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Abstract This paper describes a class of novel initializations in Deterministic Particle Swarm Op-

timization (DPSO) for approximately solving costly unconstrained global optimization problems.

The initializations are based on choosing specific dense initial positions and velocities for particles.

These choices tend to induce in some sense orthogonality of particles’ trajectories, in the early

iterations, in order to better explore the search space. Our proposal is inspired by both a theoret-

ical analysis on a reformulation of PSO iteration, and by possible limits of the proposals reported

in [6,5]. We explicitly show that, in comparison with other initializations from the literature, our

initializations tend to scatter PSO particles, at least in the first iterations. The latter goal is ob-

tained by imposing that the initial choice of particles’ position/velocity satisfies specific conjugacy

conditions, with respect to a matrix depending on the parameters of PSO. In particular, by an

appropriate condition on particles’ velocities, our initializations also resemble and partially extend

a general paradigm in the literature of exact methods for derivative-free optimization. Moreover,

we propose dense initializations for DPSO, so that the final approximate global solution obtained

is possibly not too sparse, which might cause troubles in some applications. Numerical results, on

both Portfolio Selection and Computational Fluid Dynamics problems, validate our theory and

prove the effectiveness of our proposal, which applies also in case different neighbourhood topolo-

gies are adopted in DPSO.
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1 Introduction

In this paper we first consider the solution of the unconstrained global optimization problem

min
x∈IRn

f(x), (1)

where f : IRn → IR is continuous and possibly nondifferentiable, so that derivatives are unavailable.

In particular, we aim at detecting a global minimum x∗ of (1), satisfying f(x∗) ≤ f(x), for any

x ∈ IRn. As well known, the existence of a global minimum of (1) can be often guaranteed under

mild assumptions on f(x) (e.g., f(x) is coercive, with lim‖x‖→∞ f(x) = +∞). Furthermore, in

order to motivate the use of an heuristic procedure to solve (1), in place of possibly more expensive

exact asymptotic convergent methods, we also assume that the function f(x) is computationally

expensive and a fast approximate solution is sought. Observe that in the last decade we have

seen a fast increasing complexity in applications, where optimization techniques are sought [18,

22,44]. In particular, the demand of sophisticated and efficient methods which do not rely on the

smoothness of the functions has considerably speeded up, because of the abundance of problems

where derivatives are unavailable and the functions are only accessible through black-boxes (see

[15]). In this regard, Automatic Differentiation [23] helps to exactly retrieve derivatives using only

function evaluations, but it needs the analytical expression of the functions in hand. Conversely, two

main derivative-free (DFO) approaches have gained the attention in the last decades, both with pros

and cons. Direct Search methods, which exploit the objective function information along a precise

pattern of search directions (see [27]), and Model Based DFO methods, which use information of

the function based on a local model (see [15]). In particular, among recent advances we can find the

class of Mesh Adaptive Direct Search (MADS) algorithms [1,2], along with their variants. They

represent a natural evolution of Direct Search methods for nonsmooth constrained problems, and

are based on considering a dense set of search directions.

To our purposes in this paper we focus on the heuristic procedure PSO, which is neither able to

guarantee the convergence to global minima nor it ensures global convergence (i.e. convergence from

any starting iterate) to stationary points. PSO represents an iterative method for the approximate

solution of global optimization problems, based on updating a swarm of P particles (see [26,4,

11,12] and therein references). The use of heuristic methods in place of DFO globally convergent

techniques is advisable in those cases where the function evaluation is rather expensive, or the

number of function evaluations, necessary for the solution of the problem in hand, tends to increase.

In this regard, heuristics can offer a reasonable compromise between the accuracy of the final

solution and the computational budget required to obtain it. Each particle represents a vector

(position) in IRn and iteratively describes a trajectory in IRn. At the k-th iteration the j-th particle

updates its position as

xk+1
j = xkj + vk+1

j , j = 1, . . . , P, (2)

where xkj ∈ IRn indicates its current position, vk+1
j ∈ IRn is its velocity and represents a search

direction. Borrowing a standard terminology from optimization, we have in general that vk+1
j

is not gradient related. In other words, vk+1
j might possibly be not a descent direction for f(x)

at xkj , so that any small movement along vk+1
j might not yield a function decrease. As a natural

consequence, we have that as already remarked, the global convergence properties for PSO iteration

(2) can be hardly proved without further additional assumptions. Observe that some papers have

been proposed in the literature, where PSO was paired with derivative-free globally convergent

methods, based on both linesearch methods (see [41,39]) and pattern search methods (see [49,48]).

In the current paper our aim is limited to the study of favorable variants of PSO initializations,

without issuing problems related to global convergence.

In PSO, the original expression of vector vk+1
j (see also [26]), for a particle j, was given by

vk+1
j = vkj + cjrj ⊗ (pkj − xkj ) + cgrg ⊗ (pkg − xkj ), (3)
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where cj and cg are constant parameters, while rj and rg are suitable random vectors. Finally, the

symbol ‘⊗’ represents a component-wise product, and

pkj ∈ argmin
0≤h≤k

{f(xhj )}, j = 1, . . . , P,

pkg ∈ argmin
0≤h≤k, j=1,...,P

{f(xhj )},
(4)

being, at step k, pkj the personal best position so far of particle j, and pkg the global best position

so far of the entire swarm, respectively.

Relations (2)-(3) reveal that in PSO iteration, the current position of a particle depends on its

lattermost position, but is also independent of the other previous positions. Equivalently, PSO can

be viewed as a Markov chain. As usually reported in the literature, cj is the so called cognitive

parameter, and multiplies the contribution from the history of the j-th particle. On the other

hand, cg is the social parameter, and the vector cgrg ⊗ (pkg − xkj ) in (3) attempts to balance the

information from each particle’s history through a social contribution, summarized by the current

global best position in the swarm.

This paper is mainly focused on addressing the initialization in PSO (for a partial analysis and

a numerical experience on the impact of PSO initialization, the reader can refer to the recent paper

by [42] and therein references). Specifically, we first consider a DPSO iteration as in [6]. From the

latter paper we also borrow the idea of routing the particles’ trajectories so that they possibly

follow nearly orthogonal patterns, in a sense which is specified in Section 4. However, in this paper

we also attempt to overcome some limits in [6] and [20], as indicated in the following items.

(i) In [6] the authors tend to impose (at least in the early DPSO iterations) the orthogonality

of the entire trajectories of the particles, in an extended search space. On the contrary, here

we provide analytical conditions to impose only orthogonal velocities of particles, in the early

iterations. The resulting approach proves to be more efficient than the one in [6].

(ii) Similarly to [20] we first tend to impose the orthogonality of particles’ velocities, in the early

iterations. Then, unlike in [20] we suitably recombine vectors obtained by solving an intermedi-

ate symmetric eigenvalue problem, so that linear independency among the velocities is finally

pursued, at least in the early iterations.

(iii) We can guarantee that, unlike [6] and [20], our proposal here introduces ‘dense’ approximations

for the initial positions and velocities of particles. I.e., we guarantee that particles initialization

is not sparse, which may cause on some applications an undesired bias of the final results (see

also Section 5.

On the other hand, our approach takes into account the results obtained in the landmark papers

[26,34,14,32,36], along with [46,45,47], where several relevant issues related to PSO initialization

are investigated. Note that in our numerical experience here, we are not concerned with comparing

our proposal with other efficient initializations from the literature. This choice is motivated by one

fact, which definitely makes the latter comparison unfair. On one hand, more standard initializa-

tions typically handle random positions and velocities, so that they require a statistical analysis

in order to validate the results they provide. This turns to increase the overall number of function

evaluations, which might compromise efficiency. Since our proposal does not use any random pa-

rameter, to some extent we might be possibly less flexible, however no statistics on the numerical

results is needed (see also [42,38]). The latter fact turns to be an essential requisite on our ship

design problems, where each objective function evaluation is often the result of a time consuming

simulation. Hence, we preferred to report our numerical experience in Section 7 including only

deterministic initializations paired with DPSO.

For the sake of completeness, we also highlight that our deterministic initialization can be hardly

paired with non-deterministic versions of PSO. Indeed, the presence of random parameters in PSO

might cause the matrix Q(k) in (9) to yield the inequality Q(k) 6= [Q(1)]k, which destroys the

achievements in Sections 3 and 4.
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Sections 2 and 3 briefly report a revised version of the proposal by [6], while Section 4 contains

both the first contribution of this paper, along with some theoretical results. Sections 5 and 6

motivate a more specific initialization for DPSO, which is then tested on a ship design problem in

Section 7. Finally, Section 8 and an Appendix will complete the paper, including some extensions

and technical proofs.

We recall that with ‘det(A)’ we indicate the determinant of matrix A. ‘I’ indicates the identity

matrix of suitable dimension and ‘ei’ is the i-th unit vector. To avoid a burdensome notation the

Euclidean norm is simply indicated by ‖ · ‖, while ‖ · ‖p represents the standard p-norm.

2 PSO iteration as a linear dynamic system

In order to describe our novel initialization for a modified PSO scheme, let us consider the next

Assumption 1 (which characterizes the so called Deterministic Particle Swarm Optimization -

DPSO, see also [35]).

Assumption 1 [DPSO] We assume in (3) that cj = c and rj = r, for any j = 1, ..., P . Moreover,

we set cg = c̄, rg = r̄, being c, r, c̄, r̄ suitable positive constant coefficients.

Now, following the guidelines by [42], we also introduce in (3) the real parameter χ (constriction

factor) and choose r = r̄ = 1 in Assumption 1. Then, we may consider for the j-th particle the

overall iteration of DPSO:
vk+1
j = χ

[
vkj + cj(p

k
j − xkj ) + cg(p

k
g − xkj )

]
, k ≥ 0,

xk+1
j = xkj + vk+1

j , k ≥ 0.

(5)

Without loss of generality at present we focus on the j-th particle and omit the subscript in the

recurrence (5), so that for the sake of simplicity we can set pkj = pk, xkj = xk and vkj = vk.

With the latter position the iteration (5) is immediately equivalent to the dynamic, linear and

stationary system1

X(k + 1) =

χI −χ(c+ c̄)I

χI [1− χ(c+ c̄)] I

X(k) +

χ(cpk + c̄pkg)

χ(cpk + c̄pkg)

 , (6)

where c and c̄ are defined in Assumption 1 and

X(k) =

vk

xk

 ∈ IR2n, k ≥ 0.

The sequence {X(k)} identifies a trajectory in the state space IR2n, and since (6) is a linear and

stationary system, we may consider the free response XL(k) and the forced response XF (k) of the

trajectory {X(k)}. Then, considering (6) we explicitly obtain at step k ≥ 0 (see also [6,5])

X(k) = XL(k) + XF (k), (7)

where

XL(k) = Q(k)X(0), XF (k) =

k−1∑
τ=0

H(k − τ)U(τ), (8)

1 The latter terminology is borrowed from [6,5], whose symbols are used in this brief section, too.
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and after some calculations, we obtain for the quantities in (8) the expressions

Q(k) =

χI −χ(c+ c̄)I

χI [1− χ(c+ c̄)] I

k ∈ IR2n×2n, (9)

H(k − τ) =

χI −χ(c+ c̄)I

χI [1− χ(c+ c̄)] I

k−τ−1∈ IR2n×2n, (10)

U(τ) =

χ(cpk + c̄pkg)

χ(cpk + c̄pkg)

 ∈ IR2n, (11)

being the matrices Q(k), H(k − τ) and U(τ) in general dependent on the iteration index k. As

detailed hereafter, for our purposes this last dependency does not represent a drawback, inasmuch

as Assumption 1 holds and Q(k) in (9) is the power of a constant matrix. Also observe that in (9)

the matrix Q(k) explicitly accounts for the dependency of X(k) on X(0) (and not on the vectors

pk, pkg). On the other hand, the matrices H(k− τ) and U(τ) uniquely depend on pk, pkg , i.e. they

depend on the knowledge collected during the progress of the algorithm, and do not depend on the

initial condition X(0). Thus, H(k − τ) and U(τ) uniquely account for the dependency of X(k) on

pk, pkg .

We want to specifically focus now on the free response XL(k), so that we need to preliminarily

study the main features of Q(k). A remarkable observation from the latter formulae is that XL(k)

in (8) uniquely depends on the initial point X(0), being independent of the vector pkg . On the

contrary, XF (k) in (8) is independent of X(0), while it is strongly dependent on pkg . This implies

that the quantities XL(k) and XF (k) can be separately computed. For our analysis we need now

to explicitly calculate the eigenpairs of Q(k), in order to easily compute the free response XL(k).

3 Computation of the free response XL(k) and choice of DPSO coefficients

Suppose that Assumption 1 holds, hereafter in order to simplify the notation we introduce the

following position in (9)

ω = χ(c+ c̄). (12)

Then, before proceeding with our analysis, we recall (see also [46,14,45,47,6]) that in order to

provide necessary conditions which avoid divergence of the trajectories of particles, the relations

0 < χ < 1

0 < ω < 2(χ+ 1)
(13)

must hold. In this regard other settings for DPSO parameters can be chosen, as specified by [47].

In any case, the relations (13) guarantee that all the eigenvalues of Q(k) have a modulus smaller

than one; moreover, relations (13) also ensure that

lim
k→∞

XL(k) = 0

by the definition of free response. A keynote fact we use in this paper is that (see [6]) the matrix

Q(1) in (8) has just the two real eigenvalues λ1 and λ2 if

ω ≤ 1 + χ− 2
√
χ or ω ≥ 1 + χ+ 2

√
χ,

being λ1 and λ2 coincident if and only if ω = (1±√χ)2. In case λ1 = λ2 then some care has to be

considered in our analysis, which is beyond the scope of the present paper. Thus, we assume that

the next condition holds, too.
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Assumption 2 Let Assumption 1 hold. Given the quantities χ and ω in (12), we also assume that

ω 6= (1±√χ)2.

If Assumption 1 holds, the results by [6] can be applied, so that the free response at step k, i.e.

XL(k) = Q(k)X(0) = [Q(1)]
k

X(0), can be computed by simply using the distinct eigenvalues λ1
and λ2 of Q(1), being explicitly

XL(k) = [Q(1)]
k

X(0) =

γ1(k)v0 − γ2(k)x0

γ3(k)v0 − γ4(k)x0

 , (14)

where, after some computations

γ1(k) =
λk1(χ− λ2)− λk2(χ− λ1)

λ1 − λ2
; γ2(k) =

ω(λk1 − λk2)

λ1 − λ2
;

γ3(k) =
(λk1 − λk2)(χ− λ1)(χ− λ2)

ω(λ1 − λ2)
; γ4(k) =

λk1(χ− λ1)− λk2(χ− λ2)

λ1 − λ2
.

4 An attempt to improve the effectiveness for our DPSO initialization

This section is mainly devoted to study a possible improvement for DPSO initialization, provided

that Assumptions 1 and 2 hold. Our proposal allows DPSO to

1. widely exploring the search space in the early iterations,

2. maintaining iteration (5),

3. possibly reducing the overall computational effort, when measured throughout the number of

function evaluations.

Note that as regards item 2., we are interested about improving DPSO basic iteration, rather than

modifying it. That is why our proposal is intended as an enhancement of an existing method, rather

than a proposal for a novel one. As regards item 3., it may have a dramatic impact on some appli-

cations, where each function evaluation requires a large CPU-time (e.g. design problems, as better

detailed in Section 7.2). On this purpose, we strongly remark that exploiting our initializations

both

– a few iterations of DPSO might potentially suffice to provide a reasonable and satisfactory

approximate solution of (1);

– the final solution provided is possibly dense, i.e. a large number of its entries are nonzero.

We start our analysis using the reformulation in Section 2, in order to impose a novel condition

(with respect to [6]) for the choice of initial particles’ position/velocity (namely the next relation

(18)). Then, in Section 6 we will suitably update (18) in order to avoid sparsity on the final

approximate solution.

To sketch our proposal we consider any two particles j and h, such that 1 ≤ j 6= h ≤ P .

Using the theory in Section 2, along with the Assumptions 1 and 2, we consider their trajectories

in the space IR2n, so that their initial position (X(0)(j) and similarly X(0)(h)) and free response

(XL(k)(j) and similarly XL(k)(h)) are given by (14) (we only report results for particle j, but

similar expressions immediately hold also for particle h)

X(0)(j) =

v0
j

x0
j

 =⇒ XL(k)(j) = [Q(1)]
k

X(0)(j) =

γ1(k)v0
j − γ2(k)x0

j

γ3(k)v0
j − γ4(k)x0

j

 . (15)

Borrowing the idea in Section 6 of [6], for a given value of the index k we might consider to

impose the orthogonality of the free responses {XL(k)(j)} (and not necessarily the orthogonality of
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Fig. 1 Green points and blue squares represent trajectories of the particles j and h, respectively, in the extended
space IR2n. [6] impose the orthogonality between the (entire) free responses XL(k)(j) and XL(k)(h), in order to
improve the exploration of the search space.

the vectors {X(k)(j)}) - see Figure 1. This is not equivalent, of course, to impose the orthogonality

of particles’ trajectories. Nevertheless, as the numerical experience in [6] confirms, we observed an

appreciable efficiency by setting the position and velocity of P ≡ n particles, in such a way that

the free responses XL(k)(j1), . . . ,XL(k)(jn) possibly satisfy at step k the P · (P − 1) orthogonality

conditions [
XL(k)(ji)

]T [
XL(k)(jh)

]
= 0, ∀ji, jh ∈ {j1, . . . , jn}, i 6= h. (16)

Since the free responses of particles also satisfy, for any particle j, the condition

lim
k→∞

XL(k)(j) = 0,

i.e they tend to fade with the iterations, then it was reasonable in [6] to impose the orthogonality

conditions (16) at step k = 0, i.e. at the outset of the iterative process.

Here, we want to generalize the idea in [6], observing that in order to scatter the particles in

the search space what really matters is the orthogonality of the search directions of the particles,

and possibly not the orthogonality of the entire free responses as in (16). On this guideline, here

we want to study the initial position and velocity of 2n particles, so that at step k = 0 (i.e. at

the very early iteration) the corresponding free responses XL(0)(j1), . . . ,XL(0)(j2n) satisfy for any

1 ≤ j 6= h ≤ 2n (see (15))[
γ1(1)v0

j − γ2(1)x0
j

]T [
γ1(1)v0

h − γ2(1)x0
h

]
= 0. (17)

I.e., only the components corresponding to the velocity, in the free responses of particles j and h,

are orthogonal. After some computation, relation (17) is equivalent to impose the initial condition

[
X(0)(j)

]T σ1I σ2I

σ2I σ3I

X(0)(h) = 0, (18)

where

σ1 = [γ1(1)]2; σ2 = −γ1(1)γ2(1); σ3 = [γ2(1)]2.

Observe that the matrix

A =

σ1I σ2I

σ2I σ3I

 (19)
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is symmetric and by (15) the condition (18) indicates that the vectors

X(0)(j), X(0)(h) (20)

must be mutually A-conjugate (see also [25,21] for a reference on conjugacy and its applications

in optimization).

4.1 Some theoretical results

The first relevant property induced by the introduction of the A-conjugacy in relation (18) is the

linear independence, as stated in the next result.

Proposition 1 Let m ≤ 2n and consider relations (15). Suppose the vectors

X(0)(j) ∈ IR2n, j = 1, . . . ,m, (21)

are mutually conjugate with respect to the symmetric non singular matrix A ∈ IR2n×2n in (19),

i.e. [
X(0)(i)

]T
AX(0)(j) = 0, 1 ≤ i 6= j ≤ m,

with [
X(0)(j)

]T
AX(0)(j) 6= 0, 1 ≤ j ≤ m. (22)

Then, the vectors (21) are linearly independent in IR2n.

Proof

We directly have by the A-conjugacy and conditions (22) that

det
[(

X(0)(1) · · · X(0)(m)
)T

A
(
X(0)(1) · · · X(0)(m)

)]
=

det
[
diag1≤j≤m

{[
X(0)(j)

]T
AX(0)(j)

}]
6= 0,

which follows from (22). Thus, the vectors in (21) are linearly independent. ♦
Now, the property in Proposition 1 suggests that in case the vectors (21) are mutually conjugate,

then not only the velocities of the free responses of the particles, at step k = 1, are orthogonal (as

stated in relation (17)), but the vectors (21) will be also sufficiently well scattered in IR2n (since

they are linearly independent). Thus, the choice (21) also underlies a distribution of points in the

extended space IR2n.

To complete our analysis we need now to provide an automatic and reliable procedure for

generating the mutually A-conjugate vectors (21), possibly having m = 2n, being 2n the largest

possible number of A-conjugate (and linearly independent) vectors in IR2n satisfying Proposition

1. To this purpose we have the following result.

Proposition 2 Let m ≤ 2n and suppose the matrix A ∈ IR2n×2n in (19) is symmetric positive

definite. Let

X(0)(1) ∈ IR2n

be any vector such that [
X(0)(1)

]T
AX(0)(1) 6= 0, (23)

and let us set the parameter ε1 ∈ IR such that

ε1 =
‖v0

1‖2 + ‖x0
1‖2

σ1‖v0
1‖2 + σ3‖x0

1‖2 + 2σ2(v0
1)T (x0

1)
, (24)
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and the vectors s01 ∈ IRn, t01 ∈ IRn such that s01

t01

 = X(0)(1). (25)

Suppose σ1‖v0
j‖2 + σ3‖x0

j‖2 + 2σ2(v0
j )
T (x0

j ) 6= 0, for j = 1, . . . ,m, and consider the recurrences s0j

t0j

 =

 s0j−1 − εj−1
(
σ1v

0
j−1 + σ2x

0
j−1
)

t0j−1 − εj−1
(
σ3x

0
j−1 + σ2v

0
j−1
)
 , j = 2, . . . ,m, (26)

ηj =
σ1(s0j )

T (v0
j−1) + σ2

[
(t0j )

T (v0
j−1) + (s0j )

T (x0
j−1)

]
+ σ3(t0j )

T (x0
j−1)

σ1‖v0
j−1‖2 + σ3‖x0

j−1‖2 + 2σ2(v0
j−1)T (x0

j−1)
, j = 2, . . . ,m,(27)

X(0)(j) =

 s0j − ηjv0
j−1

t0j − ηjx0
j−1

 , j = 2, . . . ,m, (28)

εj =
‖s0j‖2 + ‖t0j‖2

σ1‖v0
j‖2 + σ3‖x0

j‖2 + 2σ2(v0
j )
T (x0

j )
, j = 2, . . . ,m, (29)

in order to generate the sequence of m vectors{
X(0)(j)

}
k = 1,...,m.

(30)

Then, the m vectors in (30) are mutually A-conjugate.

Proof

The proof follows after some computations, applying the Conjugate Gradient method in [25].

For the sake of brevity the proof is omitted. ♦

Observe that Proposition 2 provides an efficient general iterative tool in order to generate the

mutually A-conjugate vectors

X(0)(j), j = 1, . . . ,m,

also considering that the linear algebra involved is reasonably cheap, even for large values of m.

Remark 1 It is not difficult (though tedious) to verify that the recurrence (23)-(29) is to some

extent equivalent to apply the so called method of Conjugate Gradient (CG, [25]), for the solution

of the linear system

Bw = b, where B = A, b = −

v0
1

x0
1

 .
The latter method is designed for symmetric positive definite linear systems and generates the

sequence {wk} of approximations to the solution w∗. The CG is widely used to solve linear sys-

tems within continuous optimization problems, since it is very stable and computationally cheap,

provided that the condition number of matrix A is reasonably bounded. However, note that in

our case what really matters is the generation of the sequence (30), and not the pure investigation

of possible solutions for the linear system whose matrix is A. Moreover, the main assumption in

Proposition 2 (i.e. the positive definiteness of matrix A) unfortunately cannot hold, as detailed in

the next section.
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4.2 A further improvement

After a careful reading of Proposition 2, we can observe the following couple of weaknesses which

possibly discourage the application of therein procedure, in order to compute the sequence (30):

(i) Proposition 2 assumes that m mutually conjugate vectors are generated, but it does not guar-

antee that m = 2n. Thus, the procedure (23)-(29) generates a number of conjugate vectors

which is possibly inferior to 2n (by Proposition 1 it cannot exceed 2n), so that the advantages

provided by imposing condition (17) might be not fully exploited;

(ii) the denominator in the expression of the parameters {εj} and {ηj} in (24), (27) and (29) might

be possibly zero, since in general the matrix A has not all positive eigenvalues. Indeed, first

observe that since A is symmetric, its eigenvalues are all real. Moreover, we have for any λ 6= σ1

[A− λI] =

σ1I− λI σ2I

σ2I σ3I− λI

 =

 I 0

σ2

σ1−λI I


 (σ1 − λ)I σ2I

0
(
σ3 − λ− σ2

2

σ1−λ

)
I

 ,
so that σ1 cannot be an eigenvalue of A and we have for the secular equation

0 = det

σ1I− λI σ2I

σ2I σ3I− λI

 = (σ1 − λ)n
[
σ3 − λ−

σ2
2

σ1 − λ

]n
,

which is satisfied if and only if

λ2 − (σ1 + σ3)λ+ (σ1σ3 − σ2
2) = 0.

Thus, we obtain for the 2n eigenvalues of the (symmetric) matrix in (19) only the two (real)

distinct values

λ1,2 =
1

2

[
(σ1 + σ3)±

√
(σ1 + σ3)2 − 4(σ1σ3 − σ2

2)

]
.

Now, recalling that

σ1 = [γ1(1)]2 ; σ2 = −γ1(1)γ2(1) ; σ3 = [γ2(1)]2

we finally obtain the two eigenvaluesλ1 = 0

λ2 = [γ1(1)]2 + [γ2(1)]2 > 0,

each with algebraic multiplicity equal to n. Hence, the matrix A is singular and only posi-

tive semidefinite, implying that the procedure in Proposition 2 can stop prematurely, with m

possibly much smaller than 2n.

Nevertheless, to overcome the disadvantages in (i)-(ii), note that if zi and zj are distinct eigenvec-

tors of matrix A, respectively associated to the eigenvalues λi and λj , then we simply have

zTi Azj = zTi (λjzj) = λjz
T
i zj = 0. (31)

Thus, the eigenvectors of a symmetric matrix are also mutually conjugate directions with respect

to that matrix. As a consequence, in order to satisfy condition (18) it suffices to compute the 2n

eigenvectors z1, . . . , z2n of (19) and set the vectors

X(0)(1) , · · · , X(0)(2n)

as proportional to the latter eigenvectors.
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After some computation we have for the corresponding 2n eigenvectors zi, zn+i, i = 1, . . . , n,

of the matrix A in (19) the simple expressions

λ1 =⇒ zi =

−σ3−λ1

σ2
ei

ei

 =

 γ2(0)
γ1(0)

ei

ei

 ∈ IR2n, i = 1, . . . , n, (32)

λ2 =⇒ zn+i =

−σ3−λ2

σ2
ei

ei

 =

−γ1(0)γ2(0)
ei

ei

 ∈ IR2n, i = 1, . . . , n. (33)

The last result implies that in order to satisfy the conditions (18), for any 1 ≤ j 6= h ≤ P ≤ 2n, at

iteration k = 1, it suffices to set the initial particle position and velocity (respectively of the i-th

and (n+ i)-th particle) according with the following initializations

X(0)(i) = ρ1i zi, ρ1i ∈ IR \ {0}, i = 1, . . . , n (34)

and

X(0)(n+i) = ρ2i zn+i, ρ2i ∈ IR \ {0}, i = 1, . . . , n. (35)

To sum up, in case the Assumptions 1 and 2 hold (which also implies that no randomness is used

in DPSO iteration), then

– when P ≤ 2n, the choice (34)-(35) of the particles’ position and velocity guarantees that the

components of velocity of the free responses of the particles will be orthogonal at iteration k = 1;

– in case P > 2n, the user can adopt the initialization (34)-(35) of the particles position and

velocity for 2n particles, while for the remaining (P − 2n) particles the choice of position and

velocity is arbitrary.

We conclude this section by remarking that the choice of the nonzero coefficients ρ1i , ρ
2
i , i = 1, . . . , n

in (34)-(35) is actually arbitrary, so that they can be suitably set by the user and are problem

dependent. Anyway, for our numerical experience we adopted the choice ρ1i = ρ2i = 0.5, for i =

1, . . . , n, in order to maintain the feasibility of initial particles position (see also Section 7).

5 Possible drawbacks: a simple example

Here we detail reasons for the fact that on several real problems the setting (34)-(35) for the

initial DPSO population might be still inadequate. This seems an important preliminary step in

order to justify the analysis in the second part of this paper. To evaluate the effectiveness of the

initial setting (34)-(35), we first tested it on the solution of a linearly constrained nondifferentiable

portfolio selection problem, described below.

We consider a simplified version of the portfolio selection model recently proposed in [16]. The

model in [16] uses a coherent risk measure based on the combination of lower and upper moments

of different orders of the portfolio return distribution. Such a measure can manage non-Gaussian

distributions of asset returns, to reflect different investors’ risk attitudes. The simplified model

allows short-selling, i.e. the amount invested in each asset can be possibly negative. In our model

we used the following parameters:

– N : number of possible assets (N = 20 in our numerical example);

– rex: minimum expected return of the portfolio;

– ri: random variable indicating the return of the i-th asset, for i = 1, . . . , N ;

– p: index of the norm used in the risk measure of the portfolio, with p ≥ 1 (p = 3 in our numerical

example);

– a: parameter of the risk measure, with 0 ≤ a ≤ 1 (a = 0.5 in our numerical example).

Moreover, the variables in our model are described as follows:



12

– xi: (with xi ∈ IR ) quantity of the portfolio invested in the i-th asset, for i = 1, . . . , N ;

– r: portfolio return.

In addition, E[y] indicates the expected value of the random argument y, while y− indicates

max{0,−y} and y+ indicates (−y)−. Finally, we use the symbol r̂i for E[ri]. Given the above

notation, the expected portfolio return E[r] is equal to

E[r] =

N∑
i=1

r̂ixi,

and our overall simplified constrained portfolio selection problem is as follows

min
x

ρa,p(r) = a‖(r− E[r])+‖1 + (1− a)‖(r− E[r])−‖p − E[r] (36)

s.t. E[r] ≥ rex (37)
N∑
i=1

xi = 1. (38)

In this formulation, the risk measure ρa,p(r) in (36) is coherent (i.e. it satisfies some formal prop-

erties which are appealing for investors) as proved by [10]. Observe also that the norm ‖ · ‖1 makes

ρa,p(r) nondifferentiable. The constraint (37) imposes minimum desired expected return of the

portfolio, while (38) imposes a budget constraint but does not impede indeed short-selling. As for

the numerical instance, we considered daily prices of 20 assets in Italian FTSE MIB stock-exchange

index. Finally, details on the computation of ρa,p(r) using the daily prices can be found in [16].

In order to approximately solving by DPSO the constrained non smooth problem above, bor-

rowing the idea by [16], we considered the following unconstrained reformulation of (36)-(38)

min
x∈IRN

P (x; ε), (39)

where we used the exact penalty function

P (x; ε) = ρa,p(r) +
1

ε

[
max

{
0, rex −

N∑
i=1

r̂ixi

}
+

∣∣∣∣∣
N∑
i=1

xi − 1

∣∣∣∣∣
]

(40)

and for simplicity we set the parameter ε = 10−4 in our numerical experience (see also [16] for

details on exact penalty approaches). Note that the reformulation (39) is non differentiable and ad-

mits in general several solutions, so that DPSO was specifically adopted to provide fast approximate

solutions on several scenarios (unlike the shape design problem in Section 7, here a few seconds of

computation on a laptop are allowed). This is indeed a typical application where tradesmen often

claim for a quick solution on different scenarios, rather than a unique accurate solution to propose

to their customers. In particular, the initialization (34)-(35) was experienced, and in far less than

200 DPSO iterations it provided really effective results in terms of fast minimization of the fitness

function P (x; ε) and risk measure ρa,p(r) (see Figures 2 and 3 for a typical numerical instance),

along with feasibility of the final solution. However, we also observed that the initialization (34)-

(35) tends to provide a sparse solution, which reduces diversification and might be therefore of

scarce interest for some investors. In particular, on different scenarios the final solution provided

by the initialization (34)-(35) yielded a portfolio including just 2-7 assets (depending on the sce-

nario considered), which is often too restrictive for many investors. This was a consequence of the

corresponding sparsity (i.e. a few nonzero entries of the vectors) of the initialization (34)-(35). In

the next section we discuss a suitable modification to the initialization (34)-(35), which takes into

account and possibly fixes the latter drawback.
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Fig. 2 Fitness function P (x; ε) vs. the number of iterations, when the initialization (34)-(35) is experienced.

Fig. 3 Risk measure ρa,p(r) vs. the number of iterations, when the initialization (34)-(35) is experienced.

6 A dense modification

According with the discussion in the last section, here we want to provide a modification of DPSO

initialization (34)-(35), with the specific aim to possibly pursue a dense final solution for problem

(1). We remark that the proposal in this section strongly differs from [20] and the analysis in

Section 4.2. Indeed, here we specifically focus on the issue of density (i.e. avoiding a large number

of zero entries) for the final solution provided by DPSO. On this purpose, let be given the 2n

orthonormal eigenvectors zi, i = 1, . . . , 2n, in (32)-(33) of the symmetric matrix A in (19). The

vectors z1 . . . , z2n are also mutually conjugate with respect to A, i.e. conditions (31) hold. Now,

let without loss of generality the eigenvectors z1 . . . , z2n be associated respectively with the two

eigenvalues µ1 = 0 and µ2 = [γ1(1)]2 + [γ2(1)]2 > 0 of A, as

Azi = µ1zi, i = 1, . . . , n,

Azi = µ2zi, i = n+ 1, . . . , 2n.
(41)
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Starting from the motivations suggested in Section 5, in place of vectors z1, . . . , z2n we preliminarily

consider the novel set of (dense) vectors w1, . . . ,w2n as

wi = zi − α
n∑
j=1

j 6=i

zj − γ
2n∑

j=n+1

zj , i = 1, . . . , n, α, γ ∈ IR, (42)

wt = zt − β
2n∑

j=n+1

j 6=t

zj − δ
n∑
j=1

zj , t = n+ 1, . . . , 2n, β, δ ∈ IR. (43)

Then, we want to compute (if any) the values of α, β, γ and δ such that the following conjugacy

conditions hold

wT
hAwk = 0, for any 1 ≤ h 6= k ≤ 2n.

Finally, we will use w1, . . . ,w2n in (42)-(43) in place of z1, . . . , z2n.

From (31), (41) and (42), and setting 1 ≤ h 6= k ≤ n we can impose

0 = wT
hAwk =

zh − α
n∑
j=1

j 6=h

zj − γ
2n∑

j=n+1

zj


T

A

zk − α
n∑
j=1

j 6=k

zj − γ
2n∑

j=n+1

zj


= −αzThAzh − αzTkAzk + α2

n∑
j=1

j 6=h,k

zTj Azj + γ2
2n∑

j=n+1

zTj Azj

= −αµ1 − αµ1 + α2(n− 2)µ1 + γ2nµ2,

and recalling that µ1 = 0 the latter relations are satisfied if and only if

∀α ∈ IR, γ = 0. (44)

Similarly, by (31), (41) and (43), and setting now n+ 1 ≤ h 6= k ≤ 2n, we can impose

0 = wT
hAwk =

zh − β
2n∑

j=n+1

j 6=h

zj − δ
n∑
j=1

zj


T

A

zk − β
2n∑

j=n+1

j 6=k

zj − δ
n∑
j=1

zj


= −βµ2 − βµ2 + β2(n− 2)µ2 + δ2nµ1,

and recalling that µ2 > 0 the latter relations are satisfied for n > 2 if and only if

β ∈
{

0 ,
2

n− 2

}
, ∀δ ∈ IR. (45)

Now, taken the vectors wi, for i ∈ {1, . . . , n} in (42), and wt, for t ∈ {n + 1, . . . , 2n} in (43) we

have by (31), (44) and (45)

wT
i Awt =

zi − α
n∑
j=1

j 6=i

zj


T

A

zt −
2

n− 2

2n∑
j=n+1

j 6=t

zj − δ
n∑
j=1

zj


= −δzTi Azi + αδ

n∑
j=1

j 6=i

zTj Azj = −δµ1 + (n− 1)αδµ1 = 0.
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Thus, taken the orthonormal eigenvectors z1, . . . , z2n of A in (32)-(33), along with the values

α ∈ IR \ {0}, β =
2

n− 2
, γ = 0, δ ∈ IR \ {0}, (46)

then the vectors w1, . . . ,wn,wn+1, . . . ,w2n in (42)-(43)

1. are mutually A-conjugate,

2. are dense, i.e. they contain a large number of non zero entries.

Now we are interested about finding the values εi, i = 1, . . . , 2n such that

‖εiwi‖ = 1, i = 1, . . . , 2n,

i.e. {ŵi} (with ŵi = εiwi) provides a set of 2n unit mutually A-conjugate directions ŵ1, . . . , ŵ2n,

using the vectors w1, . . . ,w2n. To this purpose we distinguish between the cases i ∈ {1, . . . , n} and

i ∈ {n+ 1, . . . , 2n}. In case i ∈ {1, . . . , n} we have by (31)

1 = ‖εiwi‖ = εi


zi − α

n∑
j=1

j 6=i

zj


T zi − α

n∑
j=1

j 6=i

zj




1/2

= εi

‖zi‖2 + α2
n∑
j=1

j 6=i

‖zj‖2


1/2

= εi
[
1 + α2(n− 1)

]1/2
,

which is satisfied by choosing

εi =
1

[1 + α2(n− 1)]
1/2

.

Similarly, in case i ∈ {n+ 1, . . . , 2n} we have by (31)

1 = ‖εiwi‖ = εi


zi −

2

n− 2

2n∑
j=n+1

j 6=i

zj − δ
n∑
j=1

zj


T zi −

2

n− 2

2n∑
j=n+1

j 6=i

zj − δ
n∑
j=1

zj




1/2

= εi

[
‖zi‖2 +

4

(n− 2)2
(n− 1) + δ2n

]
= εi

[
1 +

4

(n− 2)2
(n− 1) + nδ2

]
= εi

n2 + δ2n

(n− 2)2
,

which is satisfied by choosing

εi =
(n− 2)2

n2 + δ2n
.

To sum up, using (32)-(33) we explicitly report the following vectors ŵ1, . . . , ŵ2n (i.e. the vectors

in (42)-(43) after normalization),
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ŵi =
1

[1 + α2(n− 1)]
1/2

zi − α
n∑
j=1

j 6=i

zj − γ
2n∑

j=n+1

zj

 (47)

=
1

[1 + α2(n− 1)]
1/2



−αγ2(0)γ1(0)
+ γ γ1(0)γ2(0)

...

−αγ2(0)γ1(0)
+ γ γ1(0)γ2(0)

γ2(0)
γ1(0)

+ γ γ1(0)γ2(0)

−αγ2(0)γ1(0)
+ γ γ1(0)γ2(0)

...

−αγ2(0)γ1(0)
+ γ γ1(0)γ2(0)

−α− γ
...

−α− γ
1− γ
−α− γ

...
−α− γ



← i

← n+ i

, i = 1, . . . , n, (48)

ŵt =
(n− 2)2

n2 + δ2n

zt − β
2n∑

j=n+1

j 6=t

zj − δ
n∑
j=1

zj

 (49)

=
(n− 2)2

n2 + δ2n



−δ γ2(0)γ1(0)
+ β γ1(0)γ2(0)

...

−δ γ2(0)γ1(0)
+ β γ1(0)γ2(0)

−δ γ2(0)γ1(0)
− γ1(0)

γ2(0)

−δ γ2(0)γ1(0)
+ β γ1(0)γ2(0)

...

−δ γ2(0)γ1(0)
+ β γ1(0)γ2(0)

−δ − β
...

−δ − β
−δ + 1
−δ − β

...
−δ − β



← t− n

← t

, t = n+ 1, . . . , 2n, (50)

The vectors in (48)-(50) represent our final proposal of DPSO initialization for unconstrained

optimization. They have unit norm and are A-conjugate, with the choice (46) of the coefficients α,

β, γ and δ. Now, we urge to prove that w1, . . . ,w2n (and consequently ŵ1, . . . , ŵ2n) are uniformly

linearly independent, i.e. roughly speaking the angles among them remain sufficiently bounded

away from zero. This fact is of great relevance in the light of scattering the particles in the search

space, and it is not immediately evident, since the matrix A is only positive semidefinite.
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On this purpose, for the sake of simplicity we prove below that the quantity det(w1

... · · ·
... w2n)

is sufficiently (and uniformly with respect to n) bounded away from zero, which also implies that

det(ŵ1

... · · ·
... ŵ2n) is sufficiently bounded away from zero.

Proposition 3 Given the vectors w1, . . . ,w2n in (42)-(43), when n 6= 2 then

det(w1

... · · ·
... w2n) = (1 + α)n−1 [1− (n− 1)α)]

(3n− 4)nn−1

(n− 2)n
. (51)

Proof

For the sake of clarity the proof is in the Appendix. ♦

Fig. 4 Plot of the quantity
(3n−4)nn−1

(n−2)n
(which is independent of α) versus n, as reported in (51). Note that this

quantity is uniformly bounded away from zero, being limn→∞(3n− 4)nn−1/(n− 2)n = 3/e−2 ≈ 22.17.

In Figure 4 we show a plot of the quantity (3n−4)nn−1/(n−2)n in (51) (which is independent

of α), versus n ∈ {3, . . . , 100}, showing that for α satisfying

α 6∈ [(−1− σ), (−1 + σ)] ∪
[(

1

n− 1
− σ

)
,

(
1

n− 1
+ σ

)]
, σ > 0,

the quantity det(w1

... · · ·
... w2n) is indeed uniformly bounded away from zero in this interval.

Observe that the last limitation on α is definitely a non-restrictive assumption.

As regards the results on the portfolio selection problem analyzed in Section 5, we compared

the initialization (48)-(50) (using the parameters α = 0.25, β = 2/(n− 2), γ = 0 and δ = 0.75) vs.

the initialization (34)-(35), obtaining analogous results in terms of decrease of the fitness function

P (x; ε) and risk measure ρa,p(r) (i.e. pictures very similar to Figures 2 and 3 are obtained, with a

slight preference for (34)-(35) with respect to (48)-(50)). However, adopting (48)-(50) we drastically

improved the density of the final approximate solution, inasmuch as now almost all the assets

were included in the portfolio. The latter result should not be surprising, since in (34)-(35) the

initialization of any particle contains just two non zero entries, while in (48)-(50)) all the entries

of the vectors ŵi and ŵt are nonzero.

Of course, we have experienced different settings for the parameters α, β, γ and δ, along with

the penalty parameter ε in (40), obtaining similar results. In this regard, a change of settings can
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cause a different final solution obtained, as expected considering that in general there are different

minimizers of (40).

7 Examples on analytic benchmark and ship design problems

Simulation-based design optimization (SBDO) paradigm supports the design process of complex

engineering systems and recently replaced the traditional expensive build and test approach. SBDO

integrates three key elements: computer simulations, design modification methods and optimiza-

tion algorithms. Within the context of ship/ocean applications global derivative-free algorithms

are widely used, since objective and constraint functions - often provided by black box tools - are

non convex and noisy, their derivatives are not directly provided, and several different local minima

cannot be excluded a priori. Moreover, the concurrent use of global techniques and CPU-time ex-

pensive solvers makes the optimization process computationally expensive, and still represents an

algorithmic and technological challenge. It should be noted that several derivative-free global opti-

mization algorithms in the literature are probabilistic and use random coefficients to enhance the

dynamics of the swarm in the optimization process. Therefore, statistically significant results can

be derived only through extensive numerical campaigns. Such an approach is often too expensive

in SBDO for industrial applications, especially when high-fidelity physics-based solvers are used as

analysis tools. For these reasons deterministic approaches, such as DPSO, have been developed and

successfully applied to SBDO, including hydrodynamic problems, providing comparisons among

local methods [7] and/or random PSO [9,38].

Preliminarily to approach real-world ship design optimization problems, a parametric analysis

has been conducted here on an analytic benchmark, including twelve test functions. This small

test set both contains continuous and discontinuous, differentiable and non-differentiable, separable

and non-separable, unimodal and multimodal test functions, which are used in order to assess the

performances of the novel initialization proposed. Specifically, four particles initializations, in terms

of initial position and velocity, have been compared corresponding to:

1. Hammersly sequence sampling (HSS, [50]) distribution on domain and bounds with non-null

velocity for problems with dimensionality n < 10 and distribution on domain with non-null

velocity for problems with dimensionality n ≥ 10, defined as the most promising initialization

in the study provided by [42];

2. ORTHOint initialization, as suggested by [20];

3. ORTHOinit+, the novel initialization suggested herein (α = 0.25, β = 2/(6 − 2) = 0.5, γ = 0

and δ = 0.75), using 2n + 2n particles, being the first 2n particles initialized as in (47)–(50),

while the last 2n particles are initialized as in (47)–(50) with a sign inversion;

4. ORTHOinit#, a combination of ORTHOint and ORTHOint+ (α = 0.25, β = 2/(6− 2) = 0.5,

γ = 0 and δ = 0.75), using 2n + 2n particles (the first 2n particles being initialized using

ORTHOinit and the last 2n particles initialized as in ORTHOinit+).

The most promising DPSO implementation identified in the study by [42] has been used for our

numerical experience, which is characterized by: number of particles (P ) equal to 4 times the

number of design variables (n), set of coefficient defined by [13] (i.e., χ = 0.721, c1 = c2 = 1.655),

and a semi-elastic wall-type approach for box constraints, in place of the exact penalty approach

considered in Section 5. The algorithm showing the semi-elastic wall-type approach is presented in

Algorithm 1 and in Figure 5, for further details the reader can refer to [42].

Subsequently, the same DPSO and initialization sets have been applied to the ship design

optimization problem.

Regardless of our theoretical analysis, we observe that proposing a number of particles propor-

tional to the scale n of the problem (i.e. P = 2n or P = 2n+ 2n) might appear unusual; however,

it is suggested by a couple of additional considerations. First, note that a similar result also holds

for Direct Search methods (see Section 1), and it is a crucial prerequisite in order to prove their
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global convergence properties. Second, design problems are quite often numerically expensive, so

that the computation of even coarse approximate solutions may require a relatively large number

of function evaluations. This is a serious drawback which suggested to preferably focus in this

paper on the efficiency of the overall method, as measured by the final number of function evalu-

ations, rather than on the number of PSO particles introduced. Surely the latter statement might

be questionable in case other applications were considered, where the number of particles can play

a more relevant role (see e.g. [31]).

We want to show that the initializations ORTHOinit+ and ORTHOinit#, which take advantage

of the theory developed in the current paper, show a preferable performance on the proposed test

set.

Algorithm 1 Semi-elastic wall-type approach (SEW)
1: for j = 1, P do
2: for i = 1, n do
3: if (xki,j > ui) OR (xki,j < li) then

4: vki,j = −vki,j/[χ(c1 + c2)]
5: end if
6: end for
7: end for

Fig. 5 Semi-elastic wall-type approach applied in the transition from k-th to (k + 1)-th PSO iteration [42].

7.1 Analytic test problems

The set of analytic functions (see Table 1), which represents a subset of the ones used by [29,30],

has been recently used by [38], to investigate the performances of random PSO and DPSO, as

formulated by [42].

In order to possibly avoid the introduction of any additional bias in our numerical experience,

following the approach in [42] the next three absolute performance criteria have been used to assess

the initialization performances

∆x =

√√√√ 1

n

n∑
i=1

(
xi,min − x?i,min

Ri

)2

; ∆f =
fmin − f?min

f?max − f?min

; ∆t =

√
∆2
x +∆2

f

2
. (52)

Here ∆x represents the normalized Euclidean distance between the minimum position found by

the algorithm xmin and the analytic minimum position x?min, and Ri = |ui − li| is the range of the

i−th variable. ∆f is the normalized distance in the image space where fmin is the minimum found
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Table 1 Analytic test functions.

Bounds Opt.
Name f(x) l ≤ x ≤ u f?min

Ackley f1(x) = 20e
−0.2

√
1
n

∑n
i=1

x2
i − e

1
n

∑n
i=1 cos(2πxi) + 20 + e −5.00 ≤ xi ≤ 4.00 0.00

Alpine f2(x) =
n∑
i=1

|xi sin(xi) + 0.1xi| −9.00 ≤ xi ≤ 7.00 0.00

Dixon-Price f3(x) = (x1 − 1)
2
+

n∑
i=2

[
i(2x

2
i − xi−1)

2
]

−10.0 ≤ xi ≤ 10.0 0.00

Griewank f4(x) = 1 +
n∑
i=1

xi

4000
−

n∏
i=1

cos(xi/
√
i) −100. ≤ xi ≤ 90.0 0.00

Levy n.5 f5(x) =
π

n

{
10 sin

2
(πy1) +

n−1∑
i=1

[
(yi − 1)

2
(1 + 10 sin

2
(πyi+1))

]
+ (yn − 1)

2

}
−10.0 ≤ xi ≤ 10.0 0.00

with yi = 1 + 1
4 (xi − 1)

Mishra n.11 f6(x) =

 1

n

n∑
i=1

|xi| −
(

n∏
i=1

|xi|
) 1
n

2

−10.0 ≤ xi ≤ 9.00 0.00

Rastrigin f7(x) = 10n+
n∑
i=1

[
x
2
i − 10 cos(2πxi)

]
−5.12 ≤ xi ≤ 4.12 0.00

Rosenbrock f8(x) =

n−1∑
i=1

[
100(xi+1 − xi)2 + (xi − 1)

2
]

−5.00 ≤ xi ≤ 10.0 0.00

Sphere f9(x) =

n∑
i=1

x
2
i −5.00 ≤ xi ≤ 4.00 0.00

Styblinski-Tang f10(x) =
1

2

n∑
i=1

(
x
4
i − 16x

2
i + 5xi

)
+ 39.2n −5.00 ≤ xi ≤ 5.00 0.00

Trigonometric n.2 f11(x) =

n∑
i=1

8 sin
2
[
7(xi − 0.9)

2
]
+ 6 sin

2
[
14(xi − 0.9)

2
]
+ (xi − 0.9)

2 −500. ≤ xi ≤ 500. 0.00

Zacharov f12(x) =

n∑
i=1

x
2
i +

(
1

2

n∑
i=1

ixi

)2

+

(
1

2

n∑
i=1

ixi

)4

−5.00 ≤ xi ≤ 10.0 0.00

by the algorithm, f?min is the analytic minimum, and f?max the analytic maximum of the function

f(x) in the domain. ∆t is the combination of ∆x and ∆f and is used for the overall performances

assessment.

Analytic test problems have been studied with dimensionality n = 6 (the same dimension of the

real-world ship design problem) and n = 50, using a total number of function evaluations (Nfeval)

equal to 2,400.

Table 2 shows the best performing initialization for each function and on average (on the

twelve analytic test functions), with respect to the three metrics, respectively for the problem with

dimensionality n = 6 and n = 50. The averaged results summarized for n = 6 indicate that the

novel initialization ORTHOinit+ outperforms the others, both referring to the variable space (∆x)

and to the function space (∆f ). It might also be noted that ORTHOinit# initialization shows good

performances in the variable space, whereas HSS is less efficient, as observed in previous studies

[20]. Referring to ∆t, ORTHOinit+ shows the best performance overall, followed by ORTHOinit#.

The averaged results for n = 50 indicate that ORTHOinit# initialization outperforms the others,

both referring to the variable space (∆x) and to the function space (∆f ). It might also be noted

that ORTHOinit+ initialization shows good performances both in variable and function space,

whereas HSS is less efficient initialization, as observed in previous studies [20]. Referring to ∆t,

ORTHOinit# shows the best performance overall, followed by ORTHOinit+.

Figure 6 shows DPSO convergence history for each test function with dimensionality n = 50,

conditional to the four initializations.
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Table 2 Analytic test functions: average performances results.

n = 6 n = 50
f(x) Initialization ∆x ∆f ∆t ∆x ∆f ∆t

f1(x)

HSS 8.869E-02 2.220E-01 1.690E-01 7.673E-02 2.692E-01 1.980E-01
ORTHOinit 9.786E-02 2.414E-01 1.842E-01 1.065E-01 2.630E-01 2.006E-01
ORTHOinit+ 7.777E-09 7.010E-08 4.987E-08 2.192E-03 7.358E-03 5.429E-03
ORTHOinit# 9.785E-02 2.414E-01 1.842E-01 1.729E-05 4.633E-05 3.497E-05

f2(x)

HSS 2.195E-01 0.000E-00 1.552E-01 4.605E-01 9.281E-03 3.257E-01
ORTHOinit 9.818E-02 0.000E-00 6.942E-02 9.816E-02 0.000E-00 6.941E-02
ORTHOinit+ 9.817E-02 0.000E-00 6.942E-02 3.103E-02 1.250E-02 2.366E-02
ORTHOinit# 9.816E-02 0.000E-00 6.941E-02 9.818E-02 0.000E-00 6.942E-02

f3(x)

HSS 2.837E-02 7.558E-07 2.006E-02 6.963E-02 4.460E-04 4.923E-02
ORTHOinit 2.978E-02 7.558E-07 2.106E-02 2.563E-02 1.186E-08 1.812E-02
ORTHOinit+ 1.061E-02 2.710E-07 7.499E-03 2.540E-02 1.355E-08 1.796E-02
ORTHOinit# 2.733E-03 6.177E-08 1.933E-03 2.563E-02 1.186E-08 4.924E-02

f4(x)

HSS 6.193E-02 1.300E-02 4.475E-02 3.823E-02 1.317E-02 2.859E-02
ORTHOinit 3.688E-02 1.565E-02 2.833E-02 3.543E-02 4.731E-03 2.527E-02
ORTHOinit+ 1.677E-10 9.518E-20 1.186E-10 4.945E-02 9.264E-03 3.558E-02
ORTHOinit# 3.042E-02 2.215E-02 2.661E-02 4.128E-06 1.236E-08 2.919E-06

f5(x)

HSS 1.736E-03 1.839E-06 1.227E-03 7.324E-02 5.080E-03 5.191E-02
ORTHOinit 8.539E-07 3.922E-13 6.038E-07 4.348E-02 4.565E-03 3.092E-02
ORTHOinit+ 0.000E-00 2.646E-16 1.871E-16 6.638E-02 2.066E-03 4.696E-02
ORTHOinit# 1.989E-06 4.150E-12 1.407E-06 1.056E-02 5.609E-05 5.191E-02

f6(x)

HSS 3.654E-02 8.427E-04 2.585E-02 6.517E-02 7.136E-03 4.636E-02
ORTHOinit 1.822E-04 6.919E-08 1.288E-04 5.969E-05 5.109E-10 4.221E-05
ORTHOinit+ 2.216E-09 1.772E-17 1.567E-09 2.082E-02 4.334E-05 1.472E-02
ORTHOinit# 3.768E-09 3.817E-17 2.665E-09 8.286E-08 1.861E-15 5.859E-08

f7(x)

HSS 1.296E-01 5.063E-02 9.840E-02 1.400E-01 1.544E-01 1.833E-01
ORTHOinit 9.836E-02 2.599E-02 7.194E-02 1.077E-01 3.429E-02 7.995E-02
ORTHOinit+ 1.088E-01 3.056E-02 7.915E-02 1.752E-02 6.597E-03 1.324E-02
ORTHOinit# 2.154E-01 1.222E-01 1.751E-01 6.809E-02 1.371E-02 4.911E-02

f8(x)

HSS 6.454E-02 1.373E-06 4.564E-02 6.806E-02 3.971E-05 4.813E-02
ORTHOinit 5.448E-03 3.410E-09 3.852E-03 6.527E-02 3.641E-06 4.615E-02
ORTHOinit+ 3.974E-09 5.172E-19 2.810E-09 6.554E-02 3.661E-06 4.634E-02
ORTHOinit# 0.000E-00 0.000E-00 0.000E-00 1.241E-03 4.248E-08 8.779E-04

f9(x)

HSS 2.588E-03 2.170E-05 1.830E-03 4.767E-02 7.362E-03 3.411E-02
ORTHOinit 2.218E-07 1.594E-13 1.568E-07 1.352E-05 5.919E-10 9.557E-06
ORTHOinit+ 2.653E-13 2.280E-25 1.876E-13 6.836E-06 1.514E-10 4.833E-06
ORTHOinit# 2.114E-10 1.447E-19 1.495E-10 2.595E-07 2.182E-13 1.835E-07

f10(x)

HSS 1.979E-04 4.968E-07 1.399E-04 1.778E-01 1.054E-02 1.259E-01
ORTHOinit 2.189E-01 1.278E-01 1.793E-01 2.827E-01 2.625E-01 2.728E-01
ORTHOinit+ 1.101E-05 0.000E-00 7.841E-06 2.841E-04 4.195E-07 2.009E-04
ORTHOinit# 2.146E-05 0.000E-00 1.520E-05 8.017E-02 2.024E-03 5.671E-02

f11(x)

HSS 4.254E-03 8.109E-05 3.009E-03 4.115E-02 6.772E-03 2.949E-02
ORTHOinit 2.738E-04 2.993E-07 1.936E-04 8.560E-04 2.721E-05 6.056E-04
ORTHOinit+ 1.192E-10 5.664E-20 8.429E-11 8.513E-03 2.919E-04 6.023E-03
ORTHOinit# 0.000E-00 0.000E-00 0.000E-00 2.612E-04 9.182E-07 1.847E-04

f12(x)

HSS 5.132E-04 7.905E-12 3.629E-04 1.211E-01 1.194E-12 8.566E-02
ORTHOinit 1.961E-03 1.135E-10 1.387E-03 1.535E-02 1.917E-14 1.085E-02
ORTHOinit+ 1.705E-09 8.870E-22 1.206E-09 8.932E-03 6.496E-15 6.316E-03
ORTHOinit# 1.445E-07 4.208E-19 1.022E-07 7.305E-03 4.341E-15 5.165E-03

Average

HSS 5.321E-02 2.388E-02 4.713E-02 1.15E-01 4.029E-02 9.754E-02
ORTHOinit 4.899E-02 3.424E-02 4.665E-02 6.510E-02 4.743E-02 6.290E-02
ORTHOinit+ 1.804E-02 2.547E-03 1.301E-02 2.467E-02 3.177E-03 1.804E-02
ORTHOinit# 3.705E-02 3.215E-02 3.811E-02 2.429E-02 1.320E-03 1.726E-02

Once more, no statistic analysis was required for the results presented. Indeed, no random

parameters have been included in the four DPSO-based schemes implemented here, inasmuch as

the paper focuses on the performance of a deterministic PSO initialization (see also comments in

the previous section).

7.2 Engineering problem: ship design optimization

In this subsection we present a real-word ship design optimization problem, in order to steer the

work of engineers. It should be noted that design problems often do not have a unique solution,
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Fig. 6 DPSO convergences conditional to the different initializations (n = 50).

due to the intrinsic nature of the problems in hand. Thus, decision makers often prefer to have a

number of possible equivalent solutions for these problems, which possibly differ in the values of

design variables, in order to choose on the basis of exogenous considerations. Specifically, the SBDO

application addresses the hull-form optimization aimed at reducing the total resistance of an USS

Arleigh Burke-class destroyer ship, namely the DTMB 5415 model, an early and open-to-public ver-

sion of the DDG-51, widely used for both experimental [43] and numerical [8] investigations. Figure

7 shows the 5.720 m length replica of the DTMB 5415 model, used for towing tank experiments,

as seen at CNR-INM [43]. The DTMB 5415 has been also used as a benchmark in NATO STO

Task Groups AVT-204 Assess the Ability to Optimize Hull Forms of Sea Vehicles for Best Perfor-

mance in a Sea Environment [24], AVT-252 Stochastic Design Optimization for Naval and Aero

Military Vehicles [40]. Moreover, it was used as a test case in variable-accuracy multi-disciplinary

design optimization studies, coupling the hydrodynamic analysis with the rigid body equation of

motion through multi-disciplinary analysis [28]. Recently, the same problem has been investigated

by [19] addressing the dimensionality reduction of the design space, based on Karhunen-Loève ex-

pansion technique. For the current application the optimization has been performed on a reduced

six-dimensional design space, retaining up to 92% of the original geometric variability, as shown

by [19]. Since the purpose of this work is to confirm the theoretical achievements described in the

previous sections, a linear potential flow solver developed at CNR-INM [3], namely WARP (WAve

Resistance Program), has been used to evaluate the hydrodynamic performances. Specifically, the
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Table 3 DTMB 5415: main particulars and test conditions.

Description Symbol Unit Full scale Model scale

Displacement ∇ tonnes 8,636 0.549
Length between perpendiculars Lpp m 142.0 5.720
Beam B m 18.90 0.760
Draft T m 6.160 0.248
Longitudinal center of gravity LCG m 71.60 2.884
Vertical center of gravity V CG m 1.390 0.056
Froude Number Fr - 0.25 0.25
Reynolds number Re - 1.215E+09 9.824E+06

wave resistance computations - based on the double model linear potential flow theory [17] - has

been evaluated with pressure integral, whereas the frictional resistance has been estimated using

a flat-plate approximation, based on the local Reynolds number [37].

The single-objective shape design optimization problem for DTMB 5415 has been formulated

as
min
x∈IRn

f = RT (x)

s.t. Lpp(x) = Lpp,0
∇(x) = ∇0

|∆B(x)| ≤ 0.05B0

|∆T (x)| ≤ 0.05T0
V (x) ≥ V0

where x ∈ IR6 is the design variable vector, RT : IR6 → IR is the total resistance in calm water at

18kn (corresponding to Froude number Fr = 0.25), Lpp is the length between perpendiculars, ∇
is the displacement, B is the beam, T is the draft, and V is the volume reserved for the sonar in

the dome. Subscript ‘0’ indicates parent hull values. Following the approach used by [41], the first

two constraints have been automatically satisfied by the geometric scaling, whereas constraints

on B and T have been handled using a penalty function method, since the relationship between

B/T variations and design variables was not explicitly provided by the orthogonal expansion

and geometric scaling. The main particulars of the DTMB 5415 model and the test conditions

considered for its optimal design are summarized in Table 3.

The simulations have been performed for the right demi-hull, taking advantage of symmetry

about the xz-plane. The computational domain for the free surface has been defined within 1

Lpp upstream, 3 Lpp downstream and 1.5 Lpp sideways. The associated hull grid (90 × 25 nodes)

used (see Figure 8) guarantees solution convergence. The validation of the potential flow analysis

performed by WARP for the original hull versus experimental data collected at CNR-INM [33] has

been shown by [41]. The optimization problem has been solved using the DPSO schemes presented

in Section 7 using again a total number of 2,400 function evaluations. Figures 9 (a) and (b) report

the corresponding performances and final optimal design variables for the four initializations. The

four DPSO initialization variants have achieved the same objective function reduction (∆f), as

shown in Figure 9a, showing equivalent effectiveness. Specifically, ORTHOinit initialization has

been the most efficient, as it exactly relies on orthogonal vectors in order to steer the particles. In

Fig. 7 A 5.720m length model of the DTMB 5415 (CNR-INM model 2340).
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other words, using the language of Sections 2, 3 and 4, in ORTHOint the components of velocity

in the free responses associated to the particles are exactly orthogonal at step k = 1.

On the other hand, ORTHOinit+ is not endowed with the latter orthogonality property, inas-

much as it requires the transformation indicated in (42)-(43), which guarantees uniform linear

independence of vectors in place of orthogonality. Thus, ORTHOinit+ seemed less efficient, but

thanks to the dense initial positions (as detailed in Section 6) it was able to provide noteworthy

different values of the 6 unknowns with respect to ORTHOinit (see the 2nd and 3rd unknown in

Figure 9b), which is of great importance for ship designers. Indeed, the capability to choose among

several scenarios allows for more freedom to build the ship hull, so that issues related to costs can

be duly considered. Figure 10 reports the final hull shapes obtained using ORTHOinit (left) and

ORTHOinit+ (right). Similarly, Figure 11 reports the wave pattern generated by the hull obtained

using ORTHOinit (up) and ORTHOinit+ (down): ORTHOinit+ shows an attenuated diverging

bow wave, which is indeed a confirmation of the slightly better value of ∆f in Figure 9, obtained

adopting ORTHOinit+.

Finally, combining the effects of ORTHOinit and ORTHOinit+ (i.e. the grey dotted line of

ORTHOinit# in Figure 9a) we improved efficiency with respect to ORTHOinit+, and we still

retained a dense solution, with again a remarkable difference in the 2nd and 3rd unknowns. This

gives further evidence that the density issues studied in Section 6, which are a core subject of

this paper, can play a noteworthy role. Also observe that HSS is on the overall less efficient than

ORTHOinit#.

Fig. 8 Computational grid g0 used for numerical implementation of the generalized KLE and for the potential flow
solution.
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Fig. 9 Optimization results: DPSO convergence for the four initializations (left) and corresponding design vectors
(right).
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Fig. 10 Optimization results: the final hull obtained using ORTHOinit (left) and ORTHOinit+ (right). Red arrows
indicate the differences.

Fig. 11 Optimization results: the final wave pattern generated by the hull obtained using ORTHOinit (top) and
ORTHOinit+ (bottom). Dashed boxes evidence the differences.

8 Conclusions and future work

In this paper we have analyzed novel initializations for DPSO, in order to better exploit the

topology of the swarm in IRn, and speed up in the early iterations the solution of unconstrained

optimization and bound-constrained optimization problems.

Unlike the proposal by [6], the theory in the current paper yields a guideline for the choice of 2n

particles’ initial position/velocity, and not just n. Moreover, our initialization is dense and tends to

scatter the particles in the search space. The latter fact was expected to provide a more powerful

tool (as numerical results seem to confirm) for widely exploring the search space. Furthermore,

our theoretical achievements yield a particles’ initialization in DPSO which is related to (i.e.

parametrized with) the real space of dimension n. Though no specific conclusion seems to be

drawn by the latter observation, we remark that most of the exact derivative-free methods for

smooth problems, as well as gradient-based methods for continuously differentiable functions, show

noteworthy analogies. Indeed, for instance in the case of exact derivative-free methods, typically

the use of search directions parallel to all the n coordinate axes helps improving efficiency, and is

definitely indispensable to prove global convergence. On the other hand, observe that the gradient

naturally summarizes the sensitivity of the function along the n coordinate axes, so that also

gradient-based search directions rely on information referred to the n coordinate axes.
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In case the parameter ω in (12) possibly adaptively changes at each iteration, the theory above

does not hold anymore and it should be reformulated from scratch. The circumstance under which

the parameter ω changes at each iteration is a key-aspect in several cases, when PSO limits arise

and the progress of the algorithm is very slow. An example is provided when stagnation arises, i.e.

when eventually the best particle of the swarm does not change its position. Unfortunately, the

proposal in this paper is unable to cope with the last relevant issue, which may have a dramatic

impact. Therefore, we are persuaded that such a limit of our proposal might possibly represent a

future issue for a fruitful investigation. As a further limit of our theory, the reader may include our

relative rigid choice of DPSO coefficients, which is imposed by Assumption 1. Indeed, we conjecture

that a more general setting of DPSO parameters, where each particle retains its individual choice,

may yield better results.

Finally, an adaptive criterion might be advisable, in order to restart the position and velocity of

some particles after a given number of iterations. The adaptive criterion might for instance monitor

the norm ‖XL(k)(j)‖, j = 1, . . . , 2n (see also Section 5 of [6]), of the free response of particles.

When the latter quantity approaches zero, a restart would re-impose orthogonality among the free

responses of the particles, using the theory in Section 4.
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Appendix

Proof of Proposition 3

By (42), (43) and (46), along with a simple computation, we have

det(w1

... · · ·
... w2n) = det(z1

... · · ·
... z2n)η,

where

η = det



1 −α · · · · · · −α −δ −δ · · · · · · −δ

−α 1 −α · · ·
... −δ

. . .
...

... −α 1
. . .

...
...

. . .
...

...
...

. . .
. . . −α

...
. . . −δ

−α · · · · · · −α 1 −δ · · · · · · −δ −δ
1 −2/(n− 2) · · · · · · −2/(n− 2)

−2/(n− 2) 1 −2/(n− 2) · · ·
...

0
... −2/(n− 2) 1

. . .
...

...
...

. . .
. . . −2/(n− 2)

−2/(n− 2) · · · · · · −2/(n− 2) 1



(53)

and since the vectors z1, . . . , z2n are orthonormal, by (53) we have

det(w1

... · · ·
... w2n) = det(M1) det(M2), (54)
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being

M1 =



1 −α · · · · · · −α

−α 1 −α · · ·
...

... −α 1
. . .

...
...

...
. . .

. . . −α
−α · · · · · · −α 1


∈ IRn×n, (55)

M2 =



1 −2/(n− 2) · · · · · · −2/(n− 2)

−2/(n− 2) 1 −2/(n− 2) · · ·
...

... −2/(n− 2) 1
. . .

...
...

...
. . .

. . . −2/(n− 2)
−2/(n− 2) · · · · · · −2/(n− 2) 1


∈ IRn×n. (56)

Since M1 and M2 have the same pattern, the computation of det(M1) and det(M2) has the same

difficulty. Thus, we focus without loss of generality on computing det(M1), whose value is invariant

after subtracting the (i + 1)–th column to the i–th column of M1, for i = 1, . . . , n − 1. After the

latter arrangement we obtain det(M1) = det(Γn), where (only the nonzero entries are reported)

Γn =



1 + α −α

−(1 + α) 1 + α
...

−(1 + α)
. . .

...
. . . 1 + α −α
−(1 + α) 1


∈ IRn×n. (57)

Computing det(Γn) by the first row and using induction, recalling that Γ1 = 1, we have

det(Γ1) = 1

det(Γ2) = (1 + α)− α(1 + α) = 1− α2

det(Γ3) = (1 + α)2 + (1 + α)[−α(1 + α)− α(1 + α)] = (1 + α)2 − 2α(1 + α)2 = (1 + α)2(1− 2α)

...

det(Γh) = (1 + α)h−1[1− (h− 1)α],

so that by (57) we have for det(Γh+1), h < n

det(Γh+1) = det


1 + α 0 · · · 0 − α
−(1 + α)

0
...
0

Γh

 .
Solving again with respect to the first row, we obtain

det(Γh+1) = (1 + α) det(Γh) + (−1)h+2(−α)[−(1 + α)]h

= (1 + α)h[1− (h− 1)α] + (−1)2h+3α(1 + α)h

= (1 + α)h[1− (h− 1)α− α] = (1 + α)h(1− hα).
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Thus, by (53), (54), (55) and (56)

det(w1

... · · ·
... w2n) =

{
(1 + α)n−1 [1− (n− 1)α]

}{(
1 +

2

n− 2

)n−1 [
1 + (n− 1)

2

n− 2

]}

= (1 + α)n−1 [1− (n− 1)α)]
(3n− 4)nn−1

(n− 2)n
.

♦
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