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In the classical model for portfolio selection the risk is measured by the variance of returns.
It is well known that, if returns are not elliptically distributed, this may cause inaccurate
investment decisions. To address this issue, several alternative measures of risk have been
proposed. In this contribution we focus on a class of measures that uses information con-
tained both in lower and in upper tail of the distribution of the returns. We consider a non-
linear mixed-integer portfolio selection model which takes into account several constraints
used in fund management practice. The latter problem is NP-hard in general, and exact
algorithms for its minimization, which are both effective and efficient, are still sought at
present. Thus, to approximately solve this model we experience the heuristics Particle
Swarm Optimization (PSO). Since PSO was originally conceived for unconstrained global
optimization problems, we apply it to a novel reformulation of our mixed-integer model,
where a standard exact penalty function is introduced.

� 2013 Published by Elsevier Inc.
1. Introduction

Making effective portfolio selection in real stock markets is a not-so-easy task for at least the following three reasons.
First, we need to gauge the risk by measures that both satisfy appropriate formal properties (namely coherence) and bet-

ter couple with the non normal return distributions (which characterize the stock markets). Moreover, it should be desirable
that these risk measures were suitably parameterized with respect to the investors’ risk attitude. In other terms, we need
personalized coherent risk measures that well fit a non Gaussian (financial) world.

Second, we have to take into account several practices and rules of the portfolio management industry that can affect the
portfolio selection process (for instance, the use of bounds for the minimum and the maximum number of stocks to trade).
Generally, such aspects are formalized in terms of constraints that very often yield NP-hard mathematical programming
formulations.

Third, portfolio selection problems arising from the joint use of the considered risk measures, practices and rules are pos-
sibly highly nonlinear, nondifferentiable, nonconvex and mixed-integer, which contributes to yield NP-hardness. Therefore,
the development of ad hoc solution approaches is usually needed to find the optimal solution of such problems. However, the
portfolio management industry usually does not possess the mathematical knowledge and/or the research capabilities to
handle such approaches. Furthermore, it could be not convenient for it to build up a team of external experts. As a
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consequence, part of the investors’ demand might remain unsatisfied or (worse) satisfied by the use of inappropriate
solution technologies. Therefore, we need a general tool encompassing a large variety of real portfolio selection problems.

In this paper we deal with such issues, and we propose a tool for managing each of them. Then, we perform a numerical
experience on the resulting scheme, by applying it to the selection of large and complex portfolios. In particular, we tackle
the above mentioned issues as follows.

First, as measure of risk of the portfolio returns we consider a recently proposed coherent risk measure, based on the com-
bination of upper and lower moments of different orders of the returns distribution (see [7]). The latter measure shows to be
able to effectively manage non Gaussian distributions of asset returns and to appropriately reflect different investors’ risk
attitudes (see Section 2 for details). In particular, given personal investors’ weighting, it permits to take into account both
the risk contained in the ‘‘bad tail’’ (the left one of the portfolio returns), and the chances contained in the ‘‘good tail’’
(the right one of the same portfolio). Further, to the best of our knowledge, apart from [7] this is one of the first applications
of such risk measure to large and complex portfolios. In addition, we highlight that the portfolio selection problem consid-
ered in [7] is large but-not-complex, since the associated optimization problem is linearly constrained (i.e. relatively ‘‘easy’’
to solve). Conversely, our portfolio selection problem is large and complex, due to the presence of nonlinear mixed-integer
constraints (see Section 2 for details) which make the associated optimization problem NP-hard (i.e. difficult to solve).

Second, as the professional practices and rules are concerned, following the indications of a north-eastern Italian com-
pany skilled in automatic financial trading systems, we adapt our analysis to the use of bounds for the minimum and the
maximum number of stocks to trade.1 Moreover, our model also includes the minimum and the maximum capital percentage
to invest in each asset (see also [20] where the quantity to invest in each asset is a positive integer). These bounds are often of
interest for the fund manager industry, in order to control (in an indirect way) the transaction costs. All these practices/rules are
formalized in terms of constraints, that surely make the corresponding mathematical programming problem NP-hard (see Sec-
tion 2 for details). Notice that the portfolio selection problem so arising is new in the specialized literature.

Third, our resulting selection problem, which takes into account also standard constraints (namely, the minimum return
and the budget constraints) is nonlinear, nondifferentiable and mixed-integer. At present, for such mathematical program-
ming problem (which is NP-hard, see [23]) both efficient and effective solution algorithms are still sought. Thus, in order to
both investigate the numerical complexity of our portfolio selection problem and to provide a cheap and reliable solution, we
adopt an exact penalty method (see [31,24,9,16]) combined with the Particle Swarm Optimization (PSO), a recently proposed
bio-inspired population-based metaheuristic (see [17] as, likely, first contribution on it). In short, our solution approach runs
as follows (see Section 3 for details):

� a standard exact penalty scheme transforms the considered mixed-integer portfolio selection problem into an equivalent
nondifferentiable unconstrained minimization problem;
� then, as also the latter model is nonlinear, nondifferentiable and non convex, for its minimization a derivative-free algo-

rithm is a possible solution method. Among the various approaches proposed in the specialized literature, we consider the
PSO in order to approximately computing a global minimizer of the overall exact penalty-based model.

More generally, the choice of bio-inspired metaheuristics as global optimizers is also motivated by the fact that�[t]hey are
more universal and less exacting with respect to an optimization problem� (see [12, page 9]).

Of course, PSO is not the only bio-inspired metaheuristics able to deal with minimization problems like ours. As possible
alternatives we recall Differential Evolution (DE) and Genetic Algorithms (GAs). From a methodological point of view observe
that our combined use of an exact penalty scheme with the PSO is not frequent in the literature. Indeed, for the solution of
constrained problems the PSO is often modified with hybrid variants, which are suitably adapted to cope even with nonlin-
ear constraints. In this respect we first provide a theoretical result ensuring the correspondence between the solutions of the
original mathematical programming problem and the solutions of the exact penalty-based model (see Section 3 for details).
Further, we also develop a simple original approach for the initialization of the particles’ parameters. Its use yields numerical
evidence of improvements in the convergence to a global minimum (see Section 4 for details). Finally, notice that the solu-
tion approach we propose is independent of the characteristics of the objective function and of the constraints. In other
terms, our proposal might play the role of universal global (approximate) optimizer for a large variety of portfolio selection
problems, even if characterized by very different risk measures and systems of constraints.

The remainder of this paper is organized as follows. In the next section first we illustrate the coherent risk measures we
use, then we present our portfolio selection problem. In Section 3 first we recall the basics of PSO, then we apply an exact
penalty method for the reformulation of our portfolio selection problem. In Section 4 we apply our overall solution procedure
to the selection of large and complex portfolios, based on the set of assets constituting the Standard & Poor’s SP 100 index.
We test various settings of the solution procedure, where we use a simple approach for the initialization of the particles’
parameters. Then, we apply our approach considering different time periods from August 2004 to October 2009, in order
to detect possible differences in the optimal portfolio composition. Further, we compare these results with the ones coming
from a couple of suitably chosen benchmark portfolio selection models. Final remarks are given in the last section.
1 These boundings are known as cardinality constraints.
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2. Portfolio selection and risk measures

The basic idea in the portfolio selection problem is to select stocks both maximizing portfolio performance and minimiz-
ing its risk. This implies that for a formal approach to the latter problem, a correct definition of performance and risk of the
portfolio is required. While there is a general agreement about the measurement of performance using the expected value of
the future return of the portfolio, the discussion regarding an adequate measure of risk is still open.

In its pioneering work [21] Markowitz proposed to use the variance of portfolio return to measure its risk, and this idea
has been used for a long time in financial practice. However, it is well known that the mean–variance model leads to optimal
investment decisions only if investment returns are elliptically distributed, or alternatively if the utility function of investors
is quadratic. The main shortcomings of quadratic utility functions have been pointed out since their introduction (see [29]),
and it is a stylized fact that the distributions of returns of financial instruments present asymmetry and ‘‘fat tails’’. These
considerations have opened the way for the research on alternative measures of risk, along with their properties: a recent
characterization of them is presented in [25].

One crucial fact should be taken into account for a correct specification of the risk measure: while variance gives the same
weight to positive and negative deviations from the mean, several empirical studies have shown (see e.g. [18]) that investors
treat them in different ways. This has led to the definition of risk measures that are focused on the ‘‘bad tail’’ of the distri-
bution of the returns, as for example the semivariance (see [2]), the lower partial moments (see [14]) and the minimax ones
(see [30]). On the other hand, some other risk measures were based on a quantile of the ‘‘bad tail’’, as the well known Value-
at-Risk (VaR) (see [22]).

Since the introduction of the notion of coherent risk measure in [1], along with the specification of the properties for a
measure (monotonicity, positive homogeneity, translation invariance and sub-additivity), there has been a growing interest
for the previously introduced measures. In particular, properties similar to those for coherent risk measures have been stud-
ied also for the other risk measures. The Conditional Value-at-Risk (CVaR) (see [26]) is possibly the most famous measure
obtained in this direction; other examples based on lower partial moments are reported in [13].

More recently Chen and Wang in [7] have investigated the possibility of building a new class of coherent risk measures,
by combining upper and lower moments of different orders. This approach seems to have several advantages with respect to
others considered so far. Indeed, on one hand these measures better couple with non normal distributions than the ones
based only on first order moments. On the other hand, they better reflect investors’ risk attitude, for at least a couple of rea-
sons. First they are less affected by estimation risk than measures that use only information from the lower part of the return
distribution. Then, according with the conclusions presented in [7], their use in the portfolio selection problem allows for
more realistic and robust results, compared with the ones obtained using CVaR. In this contribution we use the class of risk
measures in [7] for our portfolio selection problem. Our problem also takes into account several constraints, often used in
fund management practice. In particular, we focus on handling the cardinality constraints, which yield a final model in
the class of nonlinear mixed-integer programming problems.

2.1. Our portfolio selection model

Let Y be a real valued random variable defined on a probability space ðX;F ;PÞ, and let us denote kYkp ¼ ðE½jY j
p�Þ1=p, with

p 2 ½1;þ1½, where E½�� indicates the expected value of a random variable. Then, the measures of risk introduced in [7] are
defined as:
qa;pðYÞ ¼ akðY � E½Y�Þþk1 þ ð1� aÞkðY � E½Y �Þ�kp � E½Y�; ð1Þ
where a 2 ½0;1�; Y� ¼maxf�Y;0g and Yþ ¼ ð�YÞ�. For given a and p, any risk measure of this class is then a convex com-
bination of the two coherent risk measures based on lower partial moments kðY � E½Y�Þ�k1 � E½Y� and kðY � E½Y �Þ�kp � E½Y �.
Thus, (1) is a coherent risk measure (see [13]). For a detailed description of its properties we refer the reader to [7]. We only
remark here that qa;p is non-decreasing with respect to p and non-increasing with respect to a. Thus, the value of these
parameters can be adjusted to reflect different attitudes of the investors towards risk.

Now we describe the portfolio selection model we consider. Suppose we have N assets to choose from, and for i ¼ 1; . . . ;N
let xi 2 R be the weight of the i-th asset in the portfolio, with XT ¼ ðx1; . . . ; xNÞ. Let ZT ¼ ðz1; . . . ; zNÞ 2 f0;1gN be a binary vec-
tor, such that zi ¼ 1 if the i-th asset is included in the portfolio, zi ¼ 0 otherwise. Moreover, for i ¼ 1; . . . ;N, let ri be a real
valued random variable that represents the return of asset i, with r̂i its expected value, i.e. r̂i ¼ E½ri�. Then, the random var-
iable R 2 R that represents the return of the whole portfolio can be expressed as
R ¼
XN

i¼1

xiri;
with expected value
R̂ ¼
XN

i¼1

xir̂i:
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Then, considering (1), our goal is to minimize qa;pðRÞ, subject to several constraints. Of course the first ones to consider are
the constraints regarding the minimum desirable expected return of the portfolio, i.e.
R̂ P l; with l > 0;
along with the usual budget constraint
XN

i¼1

xi ¼ 1:
Moreover, as stated in the previous section, we also introduce the following cardinality constraint: we select a (not too) small
subset of the available assets. The latter choice summarizes a quite common problem for a fund manager, who has to build a
portfolio by choosing from several hundreds of assets. When the number of selected assets is too large, several practical
accounting problems may arise, which can increase transaction costs. By using the latter cardinality constraint we implicitly
consider transaction costs in our model. The resulting constraint is explicitly given by
Kd 6
XN

i¼1

zi 6 Ku; where 1 6 Kd 6 Ku 6 N:
Further, we require that each of the selected assets cannot be a too large or too small fraction of the portfolio, i.e.
zid 6 xi 6 ziu; where 0 6 d 6 u 6 1
and d;u represent respectively the minimum and maximum fraction allowed. Of course, to ensure compatibility with the
cardinality constraint, the parameters d and u must satisfy
d 6
1

Kd
and u P

1
Ku
: ð2Þ
Then, our overall portfolio selection problem can be summarized as follows:
min
X;Z

qa;pðRÞ

s:t: R̂ P lXN

i¼1

xi ¼ 1

Kd 6
XN

i¼1

zi 6 Ku

zid 6 xi 6 ziu; with i ¼ 1; . . . ;N;

ziðzi � 1Þ ¼ 0; with i ¼ 1; . . . ;N;

ð3Þ
where the last N constraints are introduced to model the relations zi 2 f0;1g, with i ¼ 1; . . . ;N. It is clear that if in the last N
constraints we have zi ¼ 0, then the variable xi does not play any role in the solution of problem (3), i.e. xi ¼ 0. Conversely,
zi ¼ 1 implies that potentially the i-th asset will contribute to the final portfolio, with xi 2 ½d;u�. Finally, the constraints
ziðzi � 1Þ ¼ 0, with i ¼ 1; . . . ;N, represent just one (and possibly not the best) reformulation of the integrality constraints
zi 2 f0;1g, with i ¼ 1; . . . ;N. We do not investigate further the latter issue, since it is not a focus of this paper.

Of course, (3) is a nonlinear and nonconvex mixed-integer problem, which in general admits several local solutions, but
we want to possibly seek global solutions and not simply local minimizers. However, detecting precise solutions of (3) may
be heavily time consuming in case exact methods are adopted. Thus, at present we experience the metaheuristic technique
PSO on a non-smooth reformulation of problem (3). The next section is devoted to detail the PSO heuristics.

3. PSO for non-smooth reformulation of the portfolio selection problem

Particle Swarm Optimization is an iterative metaheuristics for the solution of nonlinear global optimization problems (see
[17]). It is based on a biological paradigm, which is inspired by the flight of birds in a flock. In particular, the basic idea of PSO
(see also [3] for a tutorial) is to replicate the behaviour of shoals of fishes or flocks of birds, when they cooperate in the search
for food. On this purpose every member of the swarm explores the search area keeping memory of its best position reached
so far, and it exchanges this information with the neighbors in the swarm. Thus, the whole swarm is supposed to converge
eventually to the best global position reached by the swarm members.

In its mathematical counterpart the paradigm of a flying flock may be formulated as follows: given a minimization prob-
lem, find a global minimum (best global position) in a nonlinear minimization problem. Every member of the swarm
(namely a particle) represents a possible solution of the minimization problem, and it is initially positioned randomly in
the feasible set of the problem. Every particle is also initially assigned a random velocity, which is used to determine its ini-
tial direction of movement.
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For a more formal description of PSO let us consider the global optimization problem
min
x2Rd

f ðxÞ;
where f : Rd # R is the objective function in the minimization problem. Suppose we apply PSO for its solution, where M par-
ticles are considered. At the k-th step of the PSO algorithm three vectors are associated to the j-th particle, j 2 f1; . . . ;Mg:

� xk
j 2 Rd, the position at step k of the j-th particle;

� vk
j 2 Rd, the velocity at step k of the j-th particle;

� pj 2 Rd, the best position visited so far by the j-th particle.

Moreover, pbestj ¼ f ðpjÞ denotes the value of the objective function in the position pj of the j-th particle. The overall PSO
algorithm, as in the version with inertia weight proposed in [27], is reported here:

1. Set k ¼ 1 and evaluate f ðxk
j Þ for j ¼ 1; . . . ;M. Set pbestj ¼ þ1 for j ¼ 1; . . . ;M.

2. If f ðxk
j Þ < pbestj then set pj ¼ xk

j and pbestj ¼ f ðxk
j Þ.

3. Update position and velocity of the j-th particle, with j ¼ 1; . . . ;M, as
vkþ1
j ¼ wkþ1vk

j þ U/1 � ðpj � xk
j Þ þ U/2 � ðpgðjÞ � xk

j Þ ð4Þ
xkþ1

j ¼ xk
j þ vkþ1

j ð5Þ
where U/1 ;U/2 2 Rd and their components are uniformly randomly distributed in ½0;/1� and ½0;/2� respectively. The symbol
� denotes component-wise product and pgðjÞ is the best position in a neighborhood of the j-th particle.
4. If a convergence test is not satisfied then set k ¼ kþ 1 and go to 2.

The values of /1 and /2 strongly affect the strength of the attractive forces, towards the personal and the neighborhood
best positions explored so far by the j-th particle. Thus, in order to (possibly) yield the convergence of the swarm, they have
to be set carefully in accordance with the value of the inertia weight wk. The parameter wk is generally linearly decreasing
with the number of steps, i.e.
wk ¼ wmax þ
wmin �wmax

K
k;
where common values for wmax and wmin are respectively 0:9 and 0:4, while K is usually the maximum number of steps
allowed.

Another widely adopted version of the PSO algorithm is the one with constriction coefficients (see [8]), where the updat-
ing velocity rule (4) is replaced by
vkþ1
j ¼ v vk

j þ U/1
� ðpj � xk

j Þ þ U/2
� ðpgðjÞ � xk

j Þ
h i

; ð6Þ
with v ¼ 2

/�2þ
ffiffiffiffiffiffiffiffiffiffiffi
/2�4/
p ; / ¼ /1 þ /2, and / > 4.

As stated before, we can think that at step k the j-th particle moves as subject to two attractive vectors: the direction to-
wards its previous best position (namely ðpj � xk

j Þ) and the direction towards the best position in a suitable subset of the
swarm (namely ðpgðjÞ � xk

j Þ). We recall that gðjÞ denotes the index of the particle with the best position reached so far, in
a neighborhood of the j-th particle. The specification of the neighborhood topology is then a choice to set. In our implemen-
tation we have considered the so called gbest topology, that is gðjÞ ¼ g for every j ¼ 1; . . . ;M, and g is the index of the best
particle in the whole swarm. This choice implies that the whole swarm is used as the neighborhood of each particle.

We remark that the original formulation of PSO was conceived for unconstrained problems. Thus, in general using PSO
formulae 4,5, when constraints are included in the formulation, is improper. Indeed, in the latter case the algorithm above
cannot prevent from generating infeasible particles’ positions, unless specific adjustments are adopted. When constraints are
included, different strategies were proposed in the literature (see also [3]) to ensure that at any step of PSO, feasible positions
are generated. Most of them involve repositioning of the particles, as for example the bumping and the random positioning
strategies proposed in [32], or introducing some external criteria to rearrange the components of the particles, as the ones
specific for cardinality constraints proposed in [20,10,28]. However, in this paper we decided to use PSO coherently with its
original formulation, that is as a tool for the solution of unconstrained optimization problems. The latter choice is mainly
motivated by the necessity of avoiding both a possible misleading application of specific metaheuristics to handle nonlinear
constraints, and the careless setting of ad hoc coefficients.

To this purpose, first we have reformulated our problem into an unconstrained one, using the nondifferentiable ‘1 penalty
function method described in [31,16]. The latter approach is known in the literature of constrained optimization as exact
penalty method, where the term exact refers to the correspondence between the minimizers of the original constrained prob-
lem and the minimizers of the unconstrained (penalized) one. Some applications presented in the literature in which PSO is
applied to portfolio selection problems for minimizing penalty functions or seemingly penalty functions are given in [6,28]
respectively. Nevertheless, unlike our solution approach, the solution method proposed in [6] is not based on exact penalty
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functions, and it does not consider integer unknowns. Moreover, the rule used in that paper for updating the parameter val-
ues appears to be far too problem dependent. Conversely, the solution method proposed in [28] has only the appearance of a
penalty approach, but to a large extent it is based on so-called Lagrangian methods, inasmuch as the entire vector of the
Lagrangian multipliers associated to the constraints is estimated at each iterate. With regard to that, generally Lagrangian
methods have been proven to be effective in practice, but they require an accurate estimation of the Lagrangian multipliers,
which is unnecessary for penalty-based solution approaches. Anyway, unlike our solution method, both such contributions
do not ensure the correspondence between the solution of the original constrained problem and the reformulated one (see
Proposition 3.1 for details).

On the contrary, in our approach we reformulate the problem (3) as follows (with N þ 1 equality constraints and 2N þ 3
inequality constraints), using the nondifferentiable penalty function
2 Due
Compan
min
X;Z

PðX; Z; eÞ ð7Þ
where
PðX; Z; eÞ ¼ qa;pðRÞ þ
1
e

maxf0; l� R̂g þ
XN

i¼1

xi � 1

�����
�����þmax 0;Kd �

XN

i¼1

zi

( )
þmax 0;

XN

i¼1

zi � Ku

( )"

þ
XN

i¼1

maxf0; zid� xig þ
XN

i¼1

maxf0; xi � ziug þ
XN

i¼1

jzið1� ziÞj
#

ð8Þ
and e is the penalty parameter.
The correct choice of e ensures the correspondence between the solutions of problems (7) and (3) (see also [11]), which is

summarized by the result which follows.

Proposition 3.1. Consider problem (3) with qa;pðRÞ continuous on RN. Consider the Exact Penalty function PðX; Z; eÞ in (8). Let
ðX	; Z	Þ be a strict local minimizer of problem (7) where the KKT conditions (see the appendix for details) are satisfied, with the
generalized Lagrange multipliers

� k	i , with i ¼ 1; . . . ;N þ 1 (for the equality constraints),
� r	j , with j ¼ 1; . . . ;2N þ 3 (for the inequality constraints).

Then, for any e 2 ð0; e	� the solution ðX	; Z	Þ is also a local minimizer of problem (3), where e	 depends on k	 and r	.

Observe that the penalty function PðX; Z; eÞ is clearly nondifferentiable because of the ‘1-norm in (8). This also motivates
the choice of using PSO for its minimization, since PSO evidently does not require the derivatives of PðX; Z; eÞ. We avoid to go
into details (see [11,31] for details), however the latter choice turns to be of great interest on those problems where illcon-
ditioning may arise. We also remark that the threshold value e	 is unknown. Nevertheless, acceptable values of this threshold
can often be found by appropriate numerical investigation, provided that a constraints qualification condition is satisfied in
ðX	; Z	Þ.

Of course, since PSO is a metaheuristics, the minimization of the penalty function PðX; Z; eÞ theoretically does not ensure
that a global minimum of the problem (3) is detected. Nevertheless, PSO often provides a suitable compromise between the
performance (i.e. a satisfactory estimate of a global minimizer for the problem (3)) and the computational cost.

4. Numerical results

In this section, in order to describe the effectiveness of our approach, we focus on the following two issues:

� first we apply our solution procedure to the selection of portfolios based on the set of assets constituting the Standard &
Poor’s SP 100 index, over different time periods from August 2004 to October 2009;
� then we compare the so obtained results with the ones coming from a couple of benchmark portfolio selection models: a

Markowitz-based solution procedure and a known alternative heuristic-based portfolio selection approach.

4.1. Applications and discussion

In order to test our approach, in this section we consider data of daily close prices fpi;tg of the i-th asset at time t, for
i ¼ 1; . . . ;100 and t ¼ 1; . . . ; T , where T is the time horizon considered. The assets considered are included in the Standard
& Poor’s SP 100 index,2 from August 2004 to October 2009. Several subsets of these data have then been selected, to analyze
to the lack of available data for the whole period considered, Mastercard and Philip Morris have been replaced by Verisign and Molson Coors Brewing
y.
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differences in the optimal portfolio composition with respect to the considered time period. The price series have been used to
compute each stock return
3 Exp
ri;t ¼
pi;tþ1 � pi;t

pi;t
:

Using the same idea of [7] we estimate the risk measure for any portfolio X ¼ ðx1; . . . ; xNÞT as
qa;pðRÞ ¼
a
T

XT

t¼1

XN

i¼1

ðri;t � r̂iÞxi

 !þ" #
þ ð1� aÞ 1

T

XT

t¼1

XN

i¼1

ðri;t � r̂iÞxi

 !�" #p( )1
p

; ð9Þ
where r̂i is estimated using the historical data, that is
r̂i ¼
1
T

XT

t¼1

ri;t:
According with problem (3), the minimum level of desired return l in (8) was set to the global average of stock returns, i.e.
l ¼

PN
i¼1 r̂i. Moreover, to reflect a realistic problem of portfolio selection, we set the values d ¼ 0:02 and u ¼ 0:20 in (8). In

order to analyze the impact of meaningful cardinality constraints on the selection problem, we have chosen Kd ¼ 5, while
we have considered two different scenarios for Ku : Ku ¼ 50 (the maximum value allowed according to (2)), and Ku ¼ 30.
The PSO algorithm to solve (8) was implemented in MATLAB 7, and the experiments have been performed on a workstation
Acer Aspire M1610 with a Intel Core 2 Duo E4500 processor.

We first performed a set of preliminary tests (reported below) with the aim of assessing a proper setting for PSO. We
experienced different values for the penalty parameter e and for the coefficients of PSO, including the number M of particles
in the swarm. Then, we chose the values of the parameters3 a; p in the risk measure (9), as a ¼ 0:5 and p ¼ 2, and we ran the
two versions of the algorithm (i.e. with decreasing inertia weight and constriction coefficients respectively), using one-year data
of returns. Since the evaluation of the objective function PðX; Z; eÞ in (8) is relatively inexpensive, we stopped PSO iterations
when either of the following stopping criteria was satisfied:

(a) the maximum number of 10000 steps was outreached;
(b) j fbestkþ1 � fbestk j< 10�8 for 2000 consecutive steps, where fbestk is the best value of the fitness function f ¼ PðX; Z; eÞ

at k-th iteration.

We remark that on average the version of PSO with constriction coefficients (6) showed earlier convergence to a global
best position with worse values of the fitness function, compared to versions of PSO using a decreasing inertia weight. Thus,
we decided to adopt the latter variant of PSO for the subsequent experiments.

In Table 1 we report the results in terms of the averaged best value of the fitness function (normalized to take into ac-
count the effects of using different values of e) and its standard deviation. In Table 2 we show the results in terms of the
averaged ratio between the final ðFf Þ and initial ðFiÞ value of the fitness function, including the average computational time,
for different numbers of particles used. The results in Tables 1 and 2 are averaged over 10 runs of PSO, and Table 2 refers to
the case e ¼ 10�6, which is the best value from Table 1.

Table 2 also suggested to select e ¼ 10�6 and M ¼ 200. The number of particles is then quite high, but this concurs with
the general evidence that larger populations perform better on higher dimensional problems (see also [4,5,3]).

Then, we repeated the computation in order to select the best values for the acceleration coefficients /1;/2, while for the
initial and final values of the inertia weight wmax;wmin in (4) we used 0:9 and 0:4, as suggested by the current literature. The
results are shown in Table 3, and the best performance was obtained with /1 ¼ /2 ¼ 1:85.

After this preliminary phase, we solved the portfolio selection problems for different values of the parameters a and p of
the risk measure qa;pðRÞ, and Ku, considering one year data of daily returns of different time periods. We wanted in fact to
study both the capability of PSO to find a global minimum for the optimization problem and the economic effectiveness of
the portfolios obtained, while considering different scenarios and different attitudes towards risk.

We then set the maximum number of the algorithm steps to 20000 and, for every combinations of the parameters and the
dataset, we first performed 25 runs of the algorithm, each with different random initial positions and velocities. The standard
deviation of the values of the fitness function was still high (an example of the values of the fitness function at the end of the
first 25 runs is shown in Table 4). Moreover, we found significantly different optimal portfolios in the runs, each correspond-
ing to a possible local minimum. Then, we decided to iterate the procedure in the following way: we made another set of 25
PSO runs, with again random initial velocities for all particles. However, we used the 25 global best positions found in the
previous phase as initial positions for 25 particles, while the remaining 175 ones were set randomly. At the end of this sec-
ond phase we obtained convergence to the same global best position for each of the 25 runs (in general not corresponding to
the best position of the previous 25 ones) and we assumed the latter to be the global minimum ðX	; Z	Þ of the optimization
eriments with different values for a and p showed no significant difference with regard to the results of this preliminary phase.



Table 1
Results for different choices of the parameter e in (8).

e Normalized fitness Standard deviation

1 0.388728255 0.134295545
0.1 0.332573168 0.136412572
0.01 0.337188413 0.061398093
0.001 0.372167277 0.253545145
0.0001 0.413884094 0.155254628
0.00001 0.381672803 0.200184247
0.000001 0.260743870 0.099544544
0.0000001 0.341627127 0.185689216

Table 2
Results for different choices of the number M of particles in PSO.

M Fitness Ratio of decrease ðFf =FiÞ Time (seconds)

50 444393.5727 0.015960233 54.2939
100 60160.8053 0.002162255 109.2537
200 6423.0849 0.000233782 158.0136

Table 3
Results with different choices of the parameters /1 and /2.

/1 ¼ /2 ¼ /=2 Average fitness Standard deviation

1.25 564611.56 261486.21
1.50 13439.35 11620.83
1.75 6047.39 5361.74
1.85 1822.09 1963.27
2.00 22763505.40 859690.31

Table 4
Best fitness after the first 25 runs, with a ¼ 0:5; p ¼ 1;Ku ¼ 50, data of the period 2006–07.

Run 1 2 3 4 5
Best fitness 90.35 249.29 16.25 96.25 311.97
Run 6 7 8 9 10
Best fitness 247.11 4.96 57.84 50.78 384.16
Run 11 12 13 14 15
Best fitness 46.22 4.06 0.62 1.25 0.47
Run 16 17 18 19 20
Best fitness 2.17 0.22 112.70 118.46 0.29
Run 21 22 23 24 25
Best fitness 3.67 3.75 2.09 186.67 0.54
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problem. We remark that the difference between the global best fitness PðX	; Z	; eÞ and the risk measure qa;pðR
	Þ was negli-

gible,4 except for the case q0:5;5 with Ku ¼ 30 and data of period 2006–07 (see Table 5). This means that the use of the nondif-
ferentiable penalty function is effective, in order to impose the satisfaction of the constraints, including the cardinality
constraints.

From Table 5 it is interesting to remark that the monotonicity properties expected by theoretical results ([7, Theorem 2.3],
i.e. the monotonicity of qa;pðRÞ with respect to a and p) are fulfilled. Tables 6 and 7 also confirm the latter statement, and
highlight that PSO is effective to detect a good approximation of a global minimum for PðX; Z; eÞ. In this regard PSO provides
an efficient compromise between the correctness of the solution found and the resources used in the computation.

Interestingly enough, we also notice that qa;pðR
	Þ slightly decreases with Ku (except for the case q0:75;2 with data of period

2004–05). This is consistent with the fact that PSO has performed a good exploration of the feasible set when Ku ¼ 30, that is
a subset of the one with Ku ¼ 50.
4 At least in the cases where l is set equal to the global average of all stock returns, while there may be some problems when l is increased, as expected. We
guess that in the latter case the maximum number of stocks to trade, i.e. Ku , is not enough large to fulfill the minimum return constraint.



Table 5
Comparison between the best fitness in the first 25 runs, and the global best fitness after other 25 runs, with a ¼ 0:5, data of period 2006–07.

Ku ¼ 50 p ¼ 1 p ¼ 2 p ¼ 5

Best fitness among the first 25 runs 0.2208 0.6356 0.0662
Global best fitness after 25 + 25 runs 0.0020 0.0029 0.0044

Ku ¼ 30 p ¼ 1 p ¼ 2 p ¼ 5

Best fitness among the first 25 runs 1.4742 0.4846 0.2062
Global best fitness after 25 + 25 runs 0.0021 0.0031 0.0134

Table 6
Monotonicity of qa;pðR

	Þ for a ¼ 0:5 and different values of p and Ku , with one year data from two time periods. Na;pðKuÞ represents the number of assets in the
final portfolio.

2004–05 p ¼ 1 p ¼ 2 p ¼ 5

q0:5;p; Ku ¼ 50 0.001951 0.002816 0.004513
Na;pðKuÞ 43 45 40
q0:5;p; Ku ¼ 30 0.002333 0.003219 0.004808
Na;pðKuÞ 23 28 28

2006–07 p ¼ 1 p ¼ 2 p ¼ 5

q0:5;p; Ku ¼ 50 0.002012 0.002924 0.004379
Na;pðKuÞ 44 45 45
q0:5;p; Ku ¼ 30 0.002094 0.003099 0.004339
Na;pðKuÞ 30 30 29

Table 7
Monotonicity of qa;pðR

	Þ for p ¼ 2 and different values of a and Ku , with one year data from two time periods. Na;pðKuÞ represents the number of assets in the
final portfolio.

2004–05 a ¼ 0 a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

qa;2; Ku ¼ 50 0.003853 0.003448 0.002816 0.002509 0.002135
Na;pðKuÞ 43 45 45 46 43
qa;2; Ku ¼ 30 0.004029 0.003473 0.003219 0.002434 0.002306
Na;pðKuÞ 29 29 28 27 29

2006–07 a ¼ 0 a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1

qa;2; Ku ¼ 50 0.004194 0.003587 0.002924 0.002319 0.001820
Na;pðKuÞ 45 41 45 48 48
qa;2; Ku ¼ 30 0.004227 0.003652 0.003099 0.002345 0.001855
Na;pðKuÞ 30 30 30 29 29
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4.2. Comparisons and discussion

In this section we compare the performances of the obtained portfolios with the ones of some other portfolios, inspired by
practical rules adopted by fund management industry.

4.2.1. The Markowitz-based benchmark
First we followed some indications of the previously mentioned north-eastern Italian company, which is specialized in

automatic financial trading systems. According with their policy, several professional investors often tend to select their
portfolios still using simple Markowitz-like approaches. Thus, we first compared our portfolios with the ones obtained by
solving a new selection problem, in which we both replaced qa;pðRÞ with variance (the quintessential risk measure à la
Markowitz) and kept the same system of constraints of problem (3). The optimization problem associated to this new port-
folio selection problem was again solved by using PSO.

Then, in a second experience we compared our portfolio with the one obtained by the very basic Markowitz portfolio
selection model (see below for details). In this way we performed a comparison with a widely-if-not-universally accepted
benchmark in portfolio management.

According with the plan of experiments above, we first checked for the diversification of the portfolios in the different
approaches, as shown in Table 8. It appears that when Ku ¼ 50 (i.e. the cardinality constraint is more relaxed), the diversi-
fication obtained using qa;pðRÞ is higher than using variance, and it is also slightly increasing with p. Again, this is also con-
sistent with the results obtained in [7], where the cardinality constraint was not explicitly introduced, and the comparison
was carried on with respect to CVaR as risk measure.



Table 8
Comparison between the number of assets Na;pðKuÞ in the optimal portfolios, using respectively q0:5;pðRÞ and the variance r2 as the objective function in (3),
with one year data from two time periods.

q0:5;p

2004–05 p ¼ 1 p ¼ 2 p ¼ 5 r2

Ku ¼ 50 43 45 45 42
Ku ¼ 30 29 28 28 28

q0:5;p

2006–07 p ¼ 1 p ¼ 2 p ¼ 5 r2

Ku ¼ 50 44 45 45 42
Ku ¼ 30 30 30 29 28
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Then, we compared the performance of the portfolios selected using respectively qa;pðRÞ and r2 in (3). Following indica-
tions from financial practice, we proceeded as follows: we used one-year data of daily returns, from the portfolio selected by
minimizing PðX; Z; eÞ in (8). Then, we invested the selected portfolios for the next three months. After that we repeated the
selection, and we re-invested the resulting portfolios for other three months, and so on for other two quarters. In this way we
analyzed the performance of the portfolios along one entire year. We considered two periods of one year length (in order to
compute the portfolios for the test in the subsequent first quarter), that is August 2004-July 2005 and February 2007-January
2008, with the aim of analyzing the impact of different macroeconomic conditions on the performance of the portfolios. The
results are shown in Tables 9–12.

We notice that the behaviour of the portfolio selected using q0:5;2 is quite similar to the one of the portfolio selected using
the variance. The latter fact is more evident when Ku ¼ 30 in the period 2005–06, where in two cases we obtain the same
Table 9
Portfolio returns with different measures of risk (namely q0:5;pðRÞ and r2 in (8)); case with Ku ¼ 50 for the time period 2005–06.

Period length q0:5;1 (%) q0:5;2 (%) q0:5;5 (%) r2 (%)

3 months 1.67 1.33 0.67 �0.18
6 months 3.22 4.00 4.55 3.59
9 months 0.47 �1.41 1.14 3.35
12 months �3.35 �2.79 �1.24 �2.59

Table 10
Portfolio returns with different measures of risk (namely q0:5;pðRÞ and r2 in (8)); case with Ku ¼ 30 for the time period 2005–06.

Period length q0:5;1 (%) q0:5;2 (%) q0:5;5 (%) r2 (%)

3 months �1.54 1.68 0.54 3.17
6 months 4.68 5.36 3.05 5.36
9 months 2.13 0.96 1.14 0.96
12 months �3.23 �1.89 �0.93 �1.89

Table 11
Portfolio returns with different measures of risk (namely q0:5;pðRÞ and r2 in (8)); case with Ku ¼ 50 for the time period 2008–09.

Period length q0:5;1 (%) q0:5;2 (%) q0:5;5 (%) r2 (%)

3 months 7.23 3.20 3.19 5.13
6 months �8.32 �6.64 �6.79 �8.24
9 months �23.82 �25.13 �22.81 �22.30
12 months �10.44 �9.77 �9.38 �7.11

Table 12
Portfolio returns with different measures of risk (namely q0:5;pðRÞ and r2 in (8)); case with Ku ¼ 30 for the time period 2008–09.

Period length q0:5;1 (%) q0:5;2 (%) q0:5;5 (%) r2 (%)

3 months 3.42 3.63 3.94 3.53
6 months �8.10 �9.18 �6.89 �10.24
9 months �30.50 �24.42 �19.84 �19.52
12 months �13.15 �11.85 �10.51 �12.10



Table 13
Portfolio returns for the basic Markowitz model (i.e. q0:5;pðRÞ in (3) is replaced by r2, and
the feasible set of (3) contains only the first two constraints).

Period length 2005–06 (%) 2008–09 (%)

3 months �3.39 �1.27
6 months 3.32 �5.73
9 months 3.35 �9.18
12 months �2.32 �12.25
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return and the differences in the composition of the two portfolios are negligible. On the contrary, the portfolios selected
using q0:5;1 and q0:5;5 appear to correspond respectively to a more aggressive and conservative investor. In particular, during
the financial markets crisis in the period 2008–09, the portfolio selected using q0:5;5 shows less losses than the ones obtained
using variance. These results are definitely expected, considering the theoretical role of the parameter p described in [7].

As final comparison we report in Table 13 the returns of portfolios obtained using the very basic Markowitz model (i.e. the
returns of portfolios selected using variance as measure of risk, and keeping only the first two constraints of problem (3)),
which is still very used in the financial practice with minimal modifications. We remark that in this case there are no restric-
tions on either the number of assets or the fraction of the portfolio invested in each asset; thus, all assets are possibly in-
volved in the composition of the optimal portfolio. This in practice entails a notable increase of the related transaction
costs. Moreover, observing the returns on the ‘‘good’’ period 2005–06, we notice that the higher diversification provided
by this simple model does not yield better performance with respect to the portfolios selected using qa;pðRÞ or variance in
problem (3). In the ‘‘bad’’ period 2008–09 the performance of Markowitz portfolios is slightly better. This is not unexpected,
since in this case short sales are allowed, and during this time period almost all assets show negative returns. On the other
hand, short positions generally require higher transaction costs, including interest expenses for borrowing assets, and they
could be not allowed by markets supervisor during big financial crisis. Thus, to sum up portfolios selected using the general
model (3) could still represent a better alternative, especially for a fund manager.

4.2.2. The alternative heuristic-based benchmark
Finally, we compare the results obtained by our solution procedure with the ones coming from a known heuristic-based

approach. As we premised in Section 1, the cardinality constraints play a remarkable role in our portfolio selection model.
Indeed, on one hand they are often considered by the fund manager industry, moreover they make the corresponding math-
ematical programming problem NP-hard. Thus, in order to check the capability of PSO to handle such constraints, and to
closely approach a global solution of problem (3), we used an heuristic-based procedure as a benchmark. The latter method
is often used when facing cardinality constrained problems (see for example [19, page 117]). Below we synthetically describe
this alternative heuristic-based approach. For each considered combination of the values for a and p in qa;pðRÞ:

� first, we sort in an increasing manner the assets on the basis of their performances with respect to qa;pðRÞ;
� then, we consider the set eX # X constituted by the first Na;pðKuÞ assets of the ordered list, where Na;pðKuÞ is the number of

assets in the optimal portfolio reported in Tables 6 and 7, and determined by the PSO-based approach in the full version of
the problem;
� finally, to assign the weights to the assets we solved the following reduced optimization problem:
mineX qa;pðRÞ

s:t: R̂ P lXNa;pðKuÞ

i¼1

exi ¼ 1

d 6 exi 6 u; with i ¼ 1; . . . ;Na;pðKuÞ:

ð10Þ
Notice that:

� we have assumed that the number of assets selected both in the full version of the problem and in the reduced one has to
be the same, otherwise the portfolio with a higher number of selected assets should have had more potential advantages
in terms of diversification;
� the cardinality constraint is ‘‘managed’’ externally to the reduced optimization problem.

For comparability reasons, we decided again to reformulate problem (10) in a non-smooth way using the nondifferentia-
ble ‘1 penalty function method, similarly to what we have done for problem (3); then, we used again PSO for its solution. The
results, in term of the global risk measure of the portfolio qa;pðRÞ are reported in Table 14 and show, by comparison with
Table 6, how the best values are generally obtained by PSO in the solution of the full problem (3). In particular, the percent-



Table 14
Values of qa;pðR

	Þ of problem (10) for a ¼ 0:5 and different values of p and Na;pðKuÞ, with one year data from two time periods.

2004–05 p ¼ 1 p ¼ 2 p ¼ 5

q0:5;p; Na;pðKu ¼ 50Þ 0.002143 0.003261 0.004592
9.84% 15.80% 1.75%

q0:5;p; Na;pðKu ¼ 30Þ 0.002437 0.003518 0.004796
4.46% 9.29% �0.25%

2006–07 p ¼ 1 p ¼ 2 p ¼ 5

q0:5;p; Na;pðKu ¼ 50Þ 0.002452 0.003126 0.004459
21.87% 6.91% 1.83%

q0:5;p; Na;pðKu ¼ 30Þ 0.002293 0.003379 0.004401
9.50% 9.04% 1.43%
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ages reported in Table 14, under each best value, measure the variation of such values with respect to the corresponding
values associated to the full problem (3). All but one of these percentages are positive and not particularly close to 0 (the
only one negative percentage is pretty close to 0). This shows a general capability of our solution approach (i.e. the full model
(3) with the nonsmooth reformulation (8)) to fruitfully handle the cardinality constraints better than the considered bench-
mark portfolio selection alternative. We highlight that such a capability is reasonably more evident in the case when Ku ¼ 50,
that is the case in which there is more diversification (which is well exploited by our PSO-based algorithm).

5. Final remarks

In this paper we have first proposed a partially novel reformulation for the selection of large and complex portfolios, char-
acterized by an upper-and-lower-moments-based coherent risk measure and a mixed-integer formulation. This reformula-
tion used a nondifferentiable exact penalty method and was solved using PSO. Although the obtained results are satisfactory,
this solution approach seems to offer opportunities for possible improvements and extensions. In particular:

� As the reformulation of problem (3) is concerned, we point out that other possible reformulations of that mathematical
programming problem may be considered, both smooth and non-smooth. To this purpose, resorting to continuously dif-
ferentiable penalty functions appears particularly promising. This method is substantially characterized by theoretical
properties equivalent to the ones characterizing the penalty scheme used in this paper (see [15] for details);
� As the initialization of the particles’ positions and velocities is concerned, we guess that the performances of our simple

approach can be significantly improved by resorting to a theoretical-based procedure recently proposed in [4,5]. By so
doing we expect improvements both in the solution quality and computational time;
� As stated in Section 1, PSO in not the only bio-inspired metaheuristic able to deal with minimization problems like (8).

Currently, in order to compare different bio-inspired metaheuristics as global minimizers of complex portfolio selection
problems, we have started to use GAs. The very first preliminary results (not included here) suggest that the optimal port-
folio compositions obtained by PSO and GAs are quite similar. However, PSO needs a computational time which is signif-
icantly lower than the one needed by GAs;
� Finally we recall that, from a methodological point of view, the solution approach we propose can play the role of uni-

versal global (approximate) optimizer for a large variety of complex portfolio selection problems, even if characterized
by very different risk measures and systems of constraints. Thus, it can represent a flexible tool for the fund management
industry, in order not to leave unsatisfied demand.

In order to carefully detect features and drawbacks of our approach, in a future research further investigations are necessary
with respect to different risk measures, constraints and data.
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Appendix A

Consider the general constrained optimization problem
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min f ðxÞ
hiðxÞ ¼ 0 i ¼ 1; . . . ;p;

gjðxÞ 6 0 j ¼ 1; . . . ; q:
ð11Þ
Suppose that at the feasible point x	 some inequality constraints (thereof subscripts are in the subset Aðx	Þ) are satisfied as
equalities, i.e.
gjðx	Þ ¼ 0; j 2 Aðx	Þ:
We say that for the problem (11) the condition LICQ (Linear Independent Constraint Qualification) holds at x	 if the vectors
rh1ðx	Þ; . . . ;rhpðx	Þ;rgjðx	Þ
��
j2Aðx	Þ

n o

are linearly independent. Then we can now define the following first order optimality conditions for the minimizer x	 of (11).

Proposition 5.1 (KKT Conditions). Consider the problem (11), where the functions f ;h and g are continuously differentiable.
Suppose that x	 is a local minimizer of (11), where the LICQ holds. Then, there exists a unique Lagrange multiplier vector
ðk	T ;r	TÞ 2 Rpþq such that
rf ðx	Þ þ
Xp

i¼1

k	irhiðx	Þ þ
Xq

j¼1

r	jrgjðx	Þ ¼ 0

hiðx	Þ ¼ 0; i ¼ 1; . . . ;p

r	j gjðx	Þ ¼ 0; j ¼ 1; . . . ; q

gjðx	Þ 6 0; j ¼ 1; . . . ; q

r	j P 0; j ¼ 1; . . . ; q:

Observe that the constraints qualification condition LICQ in Proposition 5.1 substantially ensures that there exist the func-

tions k ¼ kðxÞ and r ¼ rðxÞ, with k	 ¼ kðx	Þ and r	 ¼ rðx	Þ, which can be explicited by the Implicit Function Theorem, at least
in a neighborhood of x	. Equivalently, the condition LICQ can be replaced by several other qualification conditions (see also
[16,11,31]).
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