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Abstract. In this paper we consider the Particle Swarm Optimization (PSO) algorithm [10, 7],
in the class of Evolutionary Algorithms, for the solution of global optimization problems. We
analyze a couple of issues aiming at improving both the effectiveness and the efficiency of PSO.
In particular, first we recognize that in accordance with the results in [5, 6], the initial points
configuration required by the method, may be a crucial issue for the efficiency of PSO iteration.
Therefore, a promising strategy to generate initial points is provided in the paper.
Then, we address some very preliminary aspects of PSO global convergence towards stationary
points, for some Ship Design problems. To this purpose observe that the class of Ship De-
sign applications includes several challenging smooth problems, where expensive simulations
provide information to the optimizer, and each function evaluation may require up to hours of
CPU-time. In addition, the final solution provided by the optimization method is also required
to be a stationary point.
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1 INTRODUCTION

In this paper we use the PSO algorithm for the solution of the global optimization problem

min
x∈L

f(x), with L ⊇ {x ∈ IRn : ‖x‖2
2 ≤ B}, (1)

wheref : IRn → IR is assumedcontinuously differentiable, L is compact andB > 0. PSO is a
heuristic method which is used to determine an approximation of a global minimumx∗ of f(x)
overL, i.e. a point such thatf(x∗) ≤ f(x) for anyx ∈ L. PSO may be effective on ship design
problems when the functionf is possibly computationally costly.
Apart from those special cases where a specific knowledge onf(x) is available (e.g.f(x) is
convex, monotonically decreasing, etc.), the problem (1) is inherently difficult, since it requires
an exhaustive exploration off(x). This usually claims for a two phase approach: on one hand, a
global search on the setL attempts at identifying suitable subsets, where promising candidates
of global minima are confined. Then, an efficientlocal search provides accurate approximations
of each candidate, by exploring the corresponding subset ofL. Thus, the algorithms which
effectively solve the global optimization problem (1) should always include the computational
burden of both theglobaland thelocal phase.
Examples of problem (1) arise in several real applications, e.g. in the aerospace, automotive
and naval engineering, where Navier-Stokes solvers for shape design are used.
Several iterative algorithms have been proposed in the literature to approach the solution of
(1) [12]. Most of these techniques are based on the exploration of a possibly dense subset
of L; unfortunately this may require an unacceptable computational burden over ship design
problems.

This drawback suggests the use of suitable iterative evolutionary heuristics to solve our prob-
lems: PSO belongs to the latter class of techniques. Its motivations arise from social behavioral
interpretations of bird flocks and it is often adopted for the solution of a wide range of applica-
tions [15, 4, 8, 13, 2] (for a recent tutorial on PSO see also [3]). Some strong indications to use
PSO when solving (1) are the following.

1. The solution provided by PSO is often inaccurate w.r.t. other solvers, anyway a few
iterations of PSO often suffice to yield a solution with the accuracy required by the user.

2. The cost per iteration and the memory occupation are constant at each iteration.

3. The algorithm in its original form is a relatively simple heuristic, whose implementation
does not require the derivatives of the objective function.

4. PSO allows a high parallelization of the computation.

By roughly speaking the rationale of the original PSO iteration is the following: a subset ofP
initial points (particles) {x0

1, . . . , x
0
P} is selected in the feasible set at stepk = 0. Then, at step

k ≥ 0 theP positions are modified according with the pair of formulae

dk
j = dk−1

j + αk(xbest
j − xk

j ) + βk(xbest − xk
j ), j = 1, . . . , P,

xk+1
j = xk

j + dk
j , j = 1, . . . , P.

(2)

In (2) xk
j is the current position of thej-th individual (particle) of a population (swarm), dk

j ∈
IRn is a search direction andxk+1

j is the new position at stepk + 1. Finally αk, βk are suitable
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random scalars and
xbest

j = argmin
0≤h≤k

{f(xh
j )}, j = 1, . . . , P,

xbest = argmin
j=1,...,P

{f(xbest
j )}.

Observe thatdk
j (the search direction from the current pointxk

j ) is possiblynot a descent direc-
tion for the objective functionf(x) at xk

j . Furthermore, we remark that the directiondk
j only

depends on both the sequence{xk
j} and the directiondk−1

j at the previous step.
We first consider in this paper the issue of determining an appropriate starting point for any

particle. We can see that the latter problem may strongly affect the final results provided by
PSO [5, 6]. In particular, we prove that by a direct manipulation of the formulae (2), we can
explicitly figure out the role played by the initial distribution of points in PSO algorithm. We
also use [5, 6] as starting references for our study. Here, the trajectory of any particle is suitably
decomposed in two contributions: the first is independent of the choice of the particles starting
point, while the second strongly relys on it.

On the other hand, under some additional hypotheses onL andf(x) in (1) we introduce two
globally convergent modifications of PSO iteration, based on the use of the Steepest Descent
direction with constant stepsize [1]. The latter approach is still preliminary and it must be com-
pleted, since a derivative free scheme would be surely more attractive in order to preserve the
property 3 at page2. Anyway, under mild assumptions, which are largely satisfied for the class
of the Ship Design problems that we consider, the schemes proved to be effective.
In order to motivate our approach, observe that the standard PSO iteration (2) in no way ensures
the convergence towards a global or a local minimum. This is indeed a direct consequence of
(2), where no information on first order optimality conditions is included. Consequently, the
philosophy of the algorithm reduces to simply update and store one pointx̂ (corresponding to
the current best computed objective function value) over the points{xk

j}. Then, in order to
improvex̂ some attempts are considered in the literature [3]. In particular, a local minimization
is performed starting from̂x in order to getx∗, with f(x∗) ≤ f(x̂). In our proposal a global-
ization scheme both includes the standard PSO iteration and the local minimization step; thus,
we asymptotically yield the stationary pointx∗ (possibly a minimum point) of the objective
function, without generating the ‘intermediate’ pointx̂.

An extensive numerical experience on our real problems will appear in a forthcoming paper,
where a derivative-free modified PSO is also included, to guarantee the global convergence to-
wards stationary points.

In Sections2 and3 we describe a generalized PSO iteration, by means of a dynamic lin-
ear system, whose properties are partially used in Section4, in order to investigate promising
starting points for the particles. Section1 describes two globally convergent schemes of PSO
towards stationary points, and Section6 contains some conclusions.

2 GENERALIZING THE PSO MODEL

According with the symbols broadly used in the literature, let us consider the following
(generalized) iteration of PSO algorithm (k = 0, 1, ...):

vk+1
j = χ

[
wkvk

j + cjrj(p
k
j − xk

j ) + cgrg(p
k
g − xk

j )
]
,

xk+1
j = xk

j + vk+1
j ,

(3)
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wherej = 1, ..., P indicates thej-th particle,P is finite,vk
j andxk

j are the so calledspeedand
positionof particlej at stepk, pk

j andpk
g respectively satisfy

pk
j = argminl≤k

{
f(xl

j)
}

,

pk
g = argminl≤k, j=1,...P

{
f(xl

j)
}

,

(4)

andχ,wk, cj, rj, cg, rg are suitable bounded coefficients.We assume thatrj andrg are uniformly
distributed random parameterswith 0 ≤ rj ≤ 1 and0 ≤ rg ≤ 1. Assuming that in (3) the
speedvk+1

j depends on all the termspk
h − xk

j , h = 1, . . . , P , and not only on vectorspk
j − xk

j ,
pk

g − xk
j , we can further generalize the PSO. Indeed we obtain the new iteration (k = 0, 1, ...)

vk+1
j = χk

j

[
wk

j v
k
j +

P∑

h=1

ck
h,jr

k
h,j(p

k
h − xk

j )

]
,

xk+1
j = xk

j + vk+1
j ,

(5)

whereck
h,j andrk

h,j may in general depend on the step (k), the current particle (j) and the other
particles (h). Let us focus on thej-th particle and omit the subscriptj in the recurrence (5).
Moreover, let fork ≥ 0 in (5) χk

j = χ, ck
h,j = ch, rk

h,j = rh andwk
j = w, which is a common

hypothesis in the PSO literature. With the latter position the iteration (5) is equivalent to the
dynamic system

X(k + 1) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




X(k) +




P∑

h=1

χchrhp
k
h

P∑

h=1

χchrhp
k
h




, (6)

where

X(k) =




vk

xk


 ∈ IR2n, k ≥ 0. (7)

Then, (6) is used to obtain some partial indications on the assessment of the starting positions
of the particles in PSO.

The sequence{X(k)} identifies a trajectory in the state spaceIR2n, and since (6) is a linear
and stationary system, we may consider thefree responseXL(k) and theforced responseXF(k)
of the trajectory{X(k)}. Then, considering (6) we explicitly obtain at stepk ≥ 0 [14]

X(k) = XL(k) + XF(k), (8)

where

XL(k) = Φ(k)X(0), XF(k) =
k−1∑

τ=0

H(k − τ)U(τ), (9)
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Φ(k) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k

, (10)

H(k − τ) =




χwI −
P∑

h=1

χchrhI

χwI

(
1−

P∑

h=1

χchrh

)
I




k−τ−1

, (11)

U(τ) =




P∑

h=1

χchrhp
τ
h

P∑

h=1

χchrhp
τ
h




. (12)

Observe thatXL(k) in (9) does not dependon the vectorpk
h, but uniquely on the initial point

X(0). On the contrary,XF(k) in (9) depends on the vectorpk
h and is independent ofX(0). The

latter practical observation allows us to compute separately the two terms. In order to carry out
our conclusions, in the next sections we focus onXL(k).

3 THE FREE RESPONSEXL(k)

From the theory of linear systems we know by definition that asymptotically

lim
k→∞

X(k) = lim
k→∞

XF(k),

i.e. the free responseXL(k) is effective only for finite values ofk. In this section we focus
on the properties ofXL(k), so that it can be used to properly define the starting point of each
particle.
Let us consider the following position in (10) and (11)

a = χw, ω =
P∑

h=1

χchrh, (13)

and consider the following assumptions (see also [5]).

Assumption 3.1 We assume in (13) a 6= 0 andω > 0. Furthermore we assume in (13) ω 6=
(1 − √a)2 andω 6= (1 +

√
a)2 for anya > 0, so that the2n eigenvectors of matrixΦ(1) are

linearly independent.

Then, it can be proved [5] that the matricesΛ andV exist such thatV −1Φ(1)V = Λ, with

Λ =




λ1I

λ2I


 ∈ IR2n×2n,

V = (v1 · · · v2n) =




I I

a−λ1

ω
I a−λ2

ω
I


 ,
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V −1 =
1

λ1 − λ2




(a− λ2)I −ωI

−(a− λ1)I ωI




and

λ1 =
1− ω + a− [(1− ω + a)2 − 4a]

1/2

2

λ2 =
1− ω + a + [(1− ω + a)2 − 4a]

1/2

2
.

(14)

The previous result yields (see [5])

XL(k) = V ΛkV −1X(0)

=
1

λ1 − λ2

n∑

i=1

[
λk

1X(0)T ((a− λ2)ei − ωen+i) vi −

λk
2X(0)T ((a− λ1)ei − ωen+i) vn+i

]

=
1

λ1 − λ2

n∑

i=1

[
λk

1 ((a− λ2)X(0)i − ωX(0)n+i) vi −

λk
2 ((a− λ1)X(0)i − ωX(0)n+i) vn+i

]
,

whereei ∈ IR2n is the unit vector with1 in positioni andX(0)i is thei-th entry ofX(0), i.e.

X(0) =




X(0)1
...

X(0)2n


 .

Furthermore, fori = 1, . . . , n





vi = ei +
a− λ1

ω
en+i

vn+i = ei +
a− λ2

ω
en+i,

then

XL(k) =
n∑

i=1

[γ1(k)X(0)iei − γ2(k)X(0)n+iei+

γ3(k)X(0)ien+i − γ4(k)X(0)n+ien+i] , (15)

where coefficientsγi(k), i = 1, . . . , 4 are given in Table1. Observe that the first value of each
coefficientγ1(k), . . . , γ4(k) is worth for real eigenvaluesλ1 andλ2, while the second value
holds in caseλ1 andλ2 are conjugate (i.e.λ1 = ρe−jθ, λ2 = ρejθ, with a = ρ2). In the end,
from (15) we obtain

XL(k) =
n∑

i=1

[γ1(k)X(0)i − γ2(k)X(0)n+i] ei +

[γ3(k)X(0)i − γ4(k)X(0)n+i] en+i. (16)
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γ1(k) =





λk
1(a− λ2)− λk

2(a− λ1)

λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k − 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex,

γ2(k) =





ω(λk
1 − λk

2)

λ1 − λ2

ωρk−1 sin kθ

sin θ

λ1, λ2 real

λ1, λ2 complex,

γ3(k) =





(λk
1 − λk

2)

λ1 − λ2

(a− λ1)(a− λ2)

ω

ρk sin kθ

sin θ

(
ρ2 − 2ρ cos θ + 1

ω

)
λ1, λ2 real

λ1, λ2 complex,

γ4(k) =





λk
1(a− λ1)− λk

2(a− λ2)

λ1 − λ2

ρk+1 sin kθ

sin θ
− ρk sin(k + 1)θ

sin θ

λ1, λ2 real

λ1, λ2 complex.

Table 1:The coefficientsγi(k), i = 1, . . . , 4 in (15).

We remark that by simply imposingX(0)i = X(0)n+i = 0 in (16), the free response of a
particle has zero entries on thei-th and(n + i)-th axis. Thus, according with the free response
in (16), each particle’s trajectory has nonzero projection on any subspace ofIR2n, provided
that the initial pointX(0) is suitably chosen. From the latter consideration and (16), a suitable
choice of the starting pointX(0) of any particle may guarantee an improved exploration of the
state space. In the next section we give numerical evidence that the latter issue plays a key role
within global optimization frameworks.

4 THE STARTING POINT OF EACH PARTICLE

On the guideline of the previous section, here we give some theoretical indications about the
choice of the initial pointX(0) of each particle, which is a crucial issue in PSO. In particular,
let us consider (1) and let us indicate withX(k)(j) the trajectory of thej-th particle. From
(8) X(k)(j) depends linearly on the contribution of the free responseXL(k)(j) in (16), i.e. it
depends on the corresponding initial pointX(0)(j).

In this section and the next one we assume that up ton2 particles compose the swarm. We
want to assess the initial pointsX(0)(j), j = 1, . . . , n2, of the particles, in such a way that
the state spaceIR2n is explored as widely as possible by the trajectories{X(k)(j)}. This is
a general issue for global optimization algorithms, where the users often resort to randomly
generated sequences of initial points. Here we propose in particular a technique to generate
up to n2 starting points, such that for any fixed indexk, the sequence{XL(k)(j)} in (16) is
scatteredin the state spaceIR2n. Our numerical experience with PSO confirms that the latter
result may be often fruitfully used.
To the latter purpose (see also [5]) we consider in (13), for any particlej = 1, . . . , n, the
parametersaj, wj in place ofa, w. Accordingly, the coefficientsγ1(k), . . . , γ4(k) in (16) are
given for thej-th particle byγ1(k)(j), . . . , γ4(k)(j).
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Consider the vectortj ∈ IRn, j = 1, . . . , n, such that

tj =

√
n

n

n∑

i=1

ei −
√

n

2
ej. (17)

Then, we have immediatelytTj th = 0, for 1 ≤ j 6= h ≤ n. We also recall (see [5, 6])
that under the Assumption3.1 the vectors (17) may be used to generate at stepk the vectors
XL(k)(1), . . . , XL(k)(n), which form an orthogonal basis in the state subspace of the positions.
We aim at extending the latter result which only relys on the orthogonality of the vectors in
(17).

Let Q ∈ IRn×n and supposeQ is orthogonal, i.e.QT Q = In. In particular, the columns
{q1, . . . , qn} of Q represent an orthonormal basis ofIRn. Suppose werotate each column-
vectorqk of Q by a specific angle, into the vectorsk, k = 1, . . . , n. Then, an orthogonal matrix
Q̄ ∈ IRn×n exists such that the vectorssk = Q̄qk, 1 ≤ k ≤ n, are still an orthonormal basis and
sT
1 q1 = · · · = sT

nqn.
We introduce a measured of the distance between the two bases{qk} and{sk}, according with

d = ‖Q− Q̄Q‖F , (18)

where‖ · ‖F indicates theFrobenius normof a matrix, i.e.‖A‖F = [tr(AT A)]1/2. Then, we can
consider the orthogonal matrixQ∗ which satisfies

Q∗ = argmaxQ̄‖Q− Q̄Q‖F , s.t. Q̄T Q̄ = In. (19)

In other words, according with the definition of the distanced in (18), we say that the orthogonal
matrix Q∗Q is at maximum distancefrom the matrixQ. We recall that by definition we have
for anyA,B ∈ IRn×n

‖A−B‖2
F = tr

[
(A−B)T (A−B)

]
= tr(AT A) + tr(BT B)− 2tr(AT B) (20)

thus,Q∗ = −In satisfies (19) since

tr(QT Q) = tr
[
(Q∗Q)T (Q∗Q)

]
= n,

so that
‖Q−Q∗Q‖2

F = 2n− 2tr(QT Q∗Q) = 4n. (21)

From (18)-(19), the latter result yields the intuitive consideration that the bases{q1, . . . , qn}
and{−q1, . . . ,−qn} are maximally distant in the sense of formula (18). Therefore, since the
columns ofQ are orthogonal vectors, we could use the sets{q1, . . . , qn} and{−q1, . . . ,−qn} in
place of the vectors in (17). To sum up, if only2n particles are chosen for the swarm, then from
(17) and considering (7) we suggest the following set of initial particles’ position (1 ≤ j ≤ n)

X(0)(j) =

(
0
tj

)
, tj = 2(−1)j

[√
n

n

n∑

i=1

ei −
√

n

2
ej

]
,

X(0)(n+j) =

(
0

tn+j

)
, tn+j = 2(−1)j+1

[√
n

n

n∑

i=1

ei −
√

n

2
ej

]
.

(22)

(we recall that by a short calculation the matrices(t1 · · · tn) and(tn+1 · · · t2n) are orthogonal).
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In Table2 we have a preliminary numerical experience, where the PSO method is applied
for the solution of 35 test problems of sizen (2 ≤ n ≤ 30), from the literature. We considered
three scenarios with the same implementation of PSO (i.e. the coefficientsχ, wk, cj, rj, cg,
rg in the scenarios were set at the same standard values), and up to 1000 function evaluations
were allowed in each scenario (regardless of the sizen). The columnf(x∗)n rand reports the
best solution obtained by arandomchoose of the initial position ofn particles. The column
f(x∗)n orth [f(x∗)2n orth] reports the best solution obtained by choosing the initial position ofn
[2n] particles as in (22). Our proposal evidentlyoutperforms the random choice; similar results
were obtained when the PSO parameters were modified in a wide range.

4.1 The extension ton2 particles

Now, let us extend the latter result and let us focus on providing the initial position of up
to n2 particles (which covers almost all the situations of practical interest). On this purpose,
recalling that the columns of the matrixQ in (18) are required to be an orthonormal basis of
IRn, in (18)-(21) we can set without loss of generalityQ = In. We want to determineh > 2
suitable orthonormal bases ofIRn, by rotating the canonical basis{e1, . . . , en}. Equivalently
we aim at determining in accordance with (18)-(19) the largest positive constantM > 0 and a
set ofh > 2 orthogonal matrices{Q1, . . . , Qh} such that

M = max
{

min
1≤i6=k≤h

‖Qi −Qk‖F

}
. (23)

In addition, we also require that the set of column-vectors of any matricesQi andQj, 1 ≤
i 6= j ≤ n, containsexactly2n distinct vectors. Observe that the condition (23) substantially
summarizes the fact that the orthogonal matrices{Q1, . . . , Qh} are mutually maximally distant,
i.e. theh bases obtained by rotating the canonical basis{e1, . . . , en} are maximally ‘scattered’
in IRn.

The problem (23) may be quite difficult and its solution could take far from our concern.
Indeed (see [9]), in (20) the quantity‖A − B‖F may be evidently unbounded whenA andB
range inIRn×n. Anyway, even imposing the condition(A−B)T (A−B) = I, a solution which
maximizes‖A − B‖2

F is A − B = P (whereP is any permutation matrix). Thus, no strong
analytical conditions are available in order to determineQ1, . . . , Qh. Therefore, we renounce
to fully solve (23) and instead we claim for the following weaker result. We want to find out
1 ≤ h ≤ n orthogonal matricesQ1, . . . , Qh such that ifQi = (q

(i)
1 , . . . , q(i)

n ), 1 ≤ i ≤ h,

1) q
(i)
k 6= q(j)

p , 1 ≤ i 6= j ≤ h and1 ≤ k 6= p ≤ n,

2) ‖Qi −Qj‖F ≥ m, for any1 ≤ i 6= j ≤ h and for somem > 0.

Observe that of course from (21) we havem ≤ 4n; however, the following result holds.

Proposition 4.1 Consider the set ofh symmetric orthogonal Houseolder transformationsQ1, . . . , Qh

Qi = In − 2
wiw

T
i

‖wi‖2
, 1 ≤ i ≤ h,

wi =

√
n

n

n∑

l=1

el −
√

n

2
ei, 1 ≤ i ≤ h,

(24)

9
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with n > 2. Then,Q1, . . . , Qh satisfy both the requirements 1) and 2).

Proof.
As regards 1 ) observe that by a straightforward calculationwT

i wj = 0, 1 ≤ i 6= j ≤ h;
furthermore, letwi = (wi1 · · ·win)T , then we have for any1 ≤ i, j ≤ h andk 6= p,

q
(i)
k = ek − 2

wik

‖wi‖2
wi, 1 ≤ k ≤ n,

q(j)
p = ep − 2

wjp

‖wj‖2
wj, 1 ≤ p ≤ n.

Thus, by contradictionq(i)
k = q(j)

p if and only if

wik

‖wi‖2
wi =

ek − ep

2
+

wjp

‖wj‖2
wj,

so that the orthogonality of vectorswi andwj yields





wik =
wik − wip

2
,

wjp = −wjk − wjp

2
,

i.e. wik = −wip andwjk = −wjp. However, from (24) we have forwik andwip (similarly for
wjk andwjp)

wik =

{ √
n/n−√n/2 if i = k√
n/n if i 6= k,

wip =

{ √
n/n−√n/2 if i = p√
n/n if i 6= p.

Furthermore, sincek 6= p andn > 2 we always havewik 6= −wip andwjk 6= −wjp. Thus, 1 )
holds.
As regards 2 ) observe that sincewT

i wj = 0, 1 ≤ i 6= j ≤ h, we have

‖Qi −Qj‖2
F = 4

∥∥∥∥∥
wiw

T
i

‖wi‖2
− wjw

T
j

‖wj‖2

∥∥∥∥∥

2

F

= 4

[
tr

(
wiw

T
i

‖wi‖2

)

+ tr

(
wjw

T
j

‖wj‖2

)
− 2tr

(
wiw

T
i wjw

T
j

‖wi‖2‖wj‖2

)]
= 8, (25)

i.e. 2 ) is satisfied withm = 2
√

2. Q.E.D.
We also note that recalling the observations related to formula (21), for n = 2 the choice (24)

is an optimal choice. To summarize, the formulae (24) allow us to generate up ton orthonormal
bases ofIRn, which satisfy the properties 1 ) and 2 ). Consequently, since the column vectors
of each matrix may be used as initial points of particles in PSO frameworks, we have a rule to
suitably supplyn2 initial points. In particular, recalling thath ≤ n, by the choice of vectors

10
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w1, . . . , wh in (24) and from (7) we adopt the following formulae toexplicitly address then2

initial points:

X(0)(1) =




0

e1 − 2
w11w1

‖w1‖2


 , · · · X(0)(n) =




0

en − 2
w1nw1

‖w1‖2


 ,

X(0)(n+1) =




0

e1 − 2
wn1wn

‖wn‖2


 , · · · X(0)(n2) =




0

en − 2
wnnwn

‖wn‖2


 .

(26)

Finally, the choice (24) for the vectors{w1, . . . , wh} might be suitably modified, in order to
further improve the bound (25). In addition, if the feasible setL in (1) does not contain the
points (26), then the latter could be accordingly scaled.

5 GLOBALLY CONVERGENT SCHEMES FOR PSO

In this section we address the issue of studying globally convergent modifications of PSO.
The latter subject has often been disregarded in the PSO literature. Indeed, on one hand several
practitioners are not concerned with sensitivity and convergence analysis. On the other hand
according with Section1, PSO is a heuristics particularly effective in the first iterations, while its
progress is less significant when approaching (possibly) the solution. Nevertheless, several real
applications have been described in the literature (see also [3]), where evolutionary algorithms
are also required to ensure the convergence to stationary points.
Consider the PSO iteration (5) and let|A| indicate the cardinality of the general setA. Let us
introduce the following relevant sets for our discussion:

K = {1, 2, . . .},

KM = {n ∈ N : n = 1 + iM, i ∈ N ∪ {0}, M > 0 integer} ,

KM+ =
{
n ∈ K : n− 1 ∈ KM

}
,

KM ∪ KM+ ⊆ Kj ⊆ K, j = 1, . . . , P.

(27)

Observe that by loosely speaking the subsetsKM andKM+ contain “samples” of the elements
inK, and possibly we can setKj ≡ KM ∪KM+, j = 1, . . . , P . Furthermore, in order to slightly
generalize the position (4) we compute the quantities

qk
j = argminl≤k, l∈Kj

{f(xl
j)}, j = 1, . . . , P, k ≥ 1,

pk
g = argmin1≤j≤P{f(qk

j )}, k ≥ 1.

(28)

We remark that by definition{pk
g} ⊆ {qk

j } ⊆ {xk
j} and by settingKj ≡ K for anyj, the pairs

(qk
j , p

k
g) in (28) coincide with the pairs(pk

j , p
k
g) in (4).

We introduce the globally convergent modified PSO algorithmGPSO in Table 3. We can
preliminarily observe that after a brief initialization in Step 1, in the Stepk we first check for

11
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a stopping criterion, which tests the stationarity of the current solution. If not satisfied, the
newspeedvectorvk+1

j is computed. Then, either if the current iteration indexk belongs to the
subsetKM or the progress is too slow (i.e.f(pk−1

g ) − f(pk
g) ≤ σ|f(pk−1

g )|), the ‘best’ current
particle’s positionpk

g is perturbed along the steepest descent direction−∇f(pk
g). Finally, the

vectors{qk
j } are updated. Observe that from (27)-(28) and the instructions at Stepk, we cannot

havepk+M
g ≡ pk

g , for anyk ∈ KM andj = 1, . . . , P such that∇f(xk
j ) 6= 0. Indeed, in the latter

case we surely have by Stepk and definition (28) f(pk+M
g ) ≤ f [pk

g − ηk∇f(pk
g)] < f(pk

g). For
the algorithm in Table3 the following general convergence result holds.

Theorem 5.1 LetL1 = {x ∈ IRn : f(x) ≤ max1≤j≤P{f(x1
j)}} be compact andf ∈ C1(L1).

Consider (27) and the sequences{pk
g} ⊆ {qk

j } ⊆ {xk
j}, j = 1, . . . , P , k ≥ 1, wherepk

g satisfies
(28), and the sequences{qk

j }, {xk
j}, j = 1, . . . , P , are generated by algorithmGPSO. Suppose

there exists a positive constantL such that

‖∇f(y)−∇f(z)‖ ≤ L‖y − z‖, (29)

for anyy, z ∈ L1, and in algorithmGPSO ηk = η < 2/L, for anyk ∈ KM . Then, assuming
M ≥ 1 in (27), either an integerν ≥ 1 exists such that∇f(pν

g) = 0 or the algorithmGPSO
generates the infinite subsequence{pk

g}KM with

lim
k→∞, k∈KM

∥∥∥∇f(pk
g)

∥∥∥ = 0. (30)

Proof.
Suppose a finite indexν ≥ 1 does not exist such that∇f

(
pν

g

)
= 0. Then, ifk ∈ KM we have

alsok + M ∈ KM , so that by (28) and Stepk of algorithmGPSO

f
(
pk+M

g

)
= min

1≤j≤P, l∈Kj , l≤k+M

{
f(ql

j)
}

= min
{
f

(
pk

g

)
, f

(
ql
j

)
1≤j≤P, l∈Kj , k<l≤k+M

}

≤ min
{
f

(
pk

g

)
, f

[
pk

g − η∇f
(
pk

g

)]}
, k, k + M ∈ KM . (31)

Then, by settingdk = −η∇f(pk
g) and considering the mean value theorem along with (29), we

obtain for anyk, k + M ∈ KM

f
(
pk+M

g

)
≤ f

(
pk

g + dk
)

= f
(
pk

g

)
+

∫ 1

0
∇f

(
pk

g + tdk
)T

dkdt

≤ f
(
pk

g

)
+

∫ 1

0

∥∥∥∇f
(
pk

g + tdk
)
−∇f

(
pk

g

)∥∥∥ ‖dk‖dt +∇f
(
pk

g

)T
dk

≤ f
(
pk

g

)
+

∫ 1

0
tL‖dk‖2dt +∇f

(
pk

g

)T
dk

= f
(
pk

g

)
+

L

2
‖dk‖2 +∇f

(
pk

g

)T
dk

= f
(
pk

g

)
+ η

(
ηL

2
− 1

) ∥∥∥∇f
(
pk

g

)∥∥∥
2
, k, k + M ∈ KM . (32)

Then,
{
f

(
pk

g

)}
KM

is a decreasing subsequence provided thatηL/2 < 1; moreover, sinceL1 is

compact,
{
f

(
pk

g

)}
KM

is convergent. Now, observe that by rearranging relation (32) we obtain

f
(
pk

g

)
− f

(
pk+M

g

)
≥ η

(
1− ηL

2

) ∥∥∥∇f
(
pk

g

)∥∥∥
2
, k, k + M ∈ KM . (33)

12
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Thus, applying the limitk →∞, k ∈ KM , the left hand side of inequality (33) approaches zero
and proves relation (30). Q.E.D.

Observe that relation (29) often holds in ship design applications, and at least an estimation
L̃ > L of the Lipschitz constant is available. However the explicit knowledge of at least an
estimation of the parameterL, may be a too restrictive hypothesis in few cases. On this guide-
line, in the following result we slightly modify the statement of Theorem5.1, so that the global
convergence of algorithmGPSO is also achievedwithout explicitly knowingthe constantL.

Theorem 5.2 LetL1 = {x ∈ IRn : f(x) ≤ max1≤j≤P{f(x1
j)}} be compact andf ∈ C1(L1).

Consider (27) and the sequences{qk
j } ⊆ {xk

j} ⊆ {xk
j}, j = 1, . . . , P , k ≥ 1, wherepk

g satisfies
(28). Let the sequences{qk

j }, {xk
j}, j = 1, . . . , P , be generated by algorithmGPSO. Suppose

there exists a positive constantL such that

‖∇f(y)−∇f(z)‖ ≤ L‖y − z‖, (34)

for anyy, z ∈ L1. Let in the algorithmGPSO

a) lim
k→∞, k∈KM

ηk = 0,

b)
∑

k∈KM

ηk = +∞.
(35)

Then, assumingM ≥ 1 in (27), either an integerν ≥ 1 exists such that∇f(pν
g) = 0 or the

algorithmGPSO generates the infinite subsequence{pk
g}KM with

lim
k→∞, k∈KM

∥∥∥∇f(pk
g)

∥∥∥ = 0. (36)

Proof.
First observe that for anyy, z ∈ L1 we have from the hypothesis (see also [1])

f(y + z) ≤ f(y) +∇f(y)T z +
L

2
‖z‖2.

Thus, reasoning as in (31) of Theorem5.1we obtain for anyk, k + M ∈ KM

f
(
pk+M

g

)
≤ min

{
f

(
pk

g

)
, f

[
pk

g − ηk∇f
(
pk

g

)]}
≤ f

[
pk

g − ηk∇f
(
pk

g

)]

≤ f
(
pk

g

)
− ηk

∥∥∥∇f
(
pk

g

)∥∥∥
2
+

η2
kL

2

∥∥∥∇f
(
pk

g

)∥∥∥
2

= f
(
pk

g

)
− ηk

(
1− L

2
ηk

) ∥∥∥∇f
(
pk

g

)∥∥∥
2
. (37)

Now, from (35) limk→∞,k∈KM ηk = 0; thus, the constant0 < c ≤ (1 − Lηk/2), k ≥ k̄, exists
such that relation (37) eventually yields

f
(
pk+M

g

)
≤ f

(
pk

g

)
− ηkc

∥∥∥∇f
(
pk

g

)∥∥∥
2
, k ≥ k̄, k ∈ KM . (38)

Then, as long aspk
g is not a stationary point,{f(pk

g)}KM is monotonically decreasing and con-
verging on the compact setL1. Furthermore, from (37) and the latter considerations

∑

k≥k̄, k∈KM

ηkc
∥∥∥∇f

(
pk

g

)∥∥∥
2 ≤ ∑

k≥k̄, k∈KM

[
f

(
pk

g

)
− f

(
pk+M

g

)]

= f
(
pk̄

g

)
− lim

k→∞, k∈KM
f

(
pk

g

)
< +∞. (39)

13
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Now, if we assume in (39) the condition
∥∥∥∇f(pk

g)
∥∥∥ ≥ ξ > 0, k ≥ k̄, k ∈ KM , then (35) and

(39) yield the contradiction

cξ2


 ∑

k≥k̄, k∈KM

ηk


 < +∞.

Therefore condition (36) must hold, which completes the theorem. Q.E.D.

Remark 5.1 Observe that in Theorem5.2 the explicit knowledge of the Lipschitz constantL
is unnecessary. Indeed, the hypothesis (35) may be straightforwardly satisfied by setting for
instance0 < η̄ < ∞, 0 < α ≤ 1 and

ηk =
η̄

kα
(40)

in the algorithmGPSO.

Remark 5.2 From (37) and (38) it is not difficult to prove that replacing the hypothesis (35)
with the slightly heavier assumption

a) lim
k→∞, k∈KM

ηk = 0,

b)
∑

k∈KM

ηk = +∞,
∑

k∈KM

η2
k < +∞,

(41)

we obtain in place of (39)

∑

k∈KM

ηk

∥∥∥∇f
(
pk

g

)∥∥∥
2 − ∑

k∈KM

η2
kL

2

∥∥∥∇f
(
pk

g

)∥∥∥
2 ≤ ∑

k∈KM

[
f

(
pk

g

)
− f

(
pk+M

g

)]

= f
(
p1

g

)
− lim

k→∞, k∈KM
f

(
pk

g

)
< +∞. (42)

The hypothesis (41) may be easily satisfied by setting0 < η̄ < ∞, 1/2 < α ≤ 1 and

ηk =
η̄

kα
(43)

in the algorithmGPSO, i.e. loosely speaking (35) and (41) are substantially equivalent.

6 CONCLUSIONS

We have described a couple of relevant issues for improving the efficiency and the effec-
tiveness of the algorithm PSO, which is a widely used heuristics for the approximate solution
of the global optimization problem (1), in ship design frameworks. First, we have given nu-
merical evidence that a proper choice of the initial position of the particles may be crucial for
the effectiveness of the method. Then, under reasonable assumptions two globally convergent
modifications of PSO were proposed, in order to guarantee that at least a subsequence of iterates
converges to a stationary point.

On the guideline of the previous section, a derivative-free globally convergent modification
of PSO is being studied (see also [11]); extended numerical results on ship design problems will
be included in a forthcoming paper.
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Problem n f(x∗)n rand f(x∗)n orth f(x∗)2n orth

Six humps camel back 2 -0.8118 -1.0316 -1.031627
Treccani 2 0.5983 1.2125E-06 1.3723035E-04
Quartic 2 4.8516 -0.1526 -0.3523849
Schubert 2 -37.5954 -49.2691 -123.5767
Schubert pen.1 2 -30.6048 -23.9748 -123.1987
Schubert pen.2 2 -18.8594 -23.2320 -122.8207
Shekel5 4 -0.4085 -3.36416 -5.054569
Shekel7 4 -0.5047 -3.39414 -5.087214
Shekel10 4 -0.9192 -1.30725 -5.128263
Exponential 2 -1.1805E-02 -0.9999 -1.000000

4 -4.7240E-07 -0.9999 -0.9999982
Cosine mixture 2 -4.6458E-02 -0.2000 -0.1999997
Cosine mixture 4 9.1806E-02 -0.1042 -0.3999915
hartman3 3 -0.9769 -3.6570 -3.655713
hartman6 6 -3.2795 -3.0208 -2.910185
5n loc. minima 2 9.3625 6.6128E-03 2.8020752E-06

5 5.1373E-02 3.6934-02 2.9364234E-02
10 1.1255 0.1103 8.8159777E-02
20 1.0001 0.2525 8.8145070E-02
30 0.7282 0.1453 1.5093682E-02

10n loc. minima 2 45.9406 2.81867E-02 1.378443
5 5.005 1.2651 1.370563
10 34.3466 2.3363 3.425857
20 20.5893 4.3714 2.6454281E-05
30 20.4258 3.3331 0.1432712

15n loc. minima 2 0.8580 2.23199E-02 0.5647247
5 3.9033E-02 0.2709 1.671701
10 1.5038 0.8420 2.7893741E-08
20 5.4427 1.5152 8.3999912E-06
30 2.5683 2.6402 1.1098337E-05

Griewank 2 0.9505 8.1694E-07 5.7031489E-06
5 1.96844E-03 3.7250E-05 8.5866317E-02
10 0.5813 3.8645E-05 3.338129
20 0.6602 1.8684E-05 3.021994
30 0.5974 8.5806E-05 4.1590993E-06

Table 2:Numerical comparison among three different choices of the starting points’ position, in a PSO framework.
Our proposal (II and III column of results) outperforms the standard random choice of initial particles’ position.
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Global Particle Swarm Optimization (GPSO)

Data: P ≥ 1 integer,σ > 0, ε > 0.

Step 1: Setx1
j ∈ IRn andq1

j = x1
j , j = 1, . . . , P ; computep1

g, setk = 1.

Stepk: If k ∈ KM and‖∇f(pk
g)‖ < ε STOP, else set

vk+1
j = χk

j

[
wk

j v
k
j +

P∑

h=1

ck
h,jr

k
h,j(q

k
h − xk

j )

]
, j = 1, . . . , P.

If
[
k ∈ KM or

(
k > 1 and f(pk−1

g )− f(pk
g) ≤ σ|f(pk−1

g )|
)]

then

Do j = 1, . . . , P

set ηk > 0,

xk+1
j = xk

j − ηk∇f(xk
j ), if xk

j = pk
g ,

xk+1
j = xk

j + vk+1
j , if xk

j 6= pk
g ,

Endo.

Elsexk+1
j = xk

j + vk+1
j , j = 1, . . . , P .

Setk = k + 1.

Do j = 1, . . . , P

If k ∈ Kj thenqk
j = argmini∈Kj , i≤k{f(xi

j)}

Endo.

Calculatepk
g and gotoStepk.

Table 3:GPSO: a modified Globally convergent PSO algorithm.
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