 𝑟𝑘+1 and 𝑝𝑘+1 heavily depend on ¬,
• 𝑟𝑘+2 is independent of negative powers of 𝑠¬.

Thus, the geometric drawback detailed in Sect. 1.3.1, i.e. the CG degeneracy in
the indefinite case, can be bypassed by exploiting the simple grossone algebra and
neglecting the (infinitesimal) term with 𝑠¬ in (1.20). This leaves the steps in the CG
scheme of Table 1.1 fully unchanged.
Similarly, as regards the computation of the search direction 𝑝𝑘+2, by (1.16),

(1.17) and (1.20) we have after some arrangements

𝑝𝑘+2 = 𝑟𝑘 −
‖𝑟𝑘 ‖2
‖𝐴𝑝𝑘 ‖2

𝐴(𝐴𝑝𝑘) +
‖𝑟𝑘+2‖2
‖𝑟𝑘 ‖2

𝑝𝑘 −𝛽𝑘−1
𝑠¬

‖𝐴𝑝𝑘 ‖2
𝐴𝑝𝑘−1+𝑂 (¬−1). (1.21)

Thus, similarly to 𝑟𝑘+2, in case of CG degeneracy also 𝑝𝑘+2 is independent of
negative powers of ¬ (i.e. equivalently ‖𝑝𝑘+2‖ < +∞, so that grossone algebra is
able to bypass the degeneracy, recovering the CG iteration). After some computations
it is also not difficult to verify that the vectors 𝑟𝑘+1, 𝑝𝑘+1, 𝑟𝑘+2, 𝑝𝑘+2 in (1.16), (1.17),
(1.20) and (1.21) satisfy the standard CG properties

𝑟𝑇
𝑘+2𝑟𝑖 = 0, 𝑖 = 1, . . . , 𝑘 + 1,

𝑝𝑇
𝑘+2𝐴𝑝𝑖 = 0, 𝑖 = 1, . . . , 𝑘 + 1.

(1.22)

An additional remarkable comment from (1.21) is that, neglecting the termswhich
contain powers of 𝑠¬ larger or equal to 1 (i.e. neglecting infinitesimals in (1.21)), the
vector 𝑝𝑘+2 coincides with the one obtained in Algorithm CG_Plan of [14] (a similar
result holds considering the algorithm by Luenberger in [31], too). Therefore, the
use of grossone to cope with a CG degeneracy at Step 𝑘 does not simply recover the
theory and the results in [14] and [31], but it also retrieves the same scaling of the
generated search directions, which is a so relevant issue for large scale problems.
Also note that the expression of 𝑝𝑘+1 in (1.17) explicitly includes negative powers of

12 Giovanni Fasano

Table 1.3 The CG¬ algorithm for solving the symmetric indefinite linear system 𝐴𝑥 = 𝑏. In a
practical implementation of Step 𝑘 of CG¬, the test 𝑝

𝑇
𝑘
𝐴𝑝𝑘 ≠ 0may be replaced by the inequality

|𝑝𝑇
𝑘
𝐴𝑝𝑘 | ≥ Y𝑘 ‖𝑝𝑘 ‖2, with Y𝑘 > 0 small.

CG¬: the CG method coupled with grossone

Data: Set 𝑘 = 1, 𝑥1 ∈ R𝑛, 𝑟1 = 𝑏 − 𝐴𝑥1, 𝑠 = 𝑂 (¬−2) .
If ‖𝑟1 ‖ = 0, then STOP. Else, set 𝑝1 = 𝑟1.

Step 𝑘: If ‖𝑝𝑘 ‖ is finite (bounded) and 𝑝𝑇
𝑘
𝐴𝑝𝑘 ≠ 0 then compute

𝛼𝑘 = 𝑟𝑇
𝑘
𝑝𝑘/𝑝𝑇

𝑘
𝐴𝑝𝑘 , 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 𝑝𝑘 , 𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 .

If ‖𝑟𝑘+1 ‖ = 0, then STOP.
Elseif ‖𝑝𝑘 ‖ is finite (bounded) set 𝑝𝑇

𝑘
𝐴𝑝𝑘 = 𝑠¬ and compute

𝑟𝑘+1 = 𝑟𝑘 − ‖𝑟𝑘 ‖2/(𝑠¬)𝐴𝑝𝑘 .
Else compute 𝛼𝑘 = 𝑟𝑇

𝑘
𝑝𝑘/𝑝𝑇𝑘 𝐴𝑝𝑘 ,

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 𝑝𝑘 , 𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 .
If the finite part of 𝑟𝑘+1 satisfies ‖𝑟𝑘+1 ‖ = 0, then STOP.

Endif
Set 𝛽𝑘 = −𝑟𝑇

𝑘+1𝐴𝑝𝑘/𝑝𝑇𝑘 𝐴𝑝𝑘 = ‖𝑟𝑘+1 ‖2/‖𝑟𝑘 ‖2, and
𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘 𝑝𝑘 , 𝑘 = 𝑘 + 1.
Go to Step 𝑘.

𝑠¬, showing that to large extent it can be assimilated to a vector with an unbounded
norm, in accordance with Fig. 1.2, where 𝑥𝑘+1 is a point at infinity.
Now, let us compute the iterate 𝑥𝑘+2, to verify to which extent using grossone

may recover the CG iteration in case of degeneracy at Step 𝑘 . By Table 1.1 and [12],
and using

𝑥𝑘+2 = 𝑥𝑘 + 𝛼𝑘 𝑝𝑘 + 𝛼𝑘+1𝑝𝑘+1

we obtain the final expression

𝑥𝑘+2 = 𝑥𝑘 +
‖𝑟𝑘 ‖2
‖𝐴𝑝𝑘 ‖2

𝐴𝑝𝑘 −
‖𝑟𝑘 ‖2
‖𝐴𝑝𝑘 ‖4

(𝐴𝑝𝑘)𝑇 𝐴(𝐴𝑝𝑘)𝑝𝑘 + 𝑂 (¬−1), (1.23)

which perfectly matches the expression of 𝑥𝑘+2 computed in [14] and [31], as long as
𝑂 (¬−1) is neglected. Therefore, in case of CG degeneracy at Step 𝑘 , using grossone
does not simply recover the residuals and search directions as in (1.22), but it also
recovers the iterate 𝑥𝑘+2, since it is independent of grossone. Table 1.3 gives a formal
description of CG¬, i.e. the CGmethodwhere¬ is introduced in case of degeneracy,
while Proposition 1 summarizes the results in the current section.

Proposition 1 Let be given the indefinite linear system 𝐴𝑥 = 𝑏, with 𝐴 ∈ R𝑛×𝑛 and
𝑛 large. Suppose the CG¬ method in Table 1.3 is applied for its solution, using the
position (1.15). In case at Step 𝑘 ≤ 𝑛 the quantity |𝑝𝑇

𝑘
𝐴𝑝𝑘 | is bounded away from

zero, then the vectors generated by CG¬ exactly preserve the same properties of
the corresponding vectors generated by the CG method in Table 1.1. Conversely,
in case at Step 𝑘 we have 𝑝𝑇

𝑘
𝐴𝑝𝑘 ≈ 0, then the vectors 𝑥𝑘+2 in (1.23) and 𝑝𝑘+2

1 Krylov-Subspace Methods and Grossone 13

in (1.21) computed by the CG¬ differ by infinitesimals from the corresponding
vectors computed by the CG_Plan in [14] (or by the algorithm in [31]).

1.4 Large scale (unconstrained) optimization problems: the need
of negative curvatures

The solution of indefinite linear systems like (1.1) is almost ubiquitous in both
constrained and unconstrained optimization frameworks. E.g. the iterative solution
of the following problem

min
𝑥∈R𝑛

𝑓 (𝑥), (1.24)

where 𝑓 is twice continuously differentiable and 𝑛 is large, requires in a unified
framework (i) to solve the associated Newton’s equation (first order methods)

∇2 𝑓 (𝑥 𝑗) 𝑠 = −∇ 𝑓 (𝑥 𝑗), (1.25)

and (ii) to identify those minima among the stationary points (second order methods
– see also [6]). The task (ii) is often accomplished by selecting promising negative
curvature directions for the function 𝑓 at the current iterate 𝑥 𝑗 . In particular, for
the sake of clarity here we restrict our attention to the Truncated Newton methods,
that represent an efficient class of iterative methods to solve (1.24). Among them,
the second order methods often rely on the theory in the seminal papers [33, 34], in
order to assess algorithms generating negative curvature directions and converging
to solutions where the Hessian matrix is positive semidefinite.

1.4.1 A theoretical path to the assessment of negative curvature
directions

On the guidelines of the previous section, and with reference to [34], a sequence
{𝑑 𝑗 } of effective negative curvature directions can be generated in accordance with
the following assumption.

Assumption 1 Let us consider the optimization problem (1.24), with 𝑓 ∈ 𝐶2 (R𝑛);
the nonascent directions in the sequence {𝑑 𝑗 } are bounded and satisfy (see also [30])
(𝑎) ∇ 𝑓 (𝑥 𝑗)𝑇 𝑑 𝑗 ≤ 0, 𝑑𝑇

𝑗
∇2 𝑓 (𝑥 𝑗)𝑑 𝑗 ≤ 0,

(𝑏) if lim 𝑗→∞ 𝑑𝑇
𝑗
∇2 𝑓 (𝑥 𝑗)𝑑 𝑗 = 0 then lim 𝑗→∞min

{
0, _𝑚

[
∇2 𝑓 (𝑥 𝑗)

]}
= 0. �

In practice, (𝑎) in Assumption 1 claims that at 𝑥 𝑗 the nonascent vector 𝑑 𝑗 can-
not be a positive curvature direction for 𝑓 . Conversely, condition (𝑏) prevents the
asymptotic convergence of the iterative algorithm to a region of concavity for the
objective function. Evidently, on convex problems eventually the solutions of (1.24)

14 Giovanni Fasano

both fulfill Newton’s equation and satisfy second order stationarity conditions, with-
out requiring the computation of negative curvature directions.
We remark that even in case the current iterate 𝑥 𝑗 is far from a stationary point, the
use of the negative curvature direction 𝑑 𝑗 may considerably enhance efficiency in
Truncated Newton methods. The latter fact was clearly evidenced in [19, 24, 30],
and follows by considering at 𝑥 𝑗 the quadratic expansion along the vector 𝑑

𝑞 𝑗 (𝑑) = 𝑓 (𝑥 𝑗) + ∇ 𝑓 (𝑥 𝑗)𝑇 𝑑 +
1
2
𝑑𝑇 ∇2 𝑓 (𝑥 𝑗)𝑑,

which implies for the directional derivative of 𝑞 𝑗 (𝑑)

∇𝑞 𝑗 (𝑑)𝑇 𝑑 = ∇ 𝑓 (𝑥 𝑗)𝑇 𝑑 + 𝑑𝑇 ∇2 𝑓 (𝑥 𝑗)𝑑.

Thus, ∇𝑞 𝑗 (𝑑)𝑇 𝑑 may strongly decrease both when 𝑑 is of descent for 𝑓 at 𝑥 𝑗 and is
a negative curvature direction for 𝑓 at 𝑥 𝑗 .
On large scale problems, we highlight that computing effective negative curvature

directions for 𝑓 at 𝑥 𝑗 , fulfilling Assumption 1, is a challenging issue, but it may
become an easier task as long as proper factorizations of ∇2 𝑓 (𝑥 𝑗) are available.
Indeed, suppose at 𝑥 𝑗 the nonsingular matrices 𝑀 𝑗 ∈ R𝑛×𝑘 and 𝐶 𝑗 , 𝑄 𝑗 , 𝐵 𝑗 ∈ R𝑘×𝑘

are available such that

𝑀𝑇
𝑗 ∇2 𝑓 (𝑥 𝑗)𝑀 𝑗 = 𝐶 𝑗 , 𝐶 𝑗 = 𝑄 𝑗𝐵 𝑗𝑄

𝑇
𝑗 . (1.26)

Then, for 𝑦 ∈ R𝑘 and assuming that 𝑤 ∈ R𝑘 is an eigenvector of 𝐵 𝑗 associated with
the negative eigenvalue _ < 0, relations (1.26) yield

(𝑀 𝑗 𝑦)𝑇 ∇2 𝑓 (𝑥 𝑗) (𝑀 𝑗 𝑦) = 𝑦𝑇
[
𝑀𝑇

𝑗 ∇2 𝑓 (𝑥 𝑗)𝑀 𝑗

]
𝑦 = 𝑦𝑇𝐶 𝑗 𝑦

= (𝑄𝑇
𝑗 𝑦)𝑇 𝐵 𝑗 (𝑄𝑇

𝑗 𝑦) = 𝑤𝑇 𝐵 𝑗𝑤 = _‖𝑤‖2 < 0,

so that 𝑑 𝑗 = 𝑀 𝑗 𝑦 represents a negative curvature direction for 𝑓 at 𝑥 𝑗 . Furthermore,
if _ is the smallest negative eigenvalue of 𝐵 𝑗 , then𝑀 𝑗 𝑦 also represents an eigenvector
of ∇2 𝑓 (𝑥 𝑗) associated to it.
The most renowned Krylov-subspace methods for symmetric indefinite linear

systems (i.e. SYMMLQ, SYMMBK, CG, Planar-CG methods [15, 16, 17]) are all
able to provide the factorizations (1.26) (i.e. they fulfill item (𝑎) in Assumption 1)
when applied to Newton’s equation at 𝑥 𝑗 . Nevertheless, fulfilling also (𝑏) and the
boundedness of the sequence of negative curvature directions is definitely a less
trivial task (see e.g. the counterexample in Sect. 4 of [34]).
In this regard, we highlight that, under mild assumptions, by the use of grossone

(namely CG¬ in Table 1.3) we can easily yield an implicit Hessian matrix factor-
ization as in (1.26), fulfilling both (𝑎) and (𝑏), as well as the boundedness of the
negative curvature directions {𝑑 𝑗 } in Assumption 1. To accomplish this last task we
need the next result (the proof follows from Lemma 4.3 in [34] and Theorem 3.2 in
[20]).

1 Krylov-Subspace Methods and Grossone 15

Lemma 1 Let problem (1.24) be given with 𝑓 ∈ 𝐶2 (R𝑛), and consider any iterative
method for solving (1.24), which generates the sequence {𝑥 𝑗 }. Let the level set
L0 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) ≤ 𝑓 (𝑥0)} be compact, being any limit point 𝑥 of {𝑥 𝑗 } a
stationary point for (1.24), with

��_[∇2 𝑓 (𝑥)]�� > _̄ > 0. Suppose 𝑛 iterations of a
Newton-Krylov method are performed to solve Newton’s equation (1.25) at iterate
𝑥 𝑗 , so that the decompositions

𝑅𝑇
𝑗 ∇2 𝑓 (𝑥 𝑗)𝑅 𝑗 = 𝑇𝑗 , 𝑇𝑗 = 𝐿 𝑗𝐵 𝑗𝐿

𝑇
𝑗 (1.27)

are available. Moreover, suppose 𝑅 𝑗 ∈ R𝑛×𝑛 is orthogonal, 𝑇𝑗 ∈ R𝑛×𝑛 has the same
eigenvalues of∇2 𝑓 (𝑥 𝑗), with at least one negative eigenvalue, and 𝐿 𝑗 , 𝐵 𝑗 ∈ R𝑛×𝑛 are
nonsingular. Let 𝑧 be the unit eigenvector corresponding to the smallest eigenvalue
of 𝐵 𝑗 , and let �̄� ∈ R𝑛 be the (bounded) solution of the linear system 𝐿𝑇

𝑗
𝑦 = 𝑧. Then,

the vector 𝑑 𝑗 = 𝑅 𝑗 �̄� is bounded and satisfies Assumption 1.

However, three main insidious drawbacks arise from Lemma 1:

• both computing the eigenvector 𝑧 of 𝐵 𝑗 and solving the linear system 𝐿𝑇
𝑗
𝑦 = 𝑧

might not be considered easy tasks;
• the vector �̄� should be provably bounded (equivalently | det(𝐿 𝑗) | should be
bounded away from zero, for any 𝑗 ≥ 1);

• at iterate 𝑥 𝑗 the Newton-Krylov method adopted to solve (1.25) possibly does not
perform exactly 𝑛 iterations.

1.4.2 CG_¬ for the computation of negative curvature directions

Though the third issue raised in the end of the previous section remains of great
theoretical interest, in practice when the sequence {𝑥 𝑗 } is approaching a stationary
point, then we typically observe that Newton-Krylov methods tend to perform a large
number of iterations to solve (1.25). On the contrary, the first two issues in the end
of the previous section may be definitely more challenging, since they can be tackled
only by a few Krylov-subspace methods, due to the structure and the complexity
of the generated matrices 𝐿 𝑗 and 𝐵 𝑗 in Lemma 1. In our approach (see also [11]
for more complete justifications), we can provably show that the use of CG¬ can
fruitfully fulfill all the hypotheses of Lemma 1. In particular, in the current section
we detail how to couple the Krylov-subspace method in [14] with CG¬, in the light
of complying with the hypotheses of Lemma 1. Broadly speaking, observe that the
Krylov-subspace method in [14] is basically a CG-based algorithm which performs
exactly the CG iterations, as long as no degeneracy is experienced. On the contrary,
in case at Step 𝑘 the breakdown condition 𝑝𝑇

𝑘
𝐴𝑝𝑘 ≈ 0 occurs, a so called planar

step is carried on to equivalently replace the Steps 𝑘 and 𝑘 + 1 of the CG. Hence the
taxonomy of planar method.
Assume without loss of generality that the Krylov-subspace method in [14] has

performed 𝑛 steps. Moreover, for the sake of simplicity hereafter in this section we

16 Giovanni Fasano

drop the dependency of matrices on the iterate subscript 𝑗 . After some computation
the following matrices are generated by the method in [14] (see also [13])

𝐿 =

©«
𝐿11 0 0

𝐿21 𝐿22 0

0 𝐿32 𝐿33

ª®®®¬ , 𝐵 =

©«
𝐵11 0 0

0 𝐵22 0

0 0 𝐵33

ª®®®¬ ,
where

𝐿11 =
©«
1

−
√
𝛽1

. . .

. . . 1

ª®®®¬ , 𝐿21 =
(
0 · · · −

√
𝛽𝑘−1

0 · · · 0

)
, 𝐿22 =

(
1 0

0 1

)
, (1.28)

𝐿32 =

©«
−
√
𝛽𝑘𝛽𝑘+1 0

.

.

.
.
.
.

0 0

ª®®®®®¬
, 𝐿33 =

©«
1

−
√
𝛽𝑘+2

. . .

. . . 1
−
√
𝛽𝑛−1 1

ª®®®®¬
, (1.29)

and

𝐵11 =

©«
1
𝛼1

0

. . .

0
1

𝛼𝑘−1

ª®®®®¬
, 𝐵22 =

(
0
√
𝛽𝑘

√
𝛽𝑘 𝑒𝑘+1

)
, 𝐵33 =

©«
1

𝛼𝑘+2
0

. . .

0
1
𝛼𝑛

ª®®®®¬
, (1.30)

such that
𝐴𝑅 = 𝑅𝑇, 𝑇 = 𝐿𝐵𝐿𝑇 , (1.31)

being the matrix 𝑅 ∈ R𝑛×𝑛 orthogonal with

𝑅 =

(
𝑟1
‖𝑟1‖

· · · 𝑟𝑛

‖𝑟𝑛‖

)
, (1.32)

and 𝑟𝑘+1 = 𝐴𝑝𝑘 , while 𝑇 ∈ R𝑛×𝑛 is tridiagonal. Moreover, the quantities
{𝛼𝑖}, {𝛽𝑖}, 𝑒𝑘+1 in (1.28)-(1.30) are suitable scalars (being in particular 𝑒𝑘+1 =

(𝐴𝑝𝑘)𝑇 𝐴(𝐴𝑝𝑘)/‖𝐴𝑝𝑘 ‖2). We also recall that 𝛽𝑖 > 0, for any 𝑖 ≥ 1.
Furthermore, to simplify our analysis, the above matrices 𝐿 and 𝐵 are obtained

applying the method in [14], assuming that it performed all CG steps, with the
exception of only one planar iteration (namely the 𝑘-th iteration), corresponding to
have indeed 𝑝𝑇

𝑘
𝐴𝑝𝑘 ≈ 0. Then, our approach ultimately consists to introduce the

numeral grossone, to exploit a suitable matrix factorization in place of (1.31), such
that Lemma 1 is fulfilled. To this purpose, let us consider again the algorithm CG¬
in Table 1.3 (see also [12]), and assume that at Steps 𝑘 and 𝑘 + 1 it generated the

1 Krylov-Subspace Methods and Grossone 17

Table 1.4 Correspondence between quantities/vectors computed by the algorithm in [14] (left) and
the algorithm CG¬ in [12] (right).

Algorithm in [14] CG¬ in [12]
𝑟𝑖 , 𝑖 = 1, . . . , 𝑘 𝑟𝑖 , 𝑖 = 1, . . . , 𝑘
𝑟𝑘+1 𝐴𝑝𝑘

𝑟𝑖 , 𝑖 ≥ 𝑘 + 2 𝑟𝑖 , 𝑖 ≥ 𝑘 + 2 (neglecting the terms with 𝑠¬)
𝑝𝑖 , 𝑖 = 1, . . . , 𝑘 𝑝𝑖 , 𝑖 = 1, . . . , 𝑘

𝑝𝑘+1
𝐴𝑝𝑘

‖𝐴𝑝𝑘 ‖
𝑝𝑖 , 𝑖 ≥ 𝑘 + 2 𝑝𝑖 , 𝑖 ≥ 𝑘 + 2 (neglecting the terms with 𝑠¬)
𝛼𝑖 , 𝑖 = 1, . . . , 𝑘 𝛼𝑖 , 𝑖 = 1, . . . , 𝑘
𝛼𝑖 , 𝑖 ≥ 𝑘 + 2 𝛼𝑖 , 𝑖 ≥ 𝑘 + 2 (neglecting the terms with 𝑠¬)
𝛽𝑖 , 𝑖 = 1, . . . , 𝑘 − 1 𝛽𝑖 , 𝑖 = 1, . . . , 𝑘 − 1

𝛽𝑘

‖𝐴𝑝𝑘 ‖2
‖𝑟𝑘 ‖2

𝛽𝑖 , 𝑖 ≥ 𝑘 + 1 𝛽𝑖 , 𝑖 ≥ 𝑘 + 1 (neglecting the terms with 𝑠¬)

coefficients 𝛼𝑘 and 𝛼𝑘+1. Thus, we have1
1
𝛼𝑘

=
𝑠¬

‖𝑟𝑘 ‖2

1
𝛼𝑘+1

= − ‖𝐴𝑝𝑘 ‖
2

𝑠¬
.

(1.33)

Moreover, using the equivalence in Table 1.4 between the quantities computed by
the algorithm in [14] and CG_¬, we can compute the matrices

�̂� =

©«
𝐿11 0 0

𝐿21 𝑉𝑘𝐶
−1
𝑘

0

0 �̂�32 𝐿33

ª®®®®®¬
, �̂� =

©«
𝐵11 0 0

0 �̂�22 0

0 0 𝐵33

ª®®®®®¬
, (1.34)

where 𝐿11, 𝐿21, are defined in (1.28), 𝐿33 in (1.29), 𝐵11, 𝐵33 in (1.30), and

�̂�32 =

©«

(
−
√
𝛽𝑘 𝛽𝑘+1 0

)
· 𝑉𝑘𝐶

−1
𝑘

...

0

ª®®®®®®¬
, �̂�22 =

©«
1

𝛼𝑘 𝑠¬
0

0
𝑠¬

𝛼𝑘+1

ª®®®®¬
,

1 More correctly, we urge to remark that the expressions (1.33) are obtained neglecting in the
quantity 𝛼𝑘+1 the infinitesimal terms, i.e. those terms containing negative powers of 𝑠¬, that are
indeed negligibly small due to the degenerate Step 𝑘 in CG_¬.

18 Giovanni Fasano

with

𝑉𝑘𝐶
−1
𝑘 =

©«
‖𝑟𝑘 ‖
√
𝛽𝑘_𝑘√︃

𝛽𝑘+_2𝑘

√
−𝛽𝑘_𝑘+1

‖𝐴𝑝𝑘 ‖
√︃
𝛽𝑘+_2𝑘+1

‖𝑟𝑘 ‖_𝑘

√
_𝑘√︃

𝛽𝑘+_2𝑘

_𝑘+1
√
−_𝑘+1

‖𝐴𝑝𝑘 ‖
√︃
𝛽𝑘+_2𝑘+1

ª®®®®®¬
and _𝑘 , _𝑘+1 are the eigenvalues of 𝐵22 in (1.30). Thus, in Lemma 1 we have for
matrix 𝑇𝑗 the novel expression (see also (1.31))

𝑇𝑗 = 𝐿𝐵𝐿𝑇 = �̂��̂� �̂�𝑇 .

We are now ready to compute at iterate 𝑥 𝑗 the negative curvature direction 𝑑 𝑗

which complies with Assumption 1, exploiting the decomposition 𝑇𝑗 = �̂��̂� �̂�𝑇 from
Lemma 1. The next proposition, whose proof can be found in [11], summarizes the
last result.
Proposition 2 Suppose 𝑛 iterations of CG¬ algorithm are performed to solve New-
ton’s equation (1.25), at iterate 𝑥 𝑗 , so that the decompositions

𝑅𝑇 ∇2 𝑓 (𝑥 𝑗)𝑅 = 𝑇, 𝑇 = �̂��̂� �̂�𝑇

exist, where 𝑅 is defined in (1.32), and �̂� along with �̂� are defined in (1.34). Let
𝑧 be the unit eigenvector corresponding to the (negative) smallest eigenvalue of �̂�,
and let �̂� be the solution of the linear system �̂�𝑇 𝑦 = 𝑧. Then, the vector 𝑑 𝑗 = 𝑅�̂� is
bounded and satisfies Assumption 1. In addition, the computation of 𝑑 𝑗 requires the
storage of at most two 𝑛-real vectors.
Observe that the computation of the negative curvature direction 𝑑 𝑗 requires at

most the additional storage of a couple of vectors, with respect to the mere compu-
tation of a solution for Newton’s equation at 𝑥 𝑗 . This confirms the competitiveness
with respect to the storage required in [20]. Thus, the approach in this paper does not
only prove to be applicable to large-scale problems, but it also simplifies the theory
in [20]. We remark that the theory in [20] is, to our knowledge, the only proposal in
the literature of iterative computation of negative curvature directions for large-scale
problems, such that
• it does not rely on any re-computation of quantities (as in [24]),
• it does not require any full matrix factorization,
• it does not need any matrix storage.

1.5 Conclusions

We propose an unconventional approach for a twofold purpose, within large-scale
nonconvex optimization frameworks. On one hand we consider the efficient solution
of symmetric linear systems. On the other hand, our proposal is also able to gen-
erate negative curvature directions for the objective function, allowing convergence

1 Krylov-Subspace Methods and Grossone 19

towards stationary points satisfying second order necessary optimality conditions.
Our idea exploits the simplicity of the algebra associated with the numeral grossone
[37], which was recently introduced in the literature.
The theory in this paper also guarantees that the iterative computation of negative

curvatures does not need any matrix storage, while preserving convergence. In
addition, the proposed approach is independent under multiplication of the function
by a positive scaling constant or adding a shifting constant. This is an important
property that is specially exploited in global optimization frameworks (see e.g.
[44]), where strongly homogeneous algorithms are definitely appealing.

Acknowledgements The author is thankful to the Editors of the present volume for their great
efforts and constant commitment. The author is also grateful for the support he received by both
the National Research Council–Marine Technology Research Institute (CNR-INSEAN), and the
National Research Group GNCS (Gruppo Nazionale per il Calcolo Scientifico) within IN𝛿AM,
Istituto Nazionale di Alta Matematica, Italy.

References

1. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s,
Peano’s, and Moore’s curves. Mediterranean Journal of Mathematics 17(3) (2020)

2. Astorino, A., Fuduli, A.: Spherical separation with infinitely far center. Soft Computing 24,
17751–17759 (2020)

3. Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D. thesis, Yale
University, New Haven (1978)

4. Cococcioni, M., Fiaschi, L.: The Big-M method with the numerical infinite M. Optimization
Letters 15(7) (2021)

5. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear pro-
gramming using grossone methodology: Theory and algorithm. Applied Mathematics and
Computation 318, 298–311 (2018)

6. Curtis, F., Robinson, D.: Exploiting negative curvature in deterministic and stochastic opti-
mization. Math. Program. 176, 69–94 (1919)

7. D’Alotto, L.: Infinite games on finite graphs using grossone. Soft Computing 55, 143–158
(2020)

8. DeCosmis, S., DeLeone, R.: The use of grossone inmathematical programming and operations
research. Applied Mathematics and Computation 218(16), 8029–8038 (2012)

9. De Leone, R.: Nonlinear programming and grossone: Quadratic programming and the role of
constraint qualifications. Applied Mathematics and Computation 318, 290–297 (2018)

10. De Leone, R., Egidi, N., Fatone, L.: The use of grossone in elastic net regularization and sparse
support vector machines. Soft Computing 24, 17669–17677 (2020)

11. De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: Iterative grossone-based computation of
negative curvature directions in large-scale optimization. Journal of Optimization Theory and
Applications 186(2), 554–589 (2020)

12. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the conjugate
gradient breakdown in nonlinear programming. Computational Optimization and Applications
71(1), 73–93 (2018)

13. Fasano, G.: Planar-CG methods and matrix tridiagonalization in large scale unconstrained
optimization. In: Di Pillo, G., Murli, A. (eds.) In: High Performance Algorithms and Software
for Nonlinear Optimization. Kluwer Academic Publishers, New York (2003)

20 Giovanni Fasano

14. Fasano, G.: Conjugate Gradient (CG)-typeMethod for the solution of Newton’s equationwithin
Optimization Frameworks. Optimization Methods and Software 19(3-4), 267–290 (2004)

15. Fasano, G.: Planar-Conjugate Gradient algorithm for Large Scale Unconstrained Optimization,
Part 1: Theory. Journal of Optimization Theory and Applications 125(3), 523–541 (2005)

16. Fasano, G.: Planar-Conjugate Gradient algorithm for Large Scale Unconstrained Optimization,
Part 2: Application. Journal of Optimization Theory and Applications 125(3), 543–558 (2005)

17. Fasano,G.: LanczosConjugate-GradientMethod and PseudoinverseComputation on Indefinite
and Singular Systems. Journal of Optimization Theory and Applications 132(2), 267–285
(2007)

18. Fasano, G.: A Framework of Conjugate Direction Methods for Symmetric Linear Systems in
Optimization. Journal of Optimization Theory and Applications 164(3), 883–914 (2015)

19. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton-Krylov method exploiting negative
curvature directions, for large scale unconstrained optimization. Optimization Letters 3(4),
521–535 (2009)

20. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale
optimization. Computational Optimization and Applications 38(1), 81–104 (2007)

21. Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in game theory using Sergeyev’s
Infinity Computing. International Journal of Unconventional Computing 14(1) (2018)

22. Fletcher, R.: Conjugate Gradient Methods for Indefinite Systems. In: Watson G.A. (ed.) Proc.
of the Dundee Biennal Conf. on Numerical Analysis. Springer, Berlin Heidelberg New York
(1975)

23. Gaudioso, M., Giallombardo, G., Mukhametzhanov, M.S.: Numerical infinitesimals in a vari-
able metric method for convex nonsmooth optimization. Applied Mathematics and Computa-
tion 318, 312–320 (2018)

24. Gould,N., Lucidi, S., Roma,M., Toint, P.: Exploiting negative curvature directions in linesearch
methods for unconstrained optimization. OptimizationMethods and Software 14, 75–98 (2000)

25. Hestenes, M.: Conjugate Direction Methods in Optimization. Springer Verlag, New York
Heidelberg Berlin (1980)

26. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res.
Nat. Bur. Stand. 49, 409–436 (1952)

27. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
28. Iavernaro, F.,Mazzia, F.,Mukhametzhanov,M.S., Sergeyev, Y.D.: Computation of higher order
Lie derivatives on the Infinity Computer. Journal of Computational and Applied Mathematics
383 (2021)

29. Lanczos, C.: An Iterative Method for the Solution of the Eigenvalue Problem of Linear Differ-
ential and Integral Operators. Journal of Research of the National Bureau of Standards 45(4),
Research Paper 2133 (1950)

30. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for Truncated Newton
methods in large scale unconstrained optimization. SIAM J. Optim. 8(4), 916–939 (1999)

31. Luenberger, D.G.: Hyperbolic Pairs in the Method of Conjugate Gradients. SIAM Journal on
Applied Mathematics 17, 1263–1267 (1996)

32. Mazzia, F., Sergeyev, Y.D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.S.: Numerical
methods for solving ODEs on the Infinity Computer. In: Sergeyev, Y.D., Kvasov, D.E.,
Dell’Accio, F., Mukhametzhanov, M.S. (eds.) Proc. of the 2nd Intern. Conf. “Numerical
Computations: Theory and Algorithms”, vol. 1776, p. 090033. AIP Publishing, New York
(2016)

33. McCormick,G.: Amodification ofArmijo’s step-size rule for negative curvature. Mathematical
Programming 13(1), 111–115 (1977)

34. Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified Newton
method. Mathematical Programming 16, 1–20 (1979)

35. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. on
Numerical Analysis 12, 617–629 (1975)

36. Pepelyshev, A., Zhigljavsky, A.: Discrete uniform and binomial distributions with infinite
support. Soft Computing 24, 17517–17524 (2020)

1 Krylov-Subspace Methods and Grossone 21

37. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS (2003, 2nd ed.
2013)

38. Sergeyev, Y.D.: Lagrange Lecture: Methodology of numerical computations with infinities
and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del Politecnico di
Torino 68(2), 95–113 (2010)

39. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optimization
Letters 5(4), 575–585 (2011)

40. Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J.
(eds.) Unconventional Computation and Natural Computation: Proc. of the 14th International
Conference UCNC 2015, vol. LNCS 9252, pp. 89–106. Springer, New York (2015)

41. Sergeyev, Y.D.: Un semplicemodo per trattare le grandezze infinite ed infinitesime. Matematica
nella Società e nella Cultura: Rivista della Unione Matematica Italiana 8(1), 111–147 (2015)

42. Sergeyev, Y.D.: Numerical infinities and infinitesimals: Methodology, applications, and reper-
cussions on two Hilbert problems. EMS Surveys in Mathematical Sciences 4(2), 219–320
(2017)

43. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard
analysis and comments upon logical fallacies in some texts asserting the opposite. Foundations
of Science 24(1) (2019)

44. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of
global optimization algorithmsworkingwith infinite and infinitesimal scales. Communications
in Nonlinear Science and Numerical Simulation 59, 319–330 (2018)

45. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical
models of multimodal objective functions. Applied Mathematics and Computation 218(16),
8131–8136 (2012)

