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Abstract. In this paper we consider the Particle Swarm Optimization (PSO) algorittnd],

in the class of Evolutionary Algorithms, for the solution of global optimization problems. We
analyze a couple of issues aiming at improving both the effectiveness and the efficiency of PSO.
In particular, first we recognize that in accordance with the results5rg], the initial points
configuration required by the method, may be a crucial issue for the efficiency of PSO iteration.
Therefore, a promising strategy to generate initial points is provided in the paper.

Then, we address some very preliminary aspects of PSO global convergence towards stationary
points, for some Ship Design problems. To this purpose observe that the class of Ship De-
sign applications includes several challenging smooth problems, where expensive simulations
provide information to the optimizer, and each function evaluation may require up to hours of
CPU-time. In addition, the final solution provided by the optimization method is also required
to be a stationary point.
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1 INTRODUCTION
In this paper we use the PSO algorithm for the solution of the global optimization problem

rftnei? f(2), with L2 {reR": |z|3< B}, (1)
wheref : IR" — IR is assumedontinuously differentiable is compact and3 > 0. PSO is a
heuristic method which is used to determine an approximation of a global minirhanf (=)
overL, i.e. a point such that(z*) < f(x) foranyz € £. PSO may be effective on ship design
problems when the functiofiis possibly computationally costly.
Apart from those special cases where a specific knowledgg:onis available (e.g.f(x) is
convex, monotonically decreasing, etc.), the probl&g inherently difficult, since it requires
an exhaustive exploration ¢f x). This usually claims for a two phase approach: on one hand, a
global search on the set attempts at identifying suitable subsets, where promising candidates
of global minima are confined. Then, an efficitatal search provides accurate approximations
of each candidate, by exploring the corresponding subsét of hus, the algorithms which
effectively solve the global optimization probled) hould always include the computational
burden of both thglobal and thelocal phase.
Examples of problem1) arise in several real applications, e.g. in the aerospace, automotive
and naval engineering, where Navier-Stokes solvers for shape design are used.
Several iterative algorithms have been proposed in the literature to approach the solution of
(1) [12]. Most of these techniques are based on the exploration of a possibly dense subset
of £; unfortunately this may require an unacceptable computational burden over ship design
problems.

This drawback suggests the use of suitable iterative evolutionary heuristics to solve our prob-
lems: PSO belongs to the latter class of techniques. Its motivations arise from social behavioral
interpretations of bird flocks and it is often adopted for the solution of a wide range of applica-
tions [15,4, 8,13, 2] (for a recent tutorial on PSO see alf))[ Some strong indications to use
PSO when solvingl)) are the following.

1. The solution provided by PSO is often inaccurate w.r.t. other solvers, anyway a few
iterations of PSO often suffice to yield a solution with the accuracy required by the user.

2. The cost per iteration and the memory occupation are constant at each iteration.

3. The algorithm in its original form is a relatively simple heuristic, whose implementation
does not require the derivatives of the objective function.

4. PSO allows a high parallelization of the computation.

By roughly speaking the rationale of the original PSO iteration is the following: a subget of
initial points (articles {9, ..., 2%} is selected in the feasible set at steg- 0. Then, at step
k > 0 the P positions are modified according with the pair of formulae

d¥ = d?‘l + o (aht — ) + pF(abet — k), j=1,...,P
2)

aith = ak 4 db, j=1,...,P

In (2) x"j is the current position of thg-th individual (particle) of a population gwarnj, dé? €
IR"™ is a search direction anlcf+1 is the new position at stefp+ 1. Finally o*, 3% are suitable
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random scalars and bt ' N ,
o7 = aggmin {f(z;)}, j=1....B

Pt = ar mlg{ f(:):?ebt)}.

Observe thaﬂ? (the search direction from the current pahjb is possiblynota descent direc-
tion for the objective functiory(z) at xf Furthermore, we remark that the directia)jmnly
depends on both the sequeraé} and the directionl; " at the previous step.

We first consider in this paper the issue of determining an appropriate starting point for any
particle. We can see that the latter problem may strongly affect the final results provided by
PSO B, 6]. In particular, we prove that by a direct manipulation of the formuBje e can
explicitly figure out the role played by the initial distribution of points in PSO algorithm. We
also usel, 6] as starting references for our study. Here, the trajectory of any particle is suitably
decomposed in two contributions: the first is independent of the choice of the particles starting
point, while the second strongly relys on it.

On the other hand, under some additional hypothesesamd f(x) in (1) we introduce two
globally convergent modifications of PSO iteration, based on the use of the Steepest Descent
direction with constant stepsizg][ The latter approach is still preliminary and it must be com-
pleted, since a derivative free scheme would be surely more attractive in order to preserve the
property 3 at pag@. Anyway, under mild assumptions, which are largely satisfied for the class
of the Ship Design problems that we consider, the schemes proved to be effective.

In order to motivate our approach, observe that the standard PSO ite@)tiom¢ way ensures

the convergence towards a global or a local minimum. This is indeed a direct consequence of
(2), where no information on first order optimality conditions is included. Consequently, the
philosophy of the algorithm reduces to simply update and store one p¢autrresponding to

the current best computed objective function value) over the thffc};. Then, in order to
improvez some attempts are considered in the literat@felp particular, a local minimization

is performed starting front in order to getz*, with f(z*) < f(z). In our proposal a global-
ization scheme both includes the standard PSO iteration and the local minimization step; thus,
we asymptotically yield the stationary poimt (possibly a minimum point) of the objective
function, without generating the ‘intermediate’ point

An extensive numerical experience on our real problems will appear in a forthcoming paper,
where a derivative-free modified PSO is also included, to guarantee the global convergence to-
wards stationary points.

In Sections2 andi3 we describe a generalized PSO iteration, by means of a dynamic lin-
ear system, whose properties are partially used in Sedtionorder to investigate promising
starting points for the particles. Sectig@rdescribes two globally convergent schemes of PSO
towards stationary points, and Sect@®oontains some conclusions.

2 GENERALIZING THE PSO MODEL

According with the symbols broadly used in the literature, let us consider the following
(generalized) iteration of PSO algorithim £ 0,1, ...):
G = ke + eoni (e = o) + a0 — )] @
3

x’?+1 _ x;g + k+1

J Uj
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wherej = 1, ..., P indicates thej-th particle, P is finite, v andz} are the so calledpeedand
positionof particle; at stepk, p§ andp’; respectively satisfy
pf = argming, {f@é)} )

(4)

p’; =argminy ;j_ p {f(xé)} )

andy, w", ¢, r;, c,,r, are suitable bounded coefficiente assume that andr, are uniformly
distributed random parametemsith 0 < r; < 1 and0 < r, < 1. Assuming that inl3) the
speedv’ ! depends on all the termg — z¥, h =1,..., P, and not only on vectorg} — z¥,
pl — =¥, we can further generalize the PSO. Indeed we obtain the new iteratierd(1, ...)

P
k+1 _ _k k,.k k k k k
Vi =X [wj v+ chTh (P — xj)] ;
h=1

(5)

ait = zh + (lany
wherecﬁd andr,’i,j may in general depend on the stép, ¢the current particlejj and the other
particles ). Let us focus on thg-th particle and omit the subscriptin the recurrence5).
Moreover, let fork > 01in (5) X} = x, ¢ ; = cu, 77 ; = 1 andw? = w, which is a common
hypothesis in the PSO literature. With the latter position the iteraByms(equivalent to the
dynamic system

P
xwl — Z xenrnl
X(k+1)= h=} X(k) +
xwl (1 — Z X@ﬂ’h) 1
h=1
P
k
Z XCnThPp,
" , (6)
Z XChThpﬁ
h=1
where
ok
X(k) = eR*™, k>0 (7)
ok

Then, B) is used to obtain some partial indications on the assessment of the starting positions
of the particles in PSO.
The sequencéX (k)} identifies a trajectory in the state spdRé”, and sincel§) is a linear
and stationary system, we may considerfthe respons& (k) and theforced respons& ~ (k)
of the trajectory{ X (k)}. Then, consideringg) we explicitly obtain at step > 0 [14]

X(k) = Xc(k) + Xr(k), (8)
where -
Xe(k) =0(k)X(0),  Xr(k) = Z H(k —T1)U(7), 9)
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P
xwl — Z xenrnl
(k) = " : (10)
xwl (1 — Z XChTh> 1
h=1
P k—1—1
xwl — Z Xcenrnl
Hk—7) = hd , (12)

P
xwl (1 — Z Xch'r’h> I
h=1

M~

-
XChThPp

>
Il
—

U(r) = (12)

M

-
XChThPp,

>
Il
—

Observe thatX (k) in (9) does not dependn the vectop?, but uniquely on the initial point

X (0). On the contraryX ~(k) in (9) depends on the vectpf and is independent of (0). The

latter practical observation allows us to compute separately the two terms. In order to carry out
our conclusions, in the next sections we focus’of(k).

3 THE FREE RESPONSE X, (k)

From the theory of linear systems we know by definition that asymptotically

lim X (k) = lim Xz(k),

k—oo k—o0

i.e. the free respons& (k) is effective only for finite values of. In this section we focus

on the properties ok - (k), so that it can be used to properly define the starting point of each
particle.

Let us consider the following position idQ) and (1)

P
a=Xw, W= XChTh, (13)
h=1
and consider the following assumptions (see afp [

Assumption 3.1 We assume iril@) a # 0 andw > 0. Furthermore we assume id3) w #
(1 —+/a)* andw # (1 + y/a)? for anya > 0, so that the2n eigenvectors of matri® (1) are
linearly independent.

Then, it can be proved] that the matriced andV exist such that/ ~'®(1)V = A, with

Ml
A _ c RQnXQn
ol

1 1
V:(Ul"‘UQn): )
shp e
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. 1 (Cl — )\2)[ —wl
V_ =
A=A —(a—X\)[  wI

1/2

and

) l—w+a—[1-w+a)*—4a|
1:
2

(14)
\ l—wta+[(1-w+a)?—4aq"?
2:
2

The previous result yields (se§]]

X, (k)=VA*V1X(0)
1 n

X(0)
X(0) = :
X(0)ap
Furthermore, fok = 1,...,n
a — )\1
Vi =€+ ———€ny
w
a — /\2
Unyi = €+ —— Cnyis
w
then

Xe(k) =3 (k)X (0)e — 12(K) X (0)npseit

=1

Y3(k) X (0)iensi — Ya(k) X (0)nri€nril » (15)
where coefficients;(k), 7 = 1,...,4 are given in Tabld. Observe that the first value of each
coefficienty,(k), ..., v4(k) is worth for real eigenvalues; and \,, while the second value

holds in case\; and )\, are conjugate (i.eA; = pe7%, Xy = pe’?, with a = p?). In the end,
from (15) we obtain

n

Xe(k) =2 (k)X (0); — 72(k) X (0)nsi] & +

. 4 (B) X (0)ss] € (16)

—

(k
v3 (k)X (0);
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At(a —Xg) — Aj(a — Ay) A1, Ay real
_ AL — A
vi(k) = g 2,
1(k) pe1Sinkd psin(k —1)6 A1 Ay complex
sin 0 sin 7 ’
w(AT = A3) A1, Ao real
12(k) = M= Ao
wpk*1M A1, A2 complex,
sin 0

(AT =A%) (a—M)(a— )

A1, Ag real
(k) =1 A2 ¥
V3(R) = Lsink6 (p* —2pcosf +1
‘ A1, Ao complex,
sin 6 w
M(a =) = M(a =) A1, Ag real
B =1
ket 51‘n ko ,CSHI(]? +1)¢ A1, A2 complex.
sin 0 sind

Table 1:The coefficientsy; (k), i = 1,...,4in (15).

We remark that by simply imposing (0); = X(0),+; = 0 in (16), the free response of a
particle has zero entries on tivh and(n + i)-th axis. Thus, according with the free response

in (16), each particle’s trajectory has nonzero projection on any subspae”ofprovided

that the initial pointX (0) is suitably chosen. From the latter consideration d), @ suitable

choice of the starting poinX (0) of any particle may guarantee an improved exploration of the
state space. In the next section we give numerical evidence that the latter issue plays a key role
within global optimization frameworks.

4 THE STARTING POINT OF EACH PARTICLE

On the guideline of the previous section, here we give some theoretical indications about the
choice of the initial pointX'(0) of each particle, which is a crucial issue in PSO. In particular,
let us considerX) and let us indicate withX (k) the trajectory of thej-th particle. From
(8) X (k)Y depends linearly on the contribution of the free respakigék)) in (16), i.e. it
depends on the corresponding initial pakit0) ).

In this section and the next one we assume that ug fearticles compose the swarm. We
want to assess the initial poin§(0)“), j = 1,...,n?, of the particles, in such a way that
the state spac®®" is explored as widely as possible by the trajectofiagk))}. This is
a general issue for global optimization algorithms, where the users often resort to randomly
generated sequences of initial points. Here we propose in particular a technique to generate
up ton? starting points, such that for any fixed indexthe sequencéX,(k)?} in (16) is
scatteredn the state spacB*". Our numerical experience with PSO confirms that the latter
result may be often fruitfully used.
To the latter purpose (see alsg])[we consider inL3), for any particle; = 1,...,n, the
parameters,;, w; in place ofa, w. Accordingly, the coefficients; (k),...,v4(k) in (16) are
given for thej-th particle byy, (k)9 ..., v4(k)").



Emilio F. Campana, Giovanni Fasano, Daniele Peri and Antonio Pinto

Consider the vectar; € IR", j = 1,...,n, such that

N S

Then, we have immediatelg}fth =0,forl < j # h < n. We also recall (see5[ 6])

that under the AssumptioB.1 the vectors17) may be used to generate at stefhe vectors
X)W, ..., X,(k)™, which form an orthogonal basis in the state subspace of the positions.
We aim at extending the latter result which only relys on the orthogonality of the vectors in
7.

Let Q € IR™™ and supposé) is orthogonal, i.e.Q*Q = I,,. In particular, the columns
{q1,...,q,} of Q represent an orthonormal basis I&f'. Suppose weaotate each column-
vectorg; of () by a specific angle, into the vectey, £ = 1, ..., n. Then, an orthogonal matrix
Q e IR™ " exists such that the vectoss = Qq;, 1 < k < n, are still an orthonormal basis and
STqL ="+ =5} qn-

We introduce a measutkof the distance between the two bages} and{s; }, according with

d= Q- QQ|r, (18)

where| - || » indicates théFrobenius nornof a matrix, i.e.| Al = [tr(AT A)]'/2. Then, we can
consider the orthogonal matr@x* which satisfies

Q" =argmaxg|Q - QQlr, st Q"Q =1, (19)

In other words, according with the definition of the distadae (18), we say that the orthogonal
matrix Q*@ is atmaximum distancéom the matrix@). We recall that by definition we have
forany A, B € R™™"

IA = B} = tr [(A = B)(A = B)| = tr(A"A) + tx(B"B) — 2tr(A"B)  (20)
thus,Q* = —1I,, satisfies/19) since

1(QTQ) = tr [(Q°Q)"(Q°Q)] =

so that

1Q - Q% = 2n — 2t2(QTQ"Q) = 4n. (21)
From (18)-(19), the latter result yields the intuitive consideration that the bdses. ., q,}
and{—q,...,—q,} are maximally distant in the sense of formuls8), Therefore, since the
columns ofQ) are orthogonal vectors, we could use the $ets. .., ¢,} and{—q, ..., —g,} in
place of the vectors irll{7). To sum up, if only2n particles are chosen for the swarm, then from
(17) and consideringd) we suggest the following set of initial particles’ positian< j < n)

X(O)(j):<t0j>’ b= o(— l\/_zez \/_]

xO = (0 )0 =2 [y

b

(22)

(we recall that by a short calculation the matri¢as - - ¢,,) and(¢,.1 - - - t2,,) are orthogonal).

8
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In Table2 we have a preliminary numerical experience, where the PSO method is applied
for the solution of 35 test problems of sizg2 < n < 30), from the literature. We considered
three scenarios with the same implementation of PSO (i.e. the coeffigients, ¢;, 7;, c,,
r4 in the scenarios were set at the same standard values), and up to 1000 function evaluations
were allowed in each scenario (regardless of the g)zeThe columnf(z*),,_,qna reports the
best solution obtained by mndomchoose of the initial position of particles. The column
F (@ )n_ortn [f (%) 2n_oren] reports the best solution obtained by choosing the initial position of
[2n] particles as in22). Our proposal evidentlgutperforms the random choicgimilar results
were obtained when the PSO parameters were modified in a wide range.

4.1 The extension tan? particles

Now, let us extend the latter result and let us focus on providing the initial position of up
to n? particles (which covers almost all the situations of practical interest). On this purpose,
recalling that the columns of the matréx in (18) are required to be an orthonormal basis of
IR", in (18)-(21) we can set without loss of generality = 7,,. We want to determiné > 2

suitable orthonormal bases B¥", by rotating the canonical basfs;, ..., e,}. Equivalently
we aim at determining in accordance witt8f-(19) the largest positive constanf > 0 and a
set ofh > 2 orthogonal matrice$@1, . . ., @} such that

M = max {1§I1'I;1éll?§h |Q: — QkHF} ) (23)

In addition, we also require that the set of column-vectors of any matéigend @);, 1 <

1 # j < n, containsexactly2n distinct vectors Observe that the conditio28) substantially
summarizes the fact that the orthogonal matriggs, . . . , @, } are mutually maximally distant,
i.e. theh bases obtained by rotating the canonical bésis. . ., e,,} are maximally ‘scattered’
in IR".

The problem23) may be quite difficult and its solution could take far from our concern.
Indeed (seeq)), in (20) the quantity|| A — B||r may be evidently unbounded whehand B
range inR™*". Anyway, even imposing the conditiqal — B)” (A — B) = I, a solution which
maximizes||A — BJ|% is A — B = P (whereP is any permutation matrix). Thus, no strong
analytical conditions are available in order to determihe. .., Q. Therefore, we renounce
to fully solve 23) and instead we claim for the following weaker result. We want to find out
1 < h < n orthogonal matrice®);, . .., @, such that ifQ; = (¢\”,...,¢®), 1 <i < h,

2) ||Q; — QjllF > m, foranyl < i+ j < hand for somen > 0.

Observe that of course fror21) we havem < 4n; however, the following result holds.

Proposition 4.1 Consider the set df symmetric orthogonal Houseolder transformatiohs. . ., Q,

2wl
Qi=1I, -2 1<i<h,
nsz” (24)
wiz\/ﬁzez—\/f% 1< <h,
n
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withn > 2. Then,Q+, ..., Q; satisfy both the requirements 1) and 2).

Proof.
As regards 1) observe that by a straightforward calculatidm; = 0, 1 < i # j < I
furthermore, letv; = (w;; - - - wi,)T, then we have for any < i, j < h andk # p,

(4) Wik,

gy =€k — 25— W, 1<k<n,
w2
(7) — Wip
q ep — 2 , 1<p<n
P SR (17111
Thus, by contradiction)’ = /) if and only if
Wik €L —€p Wip
w; = w;j,
[Jws 2 2 [ [

so that the orthogonality of vectotg andw, yields

Wi — W;
Wik = %7
Wip = L ; wj*p;
L.e. wy, = —w,;, andw,, = —w,,. However, from24) we have forw,, andw;, (similarly for
Wik andwjp)
e | V=2 ifi=k
T Un/n if i # k,
/= mj2 ifi=p
Wip = vn/n if i # p.

Furthermore, sincé # p andn > 2 we always havev;, # —w;, andw,; # —w;,. Thus, 1)
holds.
As regards 2 ) observe that sineéw; = 0,1 < i # j < h, we have

wyw! wjw! 2 w;wT
12— QI3 = 4| L N Py VT
7 Jwill> Jlw; 1?5~ [Jwi |2
for (ij?> o (Wﬂ)] g (25)
[Jw; |2 [[wi|?{|w; 2
i.e. 2) is satisfied withn = 2v/2. Q.E.D.

We also note that recalling the observations related to forr@ljafor n = 2 the choicel24)
is an optimal choice. To summarize, the formul2a4) @llow us to generate up toorthonormal
bases ofR", which satisfy the properties 1 ) and 2 ). Consequently, since the column vectors
of each matrix may be used as initial points of particles in PSO frameworks, we have a rule to
suitably supplyn? initial points. In particular, recalling that < n, by the choice of vectors

10
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wy, ..., wy, in (24) and from [7) we adopt the following formulae texplicitly address the:?
initial points:

0 0
X(O)(l) = wW11W1 ) X(O)(n) = W1pW1 ’
[[wr ] [ ]
(26)
0 0
X(O)(n+1) - anlwn ’ X(O)(n )= Wy Wy
€1 — €n
[[wn |2 [[wn |2
Finally, the choice24) for the vectors{w, ..., w,} might be suitably modified, in order to

further improve the bound2E). In addition, if the feasible sef in (1) does not contain the
points 26), then the latter could be accordingly scaled.

5 GLOBALLY CONVERGENT SCHEMES FOR PSO

In this section we address the issue of studying globally convergent modifications of PSO.
The latter subject has often been disregarded in the PSO literature. Indeed, on one hand several
practitioners are not concerned with sensitivity and convergence analysis. On the other hand
according with Sectioft, PSO is a heuristics particularly effective in the first iterations, while its
progress is less significant when approaching (possibly) the solution. Nevertheless, several real
applications have been described in the literature (see/3jlsajhere evolutionary algorithms
are also required to ensure the convergence to stationary points.

Consider the PSO iteratio®)(and let| A| indicate the cardinality of the general sét Let us
introduce the following relevant sets for our discussion:

K=1{12..},

KM={neN:n=1+iM,iec NU{0}, M > 0integet,
(27)
KMt ={nek:n-1ekM},

KMuKMT CK; CK, j=1,...,P.

Observe that by loosely speaking the subgetsand X+ contain “samples” of the elements
in K, and possibly we can s&t; = KM UKM*, j =1,..., P. Furthermore, in order to slightly
generalize the positio} we compute the quantities

qF = argmin_,, le,cj{f(x;)}, j=1,...,P, k>1,
(28)

p]; = argmirlgng{f(Qf)}a k>1.
We remark that by definitiofiph} C {¢*} C {z¥} and by settingC; = K for any j, the pairs
(¢}, p%) in (28) coincide with the pairgp?, p¥) in (4).
We introduce the globally convergent modified PSO algoritBRSO in Table3. We can
preliminarily observe that after a brief initialization in Step 1, in the Stepe first check for

11
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a stopping criterion, which tests the stationarity of the current solution. If not satisfied, the
newspeed/ectorvj?+1 is computed. Then, either if the current iteration indexelongs to the
subset™ or the progress is too slow (i.¢.(p; ") — f(pk) < o|f(pE~")]), the ‘best’ current
particle’s posmonp is perturbed along the steepest descent dlrec{rW(pg) Finally, the
vectors{¢*} are updated Observe that fro2v)-(28) and the instructions at Stép we cannot
havep’;“‘j = pk, foranyk € KM andj = 1,..., P such thatV f(«}) # 0. Indeed, in the latter
case we surely have by Stémand definition28) f(pi™") < fpk — nV f(p})] < f(p}). For

the algorithm in Tabl& the following general convergence result holds.

Theorem5.1LetL, = {z € R" : f(z) < max;<;<p{f(z})}} be compactang € C*(L,).
Consider 27) and the sequenceg}} C {¢;} C {z}},j = 1 , P,k > 1, wherep! satisfies
(28), and the sequence{af}, {xf},j =1,...,P,are generated by algorith8PSO. Suppose
there exists a positive constahtsuch that

IVf(y) = Vi) < Lily — 2], (29)
for anyy, z € £, and in algorithmGPSO 7, = n < 2/L, for anyk € K*. Then, assuming

M > 1in (27), either an integer > 1 exists such thaVl/ f(py) = 0 or the algorithmGPSO
generates the infinite subsequer{p@},crf with

Vi@ =o. (30)

lim
k—oo, kekKM

Proof.
Suppose a finite index > 1 does not exist such thai f (pg) = 0. Then, ifk € K™ we have

alsok + M € KM, so that by28) and Stepk of algorithmGPSO

f(pl;JrM) - 1<j<P, llgllé? I<k+M {f(qé)}
= min{f (P’J) g f(qé)gjgp, leICj,k<l<k+M}
< min{f(py) . f[ph—nVf(25)]} bkt Me KM @D

Then, by settingl* = —an(p’;) and considering the mean value theorem along vidg), (ve
obtain for anyk, k + M € KM

£ < f(pk+d)

= f(pf)+ [ V£ (pk+td) "kt

ﬁ

()
f(p’;)+/01\w (pk + td*) =V f (pF)|| a1t + V£ (p';)Tdk
f p’;)+/01tL||dk||2dt+Vf (pg) 4
) L

(
(W) + S + V7 (9))" "

IN

VAN

I (py
= s @)+ (- 1) |vs )

Then { (p )}K ., Is a decreasing subsequence provided#fia2 < 1, moreover, sinc&, is

, kk+MeKM (32

compact,{f (p )} is convergent. Now, observe that by rearranging relal@@p\{e obtain

P8 -1 () 2 (1= ) [ @)

12

kk+MekM.  (33)
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Thus, applying the limit — oo, k € KM, the left hand side of inequalit@8) approaches zero
and proves relatior3Q). Q.E.D.

Observe that relatior2@) often holds in ship design applications, and at least an estimation
L > L of the Lipschitz constant is available. However the explicit knowledge of at least an
estimation of the parametér, may be a too restrictive hypothesis in few cases. On this guide-
line, in the following result we slightly modify the statement of Theo®f) so that the global
convergence of algoritht@PSO is also achieveavithout explicitly knowinghe constant..

Theorem 5.2 LetL, = {z € R" : f(z) < maxi<;<p{f(z})}} be compactand € C'(L,).
Consider 27) and the sequencdg; } C {z}} C {«}},j =1,..., P,k > 1, wherep! satisfies
(28). Let the sequences}, {5}, j = 1,..., P, be generated by algorith@PSO. Suppose
there exists a positive constahtsuch that

IVf(y) = V()| < Llly — =], (34)
foranyy, z € £,. Let in the algorithnGPSO

a li =0
) kaoo}%lelCM Tk ’
(35)
b) Z N = +00.
kexM

Then, assuming/ > 1 in (27), either an integerr > 1 exists such tha¥/ f(p;) = 0 or the
algorithm GPSO generates the infinite subsequeqgé} . with

Viwh| =o. (36)

lim
k—oo, kelcM

Proof.
First observe that for any, z € £, we have from the hypothesis (see al$}) [

Fly+2) < T + VI 2+ 5 =]
Thus, reasoning as i®1) of Theorenb.1we obtain for any, k + M ¢ KM
£ < min{f(pf) £k —mVr@5)]} < o5 —mVr(2f)]
£ 08) =m0 G+ 5 |9 ()
7o) = (1= 5) |97 ()] (37)

Now, from (35) limy, ., xexcm mx = 0; thus, the constarit < ¢ < (1 — Ln,/2), k > k, exists
such that relatiornd7) eventually yields

(5 < £ (05) = me |V £ (5))]

Then, as long aﬁ’g“ IS not a stationary poinl{,f(p’;)},CM is monotonically decreasing and con-
verging on the compact sét. Furthermore, from37) and the latter considerations

S me| Vi < X () - (™)
k>k, kekKM E>k, kekKM

= f (pi) — lim f (p];) < +o0. (39)

k—o0, ke KM

IN

2

: >k ke kM. (38)

13
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Now, if we assume in39) the conditionHVf(p’;)H >¢>0,k >k k€ Ky, then B5) and
(39) yield the contradiction

052( > nk) < +00.
k>k, kekM

Therefore condition36) must hold, which completes the theorem. Q.E.D.

Remark 5.1 Observe that in Theore®.2 the explicit knowledge of the Lipschitz constdnt
is unnecessary. Indeed, the hypothe8E) fmay be straightforwardly satisfied by setting for
instancel) < 7 < o0, 0 <a<1and

Mk = k% (40)
in the algorithmGPSO.

Remark 5.2 From (37) and 38) it is not difficult to prove that replacing the hypothesasY
with the slightly heavier assumption

3) kﬁoi%rlzleICM =0,
(41)
b) Yo o =400, Y. i < +oo,
kekM kekM
we obtain in place 0139)
> alve ) - X B ) < 5 [ 0h) - s ()
kekcM kekM kekM
= f(n) - L (p) < +oo. (42)
The hypothesisid) may be easily satisfied by settibgc 77 < o0, 1/2 < a < 1 and
n
Mk (43)

T ke

in the algorithmGPSO, i.e. loosely speakin@E) and 41) are substantially equivalent.

6 CONCLUSIONS

We have described a couple of relevant issues for improving the efficiency and the effec-
tiveness of the algorithm PSO, which is a widely used heuristics for the approximate solution
of the global optimization problent), in ship design frameworks. First, we have given nu-
merical evidence that a proper choice of the initial position of the particles may be crucial for
the effectiveness of the method. Then, under reasonable assumptions two globally convergent
modifications of PSO were proposed, in order to guarantee that at least a subsequence of iterates
converges to a stationary point.

On the guideline of the previous section, a derivative-free globally convergent modification
of PSO is being studied (see aldd]); extended numerical results on ship design problems will
be included in a forthcoming paper.
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PrObIem n f(x*)n,rand f(x*)n,orth f(x*)Qn,orth
Six humps camel back 2 -0.8118 -1.0316 -1.031627
Treccani 2 0.5983 1.2125E-06| 1.3723035E-04
Quiartic 2 4.8516 -0.1526 -0.3523849
Schubert 2 -37.5954 -49.2691 -123.5767
Schubert pen.1 2 -30.6048 -23.9748 -123.1987
Schubert pen.2 2 -18.8594 -23.2320 -122.8207
Shekel5 4 -0.4085 -3.36416 -5.054569
Shekel7 4 -0.5047 -3.39414 -5.087214
Shekel10 4 -0.9192 -1.30725 -5.128263
Exponential 2 | -1.1805E-02| -0.9999 -1.000000
4 | -4.7240E-07| -0.9999 -0.9999982
Cosine mixture 2 | -4.6458E-02 -0.2000 -0.1999997
Cosine mixture 4 | 9.1806E-02 -0.1042 -0.3999915
hartman3 3 -0.9769 -3.6570 -3.655713
hartman6 6 -3.2795 -3.0208 -2.910185
5™ loc. minima 2 9.3625 6.6128E-03| 2.8020752E-06
5 | 5.1373E-02| 3.6934-02 | 2.9364234E-02
10 1.1255 0.1103 8.8159777E-02
20 1.0001 0.2525 8.8145070E-02
30 0.7282 0.1453 1.5093682E-02
10™ loc. minima 2 45.9406 | 2.81867E-02 1.378443
5 5.005 1.2651 1.370563
10 34.3466 2.3363 3.425857
20 20.5893 4.3714 2.6454281E-05
30 20.4258 3.3331 0.1432712
15™ loc. minima 2 0.8580 2.23199E-02 0.5647247
5 | 3.9033E-02 0.2709 1.671701
10 1.5038 0.8420 2.7893741E-08
20 5.4427 1.5152 8.3999912E-06
30 2.5683 2.6402 1.1098337E-05
Griewank 2 0.9505 8.1694E-07 | 5.7031489E-06
5 | 1.96844E-03 3.7250E-05| 8.5866317E-02
10 0.5813 3.8645E-05 3.338129
20 0.6602 1.8684E-05 3.021994
30 0.5974 8.5806E-05| 4.1590993E-06

Table 2:Numerical comparison among three different choices of the starting points’ position, in a PSO framework.
Our proposal (Il and 11l column of results) outperforms the standard random choice of initial particles’ position.
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Global Particle Swarm Optimization (GPSO)

Data: P > 1integer,c > 0, ¢ > 0.

Step 1:Setz; € R" andg; = =}, j = 1,..., P, computep,, setk = 1.

Stepk: If ke KMand||Vf(ph)| < e STOP, else set

k k

P
k+1 k, k ko k _
v; wivy + > ey gy — 25) | j=1...,P.
h=1

If [ke KM or (k> 1and f(pi!) — £(pk) < olf(ph1)I)] then
Doj=1,...,P
setn, > 0,
wyth = ak =V f(ah), if af = p},

k+1 _ k k+1 £k k
;T =xi vy, if xj;épg,

J J
Endo.
Elsexé‘?Jrl = :E;“ + Uf“, j=1,...,P.
Setk =k + 1.
Doj=1,...,P
If k € K; theng} = argming,. . {f(z})}

Endo.

Calculatep’ and gotoStepk.

Table 3:GPSO: a modified Globally convergent PSO algorithm.
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