
Exploiting SYMMBK method for the
full computation of negative
curvature directions

Giovanni Fasano
Christian Piermarini
Massimo Roma

Technical Report n. 06, 2023

ISSN 2281-4299

Exploiting SYMMBK method for the full

computation of negative curvature directions

Giovanni Fasano
Dipartimento di Management

Università Ca’ Foscari Venezia, Italy
fasano@unive.it

Christian Piermarini, Massimo Roma
Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”

SAPIENZA – Università di Roma, Italy
piermarini@diag.uniroma1.it, roma@diag.uniroma1.it

Abstract

In this paper we consider the issue of computing negative curvature directions, for non-
convex functions, within Newton–Krylov methods for large scale unconstrained optimization.
In the last decades this issue has been widely investigated in the literature, and different ap-
proaches have been proposed. We focus on the well known SYMMBK method introduced for
solving large scale symmetric possibly indefinite linear systems [5, 9, 11, 28], and show how to
exploit it to yield an effective negative curvature direction in optimization frameworks. The
distinguishing feature of our proposal is that the computation of negative curvature directions
is basically carried out as by–product of SYMMBK procedure, without storing no more than
one additional vector. Hence, no explicit matrix factorization or matrix storage is required.
A numerical experience is reported, showing the reliability of the novel approach we propose.

In addition, we also propose a novel general tool, to profile the quality of the solutions
found by different solvers in optimization frameworks. The new proposed tool, namely Quality
Profile, draws its inspiration from both performance and data profiles [18, 36], sharing with
them a number of basic properties but also showing several strong differences on fruitful use
cases.

Keywords: Large scale unconstrained optimization, Newton–Krylov methods, Negative curvature
directions, Second order critical points, Quality profiles

1 Introduction

We focus on linesearch–based Newton–Krylov methods that are widely used for solving large scale
unconstrained optimization problems, namely to determine a local minimizer of the problem:

min
x∈Rn

f(x), (1.1)

being f : Rn → R, with f(x) twice continuously differentiable in Rn. Given an initial guess
x0 ∈ Rn, at each iteration of these methods, a new iterate is generated according to the iterative
scheme

xk+1 = xk + αkdk, (1.2)

where dk is a search direction and αk > 0 is a suited steplength. Since the search direction
is determined by means of an iterative Krylov–subspace method, actually our linesearch–based
scheme encompasses two nested loops:

� the outer iterations, where starting from the current iterate xk, a new iterate is generated
according to the scheme (1.2), and where αk is computed by a linesearch procedure;

� the inner iterations, namely the iterations of the Krylov–subspace method used for approxi-
mately solving the Newton equation

∇2f(xk)d = −∇f(xk). (1.3)

Newton–Krylov methods are also called Truncated Newton methods (or inexact Newton meth-
ods) since, on large scale problems, the inner iterations are usually “truncated”, i.e. terminated
according to a suited stopping criterion, still ensuring superlinear converge rate [16, 17]. As con-
cerns global convergence properties, convergence to first order critical points is ensured, i.e. points
which satisfies first order necessary optimality conditions, namely toward stationary points. For a
complete overview of these methods we refer the reader to the survey paper by Nash [34].

Among the most commonly used iterative methods adopted in the inner iterations we find
the Conjugate Gradient (CG) method. In the convex case (positive definitive Hessian), it per-
forms well, but in the case of indefinite Hessian it may untimely breakdown (pivot breakdown)
or become numerically unstable. This occurs when in the CG iterations a direction s such that
s⊤∇2f(xk)s < 0 is encountered before satisfying the termination criterion. As well known, such
directions are called negative curvature directions for the function f at xk and, as we will discuss
afterwards, they may play an important rule for improving both the converge properties and the
efficiency of the method. To overcome the drawback of the CG untimely stopping, some authors
proposed the use of the Lanczos process in the inner iterations in place of the CG [30, 33]. The
two methods are, to some extent, equivalent in the case of convex functions, but the iterations of
the Lanczos process do not prematurely stop.

It is important to point out that, even if these methods use second order information on the
objective function, actually they are “matrix–free” (Hessian–free), since Hessian matrix is never
stored and information is gained by means of a routine which provides the matrix–vector product
of the Hessian times a vector. This feature, along with their scale invariance properties, makes
these methods very attractive also in recently raised machine learning applications (including deep
neural networks). Hessian times vector products can be computed at a cost which is a small
multiple of the cost of a gradient evaluation (see, e.g., [3]). Such problems arise, for instance,
in training deep neural networks, in low rank subspace clustering problems [29] and many other
contexts. As clearly pointed out in the recent paper by Curtis and Robinson [13], today it is really
needful to design new methods able to efficiently solve non-convex problems by exploiting negative
curvature directions, both in deterministic and stochastic optimization.

Moreover, the use of negative curvature directions allows to avoid saddle points due to the
properties that algorithms inherit in terms of convergence to second-order points (see, e.g., sta-
tistical physics, random matrix theory and training multilayer perceptron networks [4, 10, 14]).

2

Indeed, when seeking for local minima, it may take a very large number of iterations to escape
from a neighborhood of a saddle point. In particular, saddle points can represent a much more
predominant and frequent obstacle to skip with respect to local minima, when training layered
feed-forward neural networks [2]. In this regard, negative curvature directions can be extremely
beneficial to deal with the proliferation of saddle points.

The use of negative curvature directions within (modified) Newton methods dates back to
the seminal papers [31] and [32]. These led to the development of several methods based on
a combination of a Newton–type direction dk and a negative curvature direction sk where the
iterative scheme (1.2) is replaced by

xk+1 = xk + α2
kdk + αksk, (1.4)

and αk is obtained by means of a curvilinear linesearch. The use of negative curvature directions
has a twofold importance: from the computational point of view, a movement along a descent
negative curvature direction allows the algorithm to escape from regions of nonconvexity of the
objective function. From the theoretical point point of view, the use of suited negative curvature
directions enables defining methods converging to second order critical points, i.e., points which
satisfy second order necessary optimality conditions, namely stationary points where the Hessian is
positive semidefinite. Note that Newton–type methods based on trust region approach, naturally
possess such convergence property (see [11]). Linesearch–based methods converging to second order
critical points have been also proposed in the framework of nonmonotone methods [24] and extended
to large scale setting in [30]. To ensure this stronger convergence property, the negative curvature
direction used must be an approximation of an eigenvector of the Hessian matrix corresponding to
the most negative eigenvalue. More precisely, the negative curvature direction sk is required to be
a bounded descent direction satisfying the following property:

s⊤k ∇2f(xk)sk −→ 0 implies min
[
0, λmin

(
∇2f(xk)

)]
−→ 0, (1.5)

where λmin

(
∇2f(xk)

)
is the smallest eigenvalue of the Hessian matrix ∇2f(xk). Computing a di-

rection sk satisfying (1.5) is a very computationally expensive task, since it involves the spectrum of
∇2f(xk). Moreover, most of the strategies proposed in literature for computing negative curvature
directions satisfying (1.5) usually rely on matrix factorizations (see e.g., the Bunch and Parlett
decomposition proposed in [32]), so that in the large scale setting they become impracticable. On
the other hand, also iterative methods usually adopted typically need to store a large matrix, hence
they are unsuited for handling large scale problems; this is the case of the method proposed in [30]
where the Lanczos process is used and the storage of a matrix of the Lanczos vectors generated
at each iteration is theoretically needed to computed adequate negative curvature directions. The
strategy adopted in [30] consisting of imposing an upper bound on the number of the Lanczos
vectors stored, actually implies the loss of the theoretical property of converging to second order
critical points.

A different approach for computing suited negative curvature directions is proposed in [26]. In
this paper, based on the close relation between CG and Lanczos methods, the Lanczos vectors are
regenerated by rerunning the recurrence when needed. In this manner, matrix storage is avoided,
but a non-negligible additional computational effort is required, due to rerunning operations.

A first attempt, in the case of indefinite Hessian, to iteratively compute negative curvature
directions satisfying (1.5), without requiring storage of any large matrix or rerunning the iterative
process, is represented by the use of the Planar-CG algorithm as proposed in [23] (we refer the
reader to the papers [19, 20] for a complete description of the Planar-CG schemes). Besides
providing a general theoretical framework which guarantees convergence to second order critical
points, in [23] results of a preliminary numerical experience are reported showing that the proposed
approach is reliable and promising. However, we believe that there is still need to further investigate
on how to determining effective negative curvature directions to be used within a truncated Newton
method. In particular, besides guaranteeing convergence toward second order critical points, the
use of such directions should improve the overall efficiency of the method and its capability to
detect better local minimizers. In the current paper, similarly to [23], we provide the computation

3

of a negative curvature direction sk that fulfills (1.5). Conversely, with respect to [23] we reduce
the related additional storage requirement (to obtain sk) to just one vector, by means of replacing
the use of the CG method.

Another issue worth investigating concerns how to combine a Newton–type direction and a
negative curvature direction taking into account their possible different scaling. As well known,
Newton–type direction is well–scaled (particularly when close to a local minimizer), while a negative
curvature direction may be possibly not. Hence, possible inefficiency may arise due to the use
of a combination of the two directions. Based on this remark, in [26], at each outer iteration,
given a descent pair of directions (dk, sk), only one of the two directions is selected and a suited
linesearch is performed along the chosen direction. The selection of the most promising direction
is performed by estimating the rate of decrease of the quadratic model of the objective function in
both directions. Following this approach, in [21], a new Truncated Newton method is proposed; a
test based on the quadratic model is used to select the most promising between the two directions
and an appropriate linesearch procedure is adopted depending on the search direction selected. On
the same guideline of selecting the most effective direction, in [35] the authors propose to consider
three alternatives: to select one of the two directions dk and sk, or possibly to make use of a
combination of both the directions. This latter choice is adopted when both the directions are
promising in terms of decrease of the quadratic model. On the other hand, as studied in [1], it
would be very beneficial to perform a scaling process before combining the two directions. Finally,
we mention that in the recent paper [13], a novel framework has been proposed for combining the
two directions, alternating two–step and dynamic step approaches.

Observe that negative curvature directions, obtained as by–product of iterative optimization
methods, have also been investigated within the recent literature related to preconditioners for
large scale linear systems. In particular, quasi–Newton based updates for the construction of
preconditioners were proposed, both within Truncated Newton Methods and Nonlinear CG meth-
ods, where the combined use of both positive and negative curvature directions can be fruitfully
exploited (see also [7] and [8]).

In this paper, we propose the use of an alternative iterative procedure to be used within Newton–
Krylov methods, for computing an effective negative curvature direction. In particular, we refer to
SYMMBK method for solving large scale symmetric possibly indefinite linear systems [5, 9, 11, 28].
Such method has been recently successfully applied within Truncated Newton methods to yield
a gradient related Newton–type direction [6]. More precisely, in that paper a modified Bunch–
Kaufmann factorization has been proposed to be used within SYMMBK algorithm for solving
the Newton equation, at each outer iteration. Indeed, the Bunch–Kaufmann factorization is an
effective and stable matrix decomposition, but when used for solving the Newton equation might
provide a direction which is not gradient–related, if the objective function is nonconvex. The
modification proposed in [6] enables obtaining a direction that is gradient–related and effective in
practice. Hence, the idea in the current paper to possibly use the same procedure for obtaining
also a negative curvature direction satisfying (1.5), with a minimal additional storage. For the
sake of completeness we remark that the next two novelties are included in the current paper:

� we define the computation of a novel negative curvature direction based on a modified
SYMMBK method: we first prove some theoretical achievements associated with the last
vector, and then we propose an extended numerical experience on a wide range of test prob-
lems from CUTEst collection [27];

� we address a new ad hoc benchmarking procedure, to evaluate the quality of the local mini-
mizers computed adopting our proposal for a novel negative curvature direction. The bench-
marking procedure (namely Quality Profiles) draws inspiration from [18] and [36], and yields
specific guidelines to take into account a ranking method among algorithms, when the objec-
tive function values they generate converge to different points. Furthermore, on one hand our
benchmarking system inherits almost the same appealing features of the profiling methods in
[18] and [36]. On the other hand, it allows a clearer comparison among different algorithms,
through zooming opportunities in the resulting plots which are not immediately extendable

4

to [18] and [36]. Finally, the proposed tool is able to suggest a ranking method among many
codes, by using the objective function values at the solution points.

The paper is organized as follows. In Section 2 we briefly recall the SYMMBK procedure and
provide some preliminaries on the use of negative curvature directions within a Truncated Newton
method. Sections 3 and Section 4 describe how to use SYMMBK for defining a suited negative
curvature direction. Section 5 deals with the iterative computation of negative curvature directions.
Theoretical results concerning the computed negative curvature directions are included in Section 6.
Sections 7 and 8 describe a possible alternative proposal based on conjugate directions. The results
of an extensive numerical experimentation are reported in Section 9 where novel profiles (named
Quality Profiles) are introduced for a better comparison when ranking different algorithms.

As regards the taxonomy adopted in this paper, if not specified elsewhere, subscripts will denote
the entries of vectors/matrices, {ej} is the canonical basis of Rn, ∥ ·∥ specifies the Euclidean norm.
Given a square matrix A, λmin[A] denotes the its smallest eigenvalue and κ(A) its condition number.
To help reader, we recall that in the Truncated Newton scheme we adopt the subscript k indicates
the current outer iteration.

2 Preliminaries

We recall that the SYMMBK procedure, that iteratively solves a symmetric linear system basically
relies on a couple of relevant tools:

� the Lanczos iterative process for the reduction of the original Newton’s equation to a sym-
metric tridiagonal system;

� the Bunch–Kaufmann decomposition of tridiagonal matrices, through an appropriate pivoting
strategy.

Considering the Newton equation (1.3), where the matrix ∇2f(xk) is possibly indefinite, the first
tool allows to transform the symmetric linear system into the system of equalities Tkyk = ∥∇f(xk)∥e1

dk = Qkyk,
(2.1)

being Tk ∈ Rm×m symmetric and tridiagonal, and Qk ∈ Rn×m, where m is the number of iterations
performed. In (2.1) the columns of the matrix Qk are given by the m Lanczos vectors (see also
[12]) q1, . . . , qm (with qTℓ qi = 0 and ∥qℓ∥2 = 1, being 1 ≤ ℓ ̸= i ≤ m),

Qk =

(
q1

...
... qm

)
. (2.2)

We recall that, unlike the method, on indefinite symmetric linear systems the Lanczos process
does not suffer for a possible pivot breakdown (see also the seminal book [12]). Given iterate xk,
a relevant property of matrix Qk is evidenced by the next relation

Tk = QT
k∇2f(xk)Qk. (2.3)

The Bunch–Kaufmann decomposition in SYMMBK allows for an easy factorization of the tridiag-
onal matrix Tk as in

Tk = SkBkS
T
k , (2.4)

being Sk ∈ Rm×m a block unit lower triangular matrix, while the matrix Bk ∈ Rm×m is block
diagonal, with blocks of possible dimensions 1 × 1 or 2 × 2. By (2.1), after m iterations of the
Lanczos process, the vector dk is available and

� it represents an approximate solution of (2.1);

5

� it can be used as a search direction within an optimization framework.

Furthermore, in [6] the authors slightly modified the pivot rule within the Bunch–Kaufmann de-
composition, so that the resulting vector dk was provably Gradient–Related for the optimization
framework where SYMMBK is used.

Our main task here is represented by exploiting SYMMBK procedure, in order to iteratively
build an effective negative curvature direction sk ∈ Rn for f(x) at xk, so that Sk in (2.4) is
available almost as by–product and no more than one n–dimensional vector needs to be stored for
its computation. This will provide a general matrix–free technique to construct negative curvature
directions in large scale settings, where a popular and well renowned tool, namely SYMMBK
procedure, is adopted. The vector sk will be used within an iterative optimization framework
to solve (1.1), in order to steer the convergence towards a stationary point x̄, where the Hessian
matrix ∇2f(x̄) is positive semidefinite. As a more specific task, we hereafter technically address
the negative curvature direction sk such that the next conditions are fulfilled:

(i) sTk∇f(xk) < 0, for any sk ̸= 0;

(ii) sTk∇2f(xk)sk < 0, for any sk ̸= 0; (2.5)

(iii) sTk∇2f(xk)sk → 0 =⇒ min [0, λmin(∇2f(xk))] → 0.

Observe that (i) in (2.5) merely imposes that sk (if any) is a descent direction at xk for f(x), while
(ii) in (2.5) claims that sk has a nonzero projection on eigenvectors of ∇2f(xk) associated with
negative eigenvalues. Finally, (iii) in (2.5) imposes that, broadly speaking, when we approach a
region of convexity for f(x), then sk eventually approaches a vector in the null space of ∇2f(xk);
(iii) guarantees convergence to second order critical points. Conditions (i)–(iii) in (2.5) allow, in our
curvilinear framework, to compute the next iterate xk+1 according with a modified Armijo–type
linesearch procedure (see e.g. [31]).

3 Assessing the negative curvature direction sk

We recall that after m iterations of the Lanczos process, when applied in SYMMBK to approx-
imately solving (1.3), we have the matrices Qk and Tk as in (2.3), while the Bunch–Kaufmann
decomposition in SYMMBK iteratively yields the factorization (2.4) of Tk.

Now, given (1.3) and (2.3), let the vector w ∈ Rm be an eigenvector of the matrix Bk, associated
with a negative eigenvalue λ. Furthermore, assume that computing the vector y ∈ Rk such that
ST
k y = w represents a relatively simple task. Then, by (2.3) and (2.4) we obtain

(Qky)
T∇2f(xk)(Qky) = yT

[
QT

k∇2f(xk)Qk

]
y = yTTky = yTSkBkS

T
k y

= (ST
k y)

TBk(S
T
k y) = wTBkw = λ∥w∥22 < 0.

Thus, the vector Qky represents a negative curvature direction for the function f(x) at xk, and
in the sequel we are committed to yield a reliable procedure such that the subsequent results are
given:

� the efficient (say iterative) computation of the vector sk = Qky, exploiting SYMMBK pro-
cedure, without storing any matrix;

� the fulfillment of the conditions (i)–(iii) in (2.5) for sk.

On this purpose we preliminary consider the next result, whose proof can be easily obtained
from Lemma 4.3 in [32] and Theorem 3.2 in [23].

Lemma 3.1. Let us consider the problem (1.1), along with the sequence {xk}. Suppose m = n
iterations of the Lanczos process are performed by SYMMBK when solving Newton’s equation (1.3)
at iterate xk, for a given k ≥ 1, so that the decompositions Tk = QT

k∇2f(xk)Qk

Tk = SkBkS
T
k

(3.1)

6

are available. Then, Qk ∈ Rn×n is orthogonal and Tk ∈ Rn×n has the same eigenvalues of ∇2f(xk);
moreover, the matrices Sk ∈ Rn×n and Bk ∈ Rn×n are nonsingular. In addition, if w is a unit
eigenvector corresponding to the smallest (negative) eigenvalue λ of Bk, and ȳ is a (bounded)
solution of the linear system ST

k y = w, then the vector sk = Qkȳ is a bounded direction that
satisfies (i)–(iii) in (2.5).

Now, observe that the results in Lemma 3.1 assume that the Lanczos process performs exactly
n iterations to solve (1.3): this is definitely unaffordable for large n. Hence, we need to generalize
the contents in Lemma 3.1 to the case m < n. Moreover, we highlight that to compute the vector
ȳ in Lemma 3.1 we can recur to Lemma 4.3 in [32]. In this regard, with the next lemma we intend
to rephrase Lemma 3.1, though obtaining weaker conclusions, being possibly (iii) not fulfilled.

Lemma 3.2. Let us consider the problem (1.1), along with the sequence {xk}. Suppose m < n
iterations of the Lanczos process are performed by SYMMBK when solving Newton’s equation (1.3)
at iterate xk, for a given k ≥ 1, so that the decompositions (3.1) are available. Then, we have
Qk ∈ Rn×m and Tk ∈ Rm×m, along with the fact that the matrices Sk ∈ Rm×m and Bk ∈ Rm×m

are nonsingular. In addition, if w is a unit eigenvector corresponding to the smallest (negative)
eigenvalue λ of Bk, and ȳ is a (bounded) solution of the linear system ST

k y = w, then the vector
sk = Qkȳ is bounded direction that satisfies (i)–(ii).

As a further result, Lemma 4.3 in [32] ensures that the outcomes in Lemma 3.1 can be easily
generalized when the linear system ST

k y = w is replaced by

ST
k y =

∑
1≤i≤m : λi<0

wi, (3.2)

being wi the eigenvector of Bk corresponding to a negative eigenvalue λi. In this regard, some
additional observations require our attention:

� computing all the unit eigenvectors of the matrix Bk may represent in general an expensive
task, so that we may limit our analysis to compute an eigenvector associated to (one of) the
smallest eigenvalues (namely λmin) of Bk, then exploiting Lemma 3.1;

� fully computing all the eigenvectors of Bk does not ensure that an undoubtedly more effective
negative curvature direction sk will be available;

� the computation of λmin is considerably simplified by exploiting a diagonalization of the
matrix Bk.

4 Diagonalizing the matrix Bk

As by Section 3 we can observe that a suitable diagonalization of the block diagonal matrix Bk in
(3.1) is mandatory in order to simplify the computation of its eigenpairs. In particular, let

� Dk ∈ Rm×m be a diagonal matrix, with Dk = diag{λ1, . . . , λm} and where λ1, . . . , λm are
all the eigenvalues (possibly not all distinct) of Bk;

� Xk ∈ Rm×m be an orthogonal matrix, such that its columns correspond to the eigenvectors
of Bk associated to the eigenvalues λ1, . . . , λm;

then we have
Dk = XT

k BkXk ⇐⇒ Bk = XkDkX
T
k . (4.1)

Hence, since Bk is a block diagonal matrix (with 1 × 1 and 2 × 2 blocks), then also Xk will be a
block diagonal matrix with blocks of dimension at most 2× 2. In particular, for any 1× 1 diagonal
block B(i i) (2×2 diagonal block B(i i+1)) of matrix Bk we will have the corresponding 1×1 block
χ(i i) (2× 2 block χ(i i+1)) of matrix Xk, corresponding to the number 1 (the two eigenvectors of

7

the sub–matrix B(i i+1)). Thus, if Bk is given by all 1 × 1 diagonal blocks apart from the block
B(i i+1), i.e.:

Bk =

∗

∗
B(i i+1)

∗
∗

 ,

then the matrix Xk will correspondingly be given by

Xk =

1

1
χ(i i+1)

1
1

 , (4.2)

where χ(i i+1) = (vi
... vi+1) ∈ R2×2 and vi, vi+1 are the unit eigenvectors of B(i i+1). This last

example shows that the computation of the eigenpairs of Bk is relatively easy when it is a 2×2 block
diagonal matrix. Hereafter we will indicate with λℓ = λmin[Bk] the smallest (negative) eigenvalue
of Bk, and zℓ will be its corresponding unit eigenvector. Thus, ℓ will be used to denote the row
(column) index corresponding to the smallest (negative) diagonal entry of matrix Dk. By (2.4)
and (4.1) we immediately have

Tk = SkXkDkX
T
k S

T
k = WkDkW

T
k , (4.3)

where Wk
def
= SkXk ∈ Rm×m. Now, in order to exploit the theory indicated in Lemma 3.1 and

Lemma 3.2, we need to compute the eigenvector corresponding to the smallest eigenvalue of Tk,
so that a negative curvature direction for f(x) at xk can be computed, fulfilling (i)–(ii) in (2.5)
and possibly (iii). On this purpose, we have to do nothing else but replacing in (3.2) the matrix
Sk with the matrix Wk in (4.3). Hence, on the overall the computation of the negative curvature
direction sk requires solving the linear system

WT
k y = zℓ. (4.4)

4.1 The solution of (4.4) by backtracking

By simple inspection of (4.4), after exploiting the block structure of the matrix Wk we can realize
that, following the guidelines in [15] and [23], a straightforward backtracking algorithm allows the
computation of the solution ȳ ∈ Rm for (4.4). Indeed, recalling that Xk is orthogonal, the linear
system (4.4) can be re-written as ST

k y = wℓ, where wℓ = Xkzℓ. Hence, setting

[Sk]v,j = sv,j , v = 1, . . . ,m , j = 1, . . . ,m

[Xk]v,j = xv,j , v = 1, . . . ,m , j = 1, . . . ,m

zℓ =

 z1ℓ
...
zkℓ

to compute the vector ȳ the next system of m equations must be solved:

m∑
j=1

yjsv,j =

m∑
j=1

zjℓxv,j v = 1, . . . ,m. (4.5)

Since Sk is unit lower triangular, then sj,j = 1, for j = 1, . . . ,m, and sv,j = 0, for any j < v.
Furthermore, recalling that the matrix Bk is (at most) 2× 2 block diagonal, then the vector zℓ has

8

all zero entries but at most two (consecutive) non–zeroes. Hence, exploiting the structure of the
ST
k matrix, (4.5) can be solved recurring to a backward substitution algorithm, which yields to the

following solution:
ȳm = zmℓ xm,m

ȳm−1 = zm−1
ℓ xm−1,m−1 + zmℓ xm−1,m − ȳmsm−1,m

ȳj = zj−1
ℓ xj,j−1 + zjℓxj,j + zj+1

ℓ xj,j+1 − ȳj+1sj,j+1 − ȳj+2sj,j+2, j = 1, . . . ,m− 2

(4.6)

Now, suppose that ȳ is the vector resulting from (4.6); by Lemmas 3.1 and 3.2 it is possible to
compute the negative curvature direction for the function f(x) at xk as sk = Qkȳ. Recalling that

Qk =

(
q1

...
... qm

)
, since ȳℓ+2 = ȳℓ+3 = · · · = ȳm = 0, we have

sk =

m∑
j=1

qj ȳj =

ℓ+1∑
j=1

qj ȳj .

The last computation immediately reveals that the storage of the vectors q1, . . . , qm is mandatory,
inasmuch as the index ℓ will be known only at the end of the m-th Lanczos iteration. This makes
the iterative backtracking procedure to solve (4.4) impracticable for large scale problems, justifying
an alternative method proposed in the next sections.

5 A better exploitation of SYMMBK to compute negative
curvature directions for f(x)

In this section, following the guidelines in [11, Section 5.2] for finding conjugate directions from an
orthonormal Krylov basis, we propose to better exploit SYMMBK to generate ∇2f(xk)–conjugate
vectors to be used for computing negative curvature directions.

According with Lemma 3.1 and Lemma 3.2, the matrix Tk in (3.1) can be decomposed as
Tk = SkBkS

T
k , being Bk a block diagonal matrix, with 1× 1 or 2× 2 blocks. After diagonalizing

Bk as in Bk = XkDkX
T
k , with Xk orthogonal, we obtain (4.3) where

Wk
def
= SkXk =

W (1 1)

W (2 1) W (2 2)

· ·
· W (j−1 j−1)

W (j j−1) W (j j)

 , j ≥ 1. (5.1)

Here the sizes (both rows and columns) of the sub–diagonal blocksW (i+1 i), i = 1, . . . , j−1, depend
on the sizes of the diagonal blocks1. Moreover, recalling that Sk is block unit lower triangular,
then the diagonal blocks W (i i) ≡ χ(i i+1) are orthogonal (see also (4.2)).
Now, by combining (2.4), (3.1) and (4.3) we can compute a set of conjugate directions for the
Hessian matrix ∇2f(xk), being indeed

Tk = WkDkW
T
k = QT

k∇2f(xk)Qk, (5.2)

so that
Dk = W−1

k QT
k∇2f(xk)QkW

−T
k = GT

k∇2f(xk)Gk, (5.3)

where
Gk

def
= QkW

−T
k ∈ Rn×m. (5.4)

SinceDk is a diagonal matrix, by (5.3)–(5.4) the columns ofGk yield a set ofm linearly independent
(see also Proposition 2.1 of [19] and [20]) ∇2f(xk)–conjugate directions which span the Krylov

1E.g., in case W (2 2) ∈ R1×1 and W (3 3) ∈ R2×2, then we will have W (3 2) ∈ R2×1.

9

subspace K(∇2f(xk), q1,m). To efficiently compute the matrix Gk, let us define (for the sake of
simplicity we drop the dependency on the index k)

Gk = (G1 G2 . . . Gj−1 Gj), (5.5)

being Gi an n× 1 or an n× 2 sub–matrix, for any 1 ≤ i ≤ j. Thus, we can now re–write equation
(5.4) as

GkW
T
k = Qk

def
= (Q1 Q2 . . . Qj−1 Qj), (5.6)

where each Qi, 1 ≤ i ≤ j, represents an n × 1 or an n × 2 matrix whose columns are given by
Lanczos vectors, in accordance with the structure of Gk in (5.5). Hence, using the expression (5.1)
for matrix Wk, as well as the orthogonality of the blocks W (i i), 1 ≤ i ≤ j, we obtain from (5.5)
and (5.6)

Gi =

[
Qi −Gi−1

(
W (i i−1)

)T
]
W (i i), 1 < i ≤ j, (5.7)

with G1 = Q1W (1 1). Hence, we can efficiently and iteratively compute the blocks {Gi}, whose
columns represent mutually∇2f(xk)–conjugate directions, as long as the quantities {Qj},

{
W (i i−1)

}
and

{
W (i i)

}
are available.

6 Theoretical results for negative curvature directions com-
putation

Relations (5.7) indicate how to fully iteratively compute the matrix Gk in (5.4); moreover, (5.3)
indicates that the columns of Gk represent indeed a set of ∇2f(xk)–conjugate vectors. Now, let
us define the vector

z =
∑

1≤j≤m : µj<0

ajG(j), (6.1)

where µj represents the j-th eigenvalue of the diagonal matrix Dk, while G(j) is
2 the j-th column

of Gk and aj ∈ R, j ∈ {1, . . . ,m}, is such that∑
1≤j≤m : µj<0

a2jµj ≤ λmin [Dk]

[
min

1≤j≤m : µj<0
a2j

]
. (6.2)

Then, in the theoretical results which follow, in order to prove that our final negative curvature
direction fulfills (i)–(iii) in (2.5), we set

sk =
z

∥z∥
(6.3)

and prove the next results. Note that the use of the normalized direction sk, in place of z, is only
for theoretical purposes (see also [32], where a similar approach is used assuming that both the
search directions in (1.4) are bounded).

Proposition 6.1. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider the sequence
{xk} of approximate solutions to problem (1.1). Assume at iterate xk the Hessian matrix ∇2f(xk)
has at least one negative eigenvalue. Let Gk ∈ Rn×n be the matrix in (5.4) after n inner iterations
of the Lanczos process, and let κ(Gk) denote the condition number of Gk. Assume {aj} (with
1 ≤ j ≤ n) is a set of real values satisfying (6.2), and {µj} is the set of eigenvalues of the diagonal
matrix Dk. Then

sTk∇2f(xk)sk ≤ 1

N · [κ(Gk)]2

 min
1≤j≤n : µj<0

a2j

max
1≤j≤n : µj<0

a2j

λmin

[
∇2f(xk)

]
, (6.4)

where N ≥ 1 is the number of negative eigenvalues of ∇2f(xk), and λmin

[
∇2f(xk)

]
is its smallest

eigenvalue.
2Again, for simplicity we drop the dependency of G(j) on the index k.

10

Proof. Let us consider the unit eigenvector umin of ∇2f(xk) corresponding to the smallest eigen-
value λmin

[
∇2f(xk)

]
. Hence, uT

min∇2f(xk)umin = λmin

[
∇2f(xk)

]
and therefore by (5.3)

λmin

[
∇2f(xk)

]
= uT

minG
−T
k DkG

−1
k umin = wTDkw ≥ λmin [Dk] ∥w∥2 ,

where w = G−1
k umin. Now, since ∥w∥ ≤

∥∥G−1
k

∥∥ ∥umin∥ =
∥∥G−1

k

∥∥ we have

λmin

[
∇2f(xk)

]
≥ λmin [Dk] ∥w∥2 ≥ λmin [Dk]

∥∥G−1
k

∥∥2 . (6.5)

From (6.1) and recalling that ej is the j-th unit vector, we have

z = Gk

 ∑
1≤j≤n : µj<0

ajej

 (6.6)

so that we also obtain from (6.2)

zT∇2f(xk)z = zTG−T
k DkG

−1
k z =

 ∑
1≤j≤n : µj<0

ajej

T

Dk

 ∑
1≤j≤n : µj<0

ajej

=

∑
1≤j≤n : µj<0

a2jµj ≤ λmin [Dk]

[
min

1≤j≤n : µj<0
a2j

]
.

Hence, by (6.5)

zT∇2f(xk)z
∥∥G−1

k

∥∥2 ≤ λmin [Dk]

[
min

1≤j≤n : µj<0
a2j

] ∥∥G−1
k

∥∥2
≤

[
min

1≤j≤n : µj<0
a2j

]
λmin

[
∇2f(xk)

]
< 0.

Moreover, since

∥z∥2 ≤ ∥Gk∥2
∥∥∥∥∥∥

∑
1≤j≤n : µj<0

ajej

∥∥∥∥∥∥
2

≤ N ∥Gk∥2
[

max
1≤j≤n : µj<0

a2j

]
then by (6.6)

0 > λmin

[
∇2f(xk)

]
≥

zT∇2f(xk)z∥G−1
k ∥2[

min
1≤j≤n : µj<0

a2j

] (6.7)

≥ N∥G−1
k ∥2∥Gk∥2

 max
1≤j≤n : µj<0

a2j

min
1≤j≤n : µj<0

a2j

 zT∇2f(xk)z

∥z∥2
,

so that, recalling (6.3) condition (6.4) holds.

The last proposition evidences that in case the Lanczos process is able to perform exactly n
inner iterations within SYMMBK procedure, then a unit negative curvature direction sk satisfying
(i)–(iii) in (2.5) can be easily available as by–product from (5.4), (6.1) and (6.3).

We also remark that the computation of the vector z in (6.1) does not require the storage of
more than one additional vector, i.e. the current sum of the contributions {ajG(j)} up to the m-th
inner iteration. The latter result, to these authors’ knowledge, represents the first example in the
literature of a so cheap computation of the vector sk fulfilling (i)–(iii) in (2.5).

Observe that the fulfillment of condition (6.2) is a preliminary requirement for the construction
of the negative curvature direction sk to be used within Proposition 6.1. Hence, in the next result
we show how to iteratively properly select the coefficients {aj} in (6.1) so that (6.2) holds.

11

Lemma 6.2. Let us consider the sequence of the real coefficients {aj} in (6.1) and (6.2). Let us
define the real quantities (for any 1 ≤ h ≤ m):

λ
(h−1)
min = min

1≤j≤h−1 : µj<0
{µj},

C(h−1) = min
1≤j≤h−1 : µj<0

{a2j},

A(h−1) =
∑

1≤j≤h−1 : µj<0

a2jµj .

(6.8)

Condition (6.2) is fulfilled provided that for any j ≥ 2, when µj > λ
(j−1)
min then we set

a2j ≤ min

{
C(j−1),

−A(j−1)

µj − λ
(j−1)
min

}
, j ∈ {1, . . . ,m}. (6.9)

Proof. The proof proceeds by induction. Relation (6.2) clearly holds when j = 1, with no specific
assumption on a1. Then, we assume that by (6.8)–(6.9) it holds for j − 1, and we prove the result
for the index j. Observe that for any j in (6.1)-(6.2) we have µj < 0; moreover, the condition

A(j−1) ≤ λ
(j−1)
min C(j−1) (6.10)

is satisfied by inductive hypothesis. Therefore, for the index j we analyze the conditions which
guarantee that the inequality (6.2), i.e.

A(j−1) + a2jµj ≤ min
{
λ
(j−1)
min , µj

}
min

{
C(j−1), a2j

}
(6.11)

is satisfied. This yields the next two cases:

� if µj < λ
(j−1)
min , then (6.11) yields A(j−1) + a2jµj ≤ µj min

{
C(j−1), a2j

}
, so that in case

C(j−1) < a2j , since C(j−1) ≥ 0, we obtain

A(j−1) + a2jµj ≤ µjC
(j−1) ≤ λ

(j−1)
min C(j−1)

which is always fulfilled recalling that A(j−1)+a2jµj ≤ A(j−1) and considering relation (6.10).

Conversely, in case C(j−1) ≥ a2j we obtain

A(j−1) + a2jµj ≤ µja
2
j

which is again always fulfilled inasmuch as A(j−1) < 0;

� if µj ≥ λ
(j−1)
min , then (6.11) yields A(j−1) + a2jµj ≤ λ

(j−1)
min min

{
C(j−1), a2j

}
, where again we

distinguish the case C(j−1) < a2j , for which by (6.10)

A(j−1) + a2jµj ≤ A(j−1) ≤ λ
(j−1)
min C(j−1),

that is always fulfilled, and the case C(j−1) ≥ a2j which yields(
µj − λ

(j−1)
min

)
a2j ≤ −A(j−1),

that holds by the condition (6.9) on the coefficient aj .

12

Observation 6.3. We remark that the procedure to update the coefficients {aj} in Lemma 6.2
does not require the storage of any vector/matrix, so that the computation of the negative curvature
direction sk can be iteratively carried on in large scale settings.

Observation 6.4. Relation (6.4) reveals that the effectiveness of the negative curvature direction
sk requires the boundedness of κ(Gk). Nevertheless, in case the quantity ∥G−1

k ∥ is itself bounded,
by (6.7) of Proposition 6.1 we can alternatively conclude that also the vector z (and not only
the vector sk) satisfies (iii) in (2.5). Thus, z could be used as an alternative negative curvature
direction, too, in place of sk. In this regard, by relation (2.18) in [6], where the matrix Wk plays
the role of the matrix Gk in the current paper, the proper choice of the parameter ω in [6] can
ensure that when applying the Bunch–Kaufmann decomposition within SYMMBK the quantity
∥G−1

k ∥ is indeed bounded. This partially fills the gap between the current paper and [6], where
a proper choice of the parameter ω was needed in order to compute a gradient–related direction
by SYMMBK. In this regard, those values of ω in [6] are also worth in the current paper for
assessing a negative curvature direction which has possibly not a unit norm (see also Section 6.1
for additional considerations). In the numerical experimentation we adopt the negative curvature
direction defined in (6.1), to cope with the well known drawbacks related to careless combining the
Newton type direction dk and a negative curvature direction, when they show a possible mismatch
of their norms. Indeed, generally dk is not expected to have unit norm (in this regard see the
detailed discussion reported in Section 9).

Unfortunately, the assumption in Proposition 6.1 that n Lanczos iterations are performed is far
from being realistic when n is large, so that a possible extension of the results in Proposition 6.1
would be welcome for practical applications. In this regard, let us define

λ
(k)
min

[
∇2f(xk)

] def
= min

ν∈Rm, ∥ν∥=1

[Gkν]
T ∇2f(xk) [Gkν]

∥Gkν∥2
. (6.12)

Observe that λ
(k)
min

[
∇2f(xk)

]
represents the smallest value of the Rayleigh quotient for ∇2f(xk),

where the vector Gkν spans the Krylov subspace K(∇2f(xk), q1,m). Hence, λ
(k)
min

[
∇2f(xk)

]
can be

regarded to some extent as an approximation from above (on the Krylov subspaceK(∇2f(xk), q1,m))
of λmin

[
∇2f(xk)

]
, as stated in the next lemma.

Lemma 6.5. Let us consider the matrix Gk in (5.4), the quantity λ
(k)
min

[
∇2f(xk)

]
in (6.12) and

the eigenvalue λmin

[
∇2f(xk)

]
of ∇2f(xk). We have for 1 ≤ h ≤ n

λmin

[
∇2f(xk)

]
= λ

(n)
min

[
∇2f(xk)

]
≤ · · · ≤ λ

(h)
min

[
∇2f(xk)

]
≤ · · · ≤ λ

(1)
min

[
∇2f(xk)

]
.

Moreover, if the columns of the matrix Gk =
(
G(1) · · ·G(m)

)
∈ Rn×m in (6.12) are ∇2f(xk)–

conjugate vectors, then

λ
(k)
min

[
∇2f(xk)

]
= min

1≤j≤m

GT
(j)∇

2f(xk)G(j)∥∥G(j)

∥∥2 .

Proof. The result follows immediately from relation (6.12) and the inequality

min
ν∈Rh, ∥ν∥=1

[Gkν]
T ∇2f(xk) [Gkν]

∥Gkν∥2
≥ min

ν∈Rm, ∥ν∥=1

[Gkν]
T ∇2f(xk) [Gkν]

∥Gkν∥2
,

for any 1 ≤ h ≤ m. Moreover, by the conjugacy of the columns of Gk we have

λ
(k)
min

[
∇2f(xk)

]
= min

ν∈Rm, ∥ν∥=1

[Gkν]
T ∇2f(xk) [Gkν]

∥Gkν∥2

= min
ν∈Rm, ∥ν∥=1

νTGT
k∇2f(xk)Gkν

∥Gkν∥2
= min

1≤j≤m

GT
(j)∇

2f(xk)G(j)∥∥G(j)

∥∥2 .

13

and this completes the proof.
Using the above considerations and Lemma 6.5, the next generalization of Proposition 6.1 can

be given, when m < n.

Proposition 6.6. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider the sequence
{xk} of approximate solutions to problem (1.1). Assume at iterate xk the Hessian matrix ∇2f(xk)
has at least one negative eigenvalue. Let Gk ∈ Rn×m be the matrix in (5.4) after m < n inner
iterations, and let σmin [σmax] be its smallest [largest] singular value. Assume {aj}, with 1 ≤ j ≤ n,
is a set of real values satisfying (6.2). Then

sTk∇2f(xk)sk ≤ 1

m

(
σmin

σmax

)2
 min

1≤j≤m : µj<0
a2j

max
1≤j≤m : µj<0

a2j

λ
(k)
min

[
∇2f(xk)

]
, (6.13)

where λ
(k)
min

[
∇2f(xk)

]
is defined in (6.12).

Proof. The proof follows the guidelines of Proposition 6.1, so that we will focus only on their
differences. In particular we have from (5.3)

νTGT
k∇2f(xk)Gkν = νTDkν ≥ λmin[Dk], ∀ν ∈ Rm, ∥ν∥ = 1, (6.14)

so that choosing ν = ν̄, with ν̄ ∈ Rm, in (6.14) we obtain (see also (6.12))

λ
(k)
min

[
∇2f(xk)

]
= min

ν∈Rm, ∥ν∥=1

[Gkν]
T ∇2f(xk) [Gkν]

∥Gkν∥2
=

ν̄TGT
k∇2f(xk)Gkν̄

∥Gkν̄∥2
. (6.15)

Now, we recall that by the singular value decomposition of Gk = UΣV T , with U ∈ Rn×n, V ∈
Rm×m and Σ ∈ Rn×m, there exist m singular values3 σ1, . . . , σm such that

0 < σmin = σ1 ≤ · · · ≤ σj ≤ · · · ≤ σm = σmax

and

GkV = U

σ1

. . .

σm

∅n−m

 , ⇐⇒ Gkvj = σjuj , j = 1, . . . ,m,

being m ≤ n, U = (u1 · · ·umum+1 · · ·un) and V = (v1 · · · vm). Hence, ∥Gkvj∥ = σj∥uj∥, for
j = 1, . . . ,m. Moreover, we have from this last relations, along with (5.3) and (6.15)

λ
(k)
min

[
∇2f(xk)

]
=

ν̄TDkν̄

∥Gkν̄∥2
≥ λmin[Dk]

∥Gkν̄∥2
≥ λmin[Dk]

min
∥ν∥=1

∥Gkν∥2
=

λmin[Dk]

σ2
min

, (6.16)

where the last inequality holds recalling that λmin[Dk] < 0. Furthermore, being ej ∈ Rn the j-th
unit vector we have

z =
∑

1≤j≤m : µj<0

ajG(j) = Gk

∑
1≤j≤m : µj<0

ajej ,

and from (5.3) and (6.2) we have

zT∇2f(xk)z =

 ∑
1≤j≤m : µj<0

ajej

T

GT
k∇2f(xk)Gk

 ∑
1≤j≤m : µj<0

ajej

=

 ∑
1≤j≤m : µj<0

ajej

T

Dk

 ∑
1≤j≤m : µj<0

ajej

=

∑
1≤j≤m : µj<0

a2jµj ≤ λmin [Dk]

[
min

1≤j≤m : µj<0
a2j

]
.

3Observe that since Gk has rank m then its m singular values are positive.

14

Hence, from (6.16) and the last inequality it is

zT∇2f(xk)z

σ2
min

≤
λmin [Dk]

[
min

1≤j≤m : µ<0
a2j

]
σ2
min

≤ λ
(k)
min

[
∇2f(xk)

] [
min

1≤j≤m : µ<0
a2j

]
< 0.

Moreover, by (6.1) we have

∥z∥2 ≤ ∥Gk∥2
∥∥∥∥∥∥

∑
1≤j≤m : µj<0

ajej

∥∥∥∥∥∥
2

≤ max
∥ν∥=1

∥Gkν∥2
 ∑
1≤j≤m : µj<0

a2j

 ≤ σ2
max

 ∑
1≤j≤m : µj<0

a2j

≤ m · σ2

max

[
max

1≤j≤m : µj<0
a2j

]
.

Thus, the last couple of relations yield

zT∇2f(xk)z

∥z∥2
≤ σ2

min

∥z∥2
·
[

min
1≤j≤m : µj<0

a2j

]
λ
(k)
min

[
∇2f(xk)

]

≤ σ2
min

m · σ2
max

·

[
min

1≤j≤m : µj<0
a2j

]
[

max
1≤j≤m : µj<0

a2j

] · λ(k)
min

[
∇2f(xk)

]
< 0,

so that (6.13) holds.

Observation 6.7. There is not difficulty to conclude that the contents in Lemma 6.2 and Ob-
servations 6.3–6.4 could be immediately extended to the results of Proposition 6.6, so that the
iterative computation of a negative curvature direction can be fully exploited also when less than
n inner iterations are performed at the k-th outer iteration of the Truncated Newton method.

Observation 6.8. Note that the presence of the sequence {aj} in Propositions 6.1 and 6.6 aims
at giving generality in (6.1), when computing the negative curvature direction (the use of {aj}
will be clarified in the next section). In particular, on structured Hessian problems this may give
an indication about those vectors G(j) to privilege for the computation of the negative curvature
direction sk. Conversely, the choice aj = 1, for any j ≥ 1, fulfills (6.2) and represents the most
obvious one, since it also contributes to tighten the bounds in (6.4) and (6.13). Nevertheless,

the choice aȷ̂ = 1, where ȷ̂ = argminj

{
GT

(j)∇
2f(xk)G(j)/∥G(j)∥2

}
, with aj = 0 for any j ̸= ȷ̂,

again satisfies (6.2) and allows to minimize the gap between λmin

[
∇2f(xk)

]
and λ

(k)
min

[
∇2f(xk)

]
(see Lemma 6.5). Moreover, it basically encompasses also the choice for the negative curvature
direction adopted in [21].

6.1 Issues on the choice of the sequence {aj}
Observe that the choice of the sequence {aj} in (6.1) is only claimed to fulfill (6.2), in order to
provide a negative curvature direction sk = z/∥z∥2 satisfying either Proposition 6.1 or Proposi-
tion 6.6. The Observations 6.4 and 6.8 give some additional hints on the choice of the sequence
{aj}, however further considerations suggest some restrictions to the last choice. Indeed, let us
consider a Truncated Newton method for solving (1.1); in case sk were either used in a curvilinear

15

framework (i.e. combined with a Newton–type direction) or as a stand alone search direction, then
it is expected to be at least a descent direction and possibly a gradient–related one.

Then, recalling [6, Section 3.1], we have sufficient conditions for the choice of the test within the
Bunch–Kaufmann decomposition, so that the approximate solution d̄k to (2.1) is gradient–related.
Furthermore, by Propositions 3.1 and 3.2 of [6] it is possible to show that also the vector ajG(j) in
(6.1) is gradient–related (see also Observation 6.4), provided that it is chosen exactly following the
guidelines for computing the vectors uu and vv in the Reverse–Scheme of [6] (see also Observation
6.3). Indeed, broadly speaking, the vector ajG(j) in (6.1) is equivalently obtained by reducing the
Lanczos process / Bunch–Kaufmann procedure used in SYMMBK to a CG method. Thus, the
proper choice of the coefficient aj makes the vector ajG(j) of descent for f(x). In this regard,
note that the parameter ω which affects the test within the Bunch–Kaufmann decomposition in
[6], yet affects also the computation of the negative curvature direction sk, through the coefficients
{aj}. Therefore, on the overall the vector ajG(j) is gradient–related, provided that (recalling the
Reverse–Scheme in [6]) the coefficient aj is chosen so that ajG(j) ≡ uu or ajG(j) ≡ vv.

On summary, the next final remarks on the choice of the sequence {aj} in (6.1) hold:

� as long as the search direction ajG(j) is selected as ajG(j) ≡ uu or ajG(j) ≡ vv, where uu and
vv are computed by the Reverse–Scheme in [6], then the vector sk will be gradient–related,
too;

� as long as aj is selected so that (6.2) holds, then the negative curvature direction sk will also
fulfill (6.4) and (6.13).

The last two items ensure that under mild assumptions on the sequence {aj} in (6.1), the vector sk
can be safely and fully used within Truncated Newton methods, to guarantee convergence towards
stationary points satisfying also second order necessary optimality conditions.

Finally, as suggested in Observation 6.4, in case ∥G−1
k ∥ is bounded, then also the vector z

in (6.1) (with the positions (6.2)) may be considered an alternative negative curvature direction
fulfilling (i)–(iii) in (2.5). This further viable choice will be better detailed in Section 9.

7 An alternative proposal

Here we propose additional theoretical results which may yield guidelines for the computation
of negative curvature directions when solving (1.1). In particular, we rephrase the outcomes in
Proposition 6.1 and Proposition 6.6, so that we exploit (5.2) in place of (5.3). In this regard
Proposition 6.1 can be reformulated in the following way.

Proposition 7.1. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider the sequence
{xk} of approximate solutions to problem (1.1). Assume at iterate xk the Hessian matrix ∇2f(xk)
has at least one negative eigenvalue. Let Qk, Tk ∈ Rn×n be the matrices in (5.2), after n inner
iterations the Lanczos process. Assume aj, with 1 ≤ j ≤ n, is a set of real values satisfying (6.2).
Then

sTk∇2f(xk)sk ≤ 1

N

 min
1≤j≤n : µj<0

a2j

max
1≤j≤n : µj<0

a2j

λmin

[
∇2f(xk)

]
, (7.1)

where N ≥ 1 is the number of negative eigenvalues of ∇2f(xk), and λmin

[
∇2f(xk)

]
is its smallest

eigenvalue.

Proof. The proof basically follows the same guidelines of the one in Proposition 6.1, after recalling
that Qk is an orthogonal matrix, and replacing Gk by Qk, G

−1
k by QT

k , Dk by Tk and G−T
k DkG

−1
k

by QkTkQ
T
k .

Similarly, as regards Proposition 6.6 it can be reformulated in the following way.

16

Proposition 7.2. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider the sequence
{xk} of approximate solutions to problem (1.1). Assume at iterate xk the Hessian matrix ∇2f(xk)
has at least one negative eigenvalue. Let Qk ∈ Rn×m and Tk ∈ Rm×m be the matrices in (5.2),
after m < n inner iterations. Assume {aj}, with 1 ≤ j ≤ n, is a set of real values satisfying (6.2).
Then

sTk∇2f(xk)sk ≤ 1

m

 min
1≤j≤m : µj<0

a2j

max
1≤j≤m : µj<0

a2j

λ
(k)
min

[
∇2f(xk)

]
, (7.2)

where λ
(k)
min

[
∇2f(xk)

]
is defined in (6.12).

Proof. As for Proposition 7.1 the proof basically follows the same guidelines of the one in Proposi-
tion 6.6, after recalling that the columns of Qk are orthogonal vectors, replacing Gk by Qk, Dk by
Tk, and observing that in the singular value decomposition of Qk the m nonzero singular values
satisfy

1 = σmin = σ1 = · · · = σi = · · · = σm = σmax = 1.

Observation 7.3. Observe that in principle the formulae (7.1) and (7.2) look simpler than (6.4)
and (6.13), respectively. However, they reveal that the computation of the vector sk inherently
also requires the computation of the eigenvalues {µj} of the matrix Tk, in formulae (6.1) and (6.2).
This is of course more computationally expensive than computing the spectrum of the diagonal
matrix Dk. Nevertheless, calculating the spectrum of the tridiagonal matrix Tk only requires O(k)
operations. Thus, on the overall the user may decide if tightening the bounds (6.4) and (6.13)
using (7.1) and (7.2), respectively may be worth the additional computation of the spectrum of Tk.
As a general rule, for small values of k the computation of the eigenvalues of Tk may be negligibly
small, with respect to the cost of the overall algorithm used to solve (1.1).

8 An alternative viewpoint using the CG method

We observe that the factorizations (5.2)-(5.4) are essential in order to prove the statement of
Proposition 6.1. Furthermore, by Observation 6.4, we also know that the condition number κ(Gk)
is basically bounded, as long as the pivoting strategy in the Bunch–Kaufmann factorization is
pursued as in [6]. This raises the next additional question: are there alternatives to the Bunch–
Kaufmann factorization, that may fit within the framework of Proposition 6.1? To this purpose,
in [23] the authors proved (see [23, Section 3.2]) the next couple of results:

� for the CG method (and for its extensions to the nonconvex quadratics - namely Planar-CG
methods) stable factorizations similar to (5.2)-(5.4) are available too, with the additional
property that the matrix Wk in (5.2) is structured (being unit lower bidiagonal for the CG
method and lower triangular for Planar-CG methods);

� exploiting the structure of the matrix Wk allows to easily solve the linear system (4.4) by
simply backtracking. By Section 4.1 of the current paper we already know that this second
task is hardly replicable, using the Bunch–Kaufmann factorization, too.

Hence, we wondered about exploiting the CG-based factorizations from [6] within Proposition 6.1.
This would allow for the construction of alternative negative curvature directions, all complying
with our theoretical framework. The only one additional concern, using the CG method in place
of the Bunch–Kaufmann factorization, is represented, for the former method, by the chance that

limsup
k→∞

κ(Gk) = +∞,

so that the bound (6.4) may become ineffective.

17

Conversely, as long as applying the CG method we have that all the conjugate directions
are provably uniformly linearly independent, then κ(Gk) is tout court bounded. Once more, we
remark that the last result allows to use the outcomes of Proposition 6.1 and to possibly propose
an alternative negative curvature direction, using the directions generated by the CG method (as
columns for Gk) in place of the Lanczos process / Bunch–Kaufmann factorization, within formula
(6.1). Finally, in order to infer further considerations on the boundedness of κ(Gk) when the CG
method is used, in place of the Lanczos process / Bunch–Kaufmann factorization, the reader may
refer to [19, 20] and [23].

9 Numerical experiments

To assess the performances of a Truncated Newton method which uses negative curvature directions
computed according to the approach we described in the previous sections, we carried out an
extensive numerical testing. We considered the same optimization framework adopted in [6],
namely a Truncated Newton method based on the SYMMBK procedure (implemented in the
routine HSL MI02 of the HSL Mathematical Software Library [28]) to solve the Newton equation.
In [6], SYMMBK pivoting rule has been slightly modified in order to provide, at each outer iteration
k, a gradient–related Newton–type direction dk. The reader can refer to [6] for any detail.

Now, as described in the previous sections, we exploit the SYMMBK routine also for itera-
tively computing, at each outer iteration k, a negative curvature direction sk (if any). Then, we
implemented the iterative scheme (1.4) where the steplength αk is computed through the standard
curvilinear linesearch procedure in [31]. We are aware (see, e.g., [26]) of the well-known problem
which arises when combining a Newton-type direction and a negative curvature direction in the
scheme (1.4), namely the possible different scaling of the two directions that could lead to ineffi-
ciency of the algorithm (as we also observed in preliminary testing). Here, we do not introduce
any strategy for possibly selecting the best promising direction between the two, as also proposed
in literature (see, e.g., [13, 21, 26, 35] and the discussion regarding this issue included in the
Introduction).

Moreover, an additional safeguard must be considered in dealing with negative curvature direc-
tions within a Truncated Newton method. Indeed, when the iterates approach a local minimizer
(hence the Newton-type direction entails a superlinear convergence rate), the use of negative cur-
vature directions might partially “spoil” such good convergence rate, imposing a tight exploitation
of local geometries associated with the function topology.

To overcome these two drawbacks, in the light of the conclusions proposed in Section 6.1 and
Observation 6.4, we adopted the next two zeroing rules for the negative curvature direction: at
the outer iteration k, a negative curvature direction z (if any) is ignored when

– its norm consistently differs from the norm of dk, namely

∥z∥ > η1 ∥dk∥ or ∥z∥ < η2 ∥dk∥ , η1 > 0, η2 > 0, (9.1)

– it results

∥∇f(xk)∥ < γ1 and
zT∇2f(xk)z

∥z∥2
> −γ2, γ1 > 0, γ2 > 0. (9.2)

The rationale behind the first rule (based on (9.1)) relies on the fact that, computing a negative
curvature direction z as described in Section 6 implies that both dk and z are built using the same
conjugate directions (the columns of the matrix Gk in (5.4)). Hence, one would expect that both
the vectors z and dk have a similar scaling. If this does not occur, then the scaling problem possibly
arises: we believe that the computed negative curvature direction could introduce a detrimental
effect on the efficiency of the algorithm, hence we do not consider it.

The second zeroing rule (based on (9.2)), concerns the situation that may occur whenever
the algorithm generates iterates sufficiently close to a second order critical point, i.e. a stationary

18

point where the Hessian matrix is nearly positive semidefinite, and thus the Rayleigh–Ritz quotient
(along z) is negative and close to zero. Also in this case, we do not consider the contribution of
the negative curvature direction.

As concerns the values of the parameters adopted in (9.1) and (9.2), in our experimentation we
use the following: η1 = 102, η2 = 10−2 and γ1 = 10−3, γ2 = 10−2. More sophisticated strategies
could be certainly adopted and will be the subject of future work (see also [22]).

Regarding the truncation criterion of the inner iterations, we adopt the standard residual based

criterion [16], namely ∥∇f(xk) + ∇2f(xk)dk∥ ≤ ηk∥∇f(xk)∥, where ηk = min
(
∥∇f(xk)∥,

√
n
k

)
is the forcing function we use. For the stopping criterion of the algorithm (outer iterations) we
use the standard one ∥∇f(xk)∥ ≤ 10−5 max(1, ∥xk∥). We state that an algorithm fails to solve a
problem if 3600 seconds of CPU time limit is exceeded.

To perform an extensive numerical testing, in our experimentation we considered all the large
scale unconstrained test problems from CUTEst collection [27], amounting to 166 test problems,
with sizes in the range 1,000–10,000. All the runs were performed on a PC with Intel Core i7-4790K
CPU @ 4.00GHz with 32 Gb RAM.

The results are reported in terms of number of outer iterations (it), number of function evalu-
ations (f-eval), number of inner iterations (inner-it), optimal function value (function value) and
CPU time (time) in seconds. In the case an algorithm incorporates negative curvature directions,
the number of negative curvature directions (neg. curv.) actually used by the algorithm is reported,
too. Tables A.1, A.2 and A.3 in the Appendix A include the results obtained on the whole test set
in the case negative curvature directions are not considered in the Truncated Newton algorithm.
We name this algorithm TN.

9.1 Use of the negative curvature direction (6.1)

Tables A.4, A.5 and A.6 in the Appendix A report the results obtained by the algorithm which
uses the negative curvature direction defined in (6.1), adopting the zeroing rule in (9.1) and (9.2).
We name this algorithm TN-NC1.

Now, we compare the performance of TN-NC1 and TN algorithms by using the widely adopted
performance profiles [18]. Figures 9.1a, 9.1b, 9.1c and 9.1d report such performance profiles in terms
of number of (outer) iterations, number of function evaluations, number of inner iterations and CPU
time, respectively. These plots refer to the whole set of test problems. They clearly highlight the
efficiency and the robustness in terms of iterations and inner iterations of the algorithm TN-NC1,
with respect to the algorithm TN which does not use negative curvature directions. On the other
hand, TN-NC1 algorithm on the overall requires a larger number of function evaluations. Actually,
this behaviour was expected, since it is due to the standard curvilinear linesearch procedure used
which is based on a rough combination the two search directions. We are convinced that a more
sophisticated linesearch technique might be adopted, when second order information related to
negative curvature directions is available. In this regard, a further investigation seems mandatory
in the light of the outcomes of the present numerical experiences.

The detailed results in Tables A.1, A.2, A.3 and in Tables A.4, A.5 and A.6 provide us with
some further interesting evidences. First, it can be observed that on 9 difficult test problems both
the algorithms fail to converge within 3600 seconds of CPU time. On 1 test problem (CURLY30
with n = 10, 000) the use of even a few negative curvature directions (say 5) enables the algorithm
TN-NC1 to converge in only 129.58 seconds, whereas TN fails to converge. On 71 test problems
negative curvature directions are actually encountered and used by TN-NC1 algorithm; on 30 of
these test problems, the two algorithms converge to different local minimizers. Table 9.1 reports
the optimal function values obtained by TN and TN-NC1 algorithms on the latter test problems.
This table clearly highlights the expected capability of the algorithm TN-NC1 which uses negative
curvature directions to converge towards better local minimizers. The cases in which a better
value is obtained by TN algorithm are comparatively very few. From the detailed results reported
in the Appendix A it can be also observed that, in many cases the additional effort due to the
computation of negative curvature directions, is balanced by a greater overall efficiency of the

19

(a) Performance profiles based on outer iterations. (b) Performance profiles based on funct. evaluations.

(c) Performance profiles based on inner iterations. (d) Performance profiles based on CPU time.

Figure 9.1: Performance profiles for the whole set of 166 test problems.

20

TN algorithm TN-NC1 algorithm
Problem n function value function value
BROYDN7D 1000 5.598036D+02 3.047159D+02
BROYDN7D 5000 3.125637D+03 1.659976D+03
BROYDN7D 10000 1.233247D+00 6.883895D+03
CHAINWOO 1000 4.324322D+02 2.514980D+02
CHAINWOO 4000 2.294394D+03 1.582515D+03
CHAINWOO 10000 6.305963D+03 2.890864D+03
COSINE 1000 -9.985153D+02 -9.990000D+02
CURLY10 1000 -9.765683D+04 -1.003125D+05
CURLY10 5000 -4.665618D+05 -5.015815D+05
CURLY10 10000 -1.002761D+06 -1.003163D+06
CURLY20 1000 -9.814893D+04 -1.003093D+05
CURLY20 5000 -4.844972D+05 -5.015758D+05
CURLY20 10000 -1.002861D+06 -1.003162D+06
CURLY30 1000 -9.854450D+04 -1.000507D+05
CURLY30 5000 -4.929491D+05 -5.015808D+05
FLETCBV3 1000 -1.083664D+05 -3.189503D+03
FLETCBV3 5000 -2.221834D+07 -6.880147D+07
FLETCBV3 10000 -1.321473D+09 -1.147714D+09
GENHUMPS 1000 3.252751D+02 2.359907D-10
NCB20 1010 9.663298D+02 9.208174D+02
NCB20 5010 -1.394735D+03 -1.447533D+03
NCB20 10010 -2.642929D+03 -5.313355D+03
NONCVXUN 1000 2.405825D+03 2.327616D+03
NONCVXU2 1000 2.381367D+03 2.317103D+03
SINQUAD 10000 -2.642227D+07 -2.642315D+07
SPARSINE 1000 6.341091D+05 1.618616D+05
SPARSINE 5000 1.567241D+07 1.697258D+07
SPARSINE 10000 6.448147D+07 7.005234D+07
SPMSRTLS 1000 6.321999D+01 5.608497D-02
SPMSRTLS 10000 2.937016D+00 3.409363D-11

Table 9.1: Optimal function values obtained by TN and TN-NC1 algorithms, on those test problems
where they converge to different local minimizers. For each problem the best function value
obtained is highlighted in bold.

21

algorithm, so that CPU time required by TN-NC1 algorithm on average shows a modest increase.
Since on a number of test problems the two algorithms converge towards different minimizers,

in a second experiment we again plot performance profiles for comparing TN and TN-NC1 algo-
rithms but considering only those test problems where they converge to the same local minimizer.
Figures 9.2a, 9.2b, 9.2c and 9.2d report these plots in terms of number of (outer) iterations, number
of function evaluations, number of inner iterations and CPU time, respectively.

(a) Performance profiles based on outer iterations. (b) Performance profilse based on funct. evaluations.

(c) Performance profiles based on inner iterations. (d) Performance profiles based on CPU time.

Figure 9.2: Performance profiles for test problems where both the algorithms TN and TN-NC1
converge to the same local minimizer (136 test problems).

A comparison of these new plots with the ones in Figure 9.1 leads to an important consideration
regarding the use of the performance profiles when ranking different algorithms. Indeed, in terms
of number of function evaluations and CPU time a better performance of TN algorithm is observed
both in Figures 9.1b, 9.2b, and in Figures 9.1d, 9.2d. Conversely, in terms of number of outer
iterations (see Figure 9.1a and Figure 9.2a) and in terms of number of inner iterations (see Fig-
ure 9.1c and Figure 9.2c) we carry out a different conclusion: the profiles referred to the whole test
set do not seem to agree with those related to test functions where both the algorithms converge
to the same local minimizer. On the other hand, one could reasonably claim that including in
the performance comparison test problems where the algorithms converge towards different local
minimizers could be unfair. Actually, the key point is that, in comparing the performance among
different algorithms, performance profiles do not take into account the “quality” of the solution
found by algorithms, i.e., their capability to determine better local minimizers. This drawback

22

could be overcome neither by adopting performance profiles nor by using the data profiles pro-
posed in [36]. This motivates the introduction, in the current paper, of novel profiles based on the
“quality” of the solution provided by the algorithms (see the next Section 9.3). Of course, this new
tool appears of fundamental importance for comparing algorithms which use negative curvature
directions versus algorithms that do not use them.

9.2 Use of alternative negative curvature directions

The numerical experimentation reported in the previous Section 9.1 relies on the use of the negative
curvature direction given by (6.1). However, to enhance our investigation on negative curvature
directions within Truncated Newton methods it might be worth considering two alternatives for
computing such directions. In place of considering the sum in (6.1), we might select only one
column of the matrix G(j) (along with the associated coefficient aj). In particular, it is possible to
consider in place of the choice (6.1)

z = ah̄G(h̄), where h̄ = argmin
h

{µh | µh < 0}, (9.3)

and
z = al̄G(l̄), where l̄ = min

h
{h | µh < 0}. (9.4)

The rationale behind the choice in (9.3) is to consider only the smallest negative eigenvalue of the
matrix Dk in (5.3). The selection (9.4) consists of considering only the first negative eigenvalue of
Dk. We denote by TN-NC2 and TN-NC3 the algorithms which use the negative curvature directions
in (9.3) and (9.4), respectively. In both the cases, we adopt again the zeroing rules in (9.1) and
(9.2) for negative curvature directions, too.

Tables A.7, A.8 and A.9 in the Appendix A report the results obtained by algorithm TN-NC2.
Tables A.10, A.11 and A.12 report the results obtained by algorithm TN-NC3. To compare the
capability of the algorithms which incorporate negative curvature directions to determine better
local minimizers, in the next Section 9.3 we introduce novel profiles to assess the effectiveness of
the negative curvature directions adopted in TN-NC1, TN-NC2 and TN-NC3 versus TN.

9.3 Quality Profiles for single–objective smooth optimization

Benchmarking different algorithms for local constrained and unconstrained optimization over a set
of test problems has always been a challenging issue, because any proposed procedure needs to be
unbiased with respect to the features of the compared codes, as well as independent of the test set
used for benchmarking. This last consideration, was successfully addressed by the seminal papers
[18] (where Performance Profiles have been introduced) and [36] (where Data Profiles have been
defined). However, neither of them proposed a specific tool to benchmarking the “quality” of the
optimal solution determined by different algorithms, when they are experienced on a set of test
problems. As we pointed out at the end of Section 9.1, when ranking different algorithms, it might
be very fruitful to assess their capability of determining better local minimizers, i.e. solution points
with lower value of the objective function.

Drawing inspiration from both [18] and [36], the main purpose of the present section is to
possibly fill the last gap, by adopting a perspective that does not upset the basics in [18, 36]. To
this aim, we now introduce a novel class of profiles that we name Quality Profiles.

Assume the set S of iterative solvers and the set P of test problems are considered, being

|S| ≥ 2 and |P| ≥ 1 their cardinalities. Let x
(p)
0 ∈ Rn be the starting point for all the solvers on

the test problem p ∈ P, and let f (p)(x) be the objective function of the problem p ∈ P. Let f
(p)
L

be a reference value (for the objective function) on the problem p. If x∗ indicates the best iterate
found by the solver s ∈ S on the test problem p (observe that for the sake of simplicity—and with
the idea of reducing redundancy—we drop in x∗ the dependency on both s and p), as remarked

also in [18] and [36] possible choices for f
(p)
L can be, for instance:

23

1. f
(p)
L = min

s∈S

{
f (p)
s (x∗)

}
,

2. a reference value generated by an algorithm (typically an efficient one) non included in the
list of the compared solvers,

3. f
(p)
L =

1

|S|
∑
s∈S

{
f (p)
s (x∗)

}
,

where f
(p)
s (x∗) denotes the optimal function value determined by the solver s on the problem p.

In this regard, in accordance with [18, 36], we adopt the first one among the above three choices
and define for each solver s ∈ S the ratio

Qs(τ) =
1

|P|
size

{
p ∈ P : f (p)

s (x∗)− f
(p)
L ≤ τ

[
f (p)(x

(p)
0)− f

(p)
L

]}
, (9.5)

being τ ≥ 0. Since evidently for any solver s we have

f (p)
s (x∗) ≤ f (p)(x

(p)
0), (9.6)

then for any s ∈ S we obtain Qs(τ) = 1 for all τ ≥ 1. This immediately suggests that it suffices to
consider hereafter for the parameter τ the range

τ ∈ [0, 1].

We can now introduce the following formal definition of Quality Profiles.

Definition 9.1. Given the benchmark set of test problems P and the set of solvers S, the corre-
sponding Quality Profile is defined as the collection of plots of all the functions {Qs(τ)} in (9.5)
when τ ∈ [0, 1].

As preliminary facts, the next considerations hold for the quality profiles:

� by definition we have 0 ≤ Qs(0) ≤ 1, for any solver s ∈ S;

� for τ = 0 the value Qs(0) indicates the percentage of problems where the solver s provides
the best value of the objective function, with respect to all the other solvers (note that an
almost identical property holds for the performance profiles when the abscissa value is equal
to 1);

� quality profiles suitably take into account possible failures of the solver s on some benchmark
problems: indeed in the last case the corresponding problem will be discarded and will not
contribute to increase the quantity size{·} in (9.5). Hence, we will have Qs(1) < 1 for the
corresponding solver s (again, here we can immediately realize that a similar property holds
for performance profiles);

� performance profiles can hardly be seen as a possible alternative to quality profiles, for at
least a couple of reasons:

– since for a given solver s ∈ S and a test problem p ∈ P we might have f
(p)
s (x∗) ⋛ 0, then

the definition of the performance profile, when applied for benchmarking the objective
function value, might not be well posed (because some of the positive ratios rp,s in [18],
needed to compute performance profiles, might be undefined or inconsistent);

– if performance profiles were used to benchmark the final value of the objective function,

then they would completely disregard the starting point x
(p)
0 , while the definition (9.5)

explicitly aims at monitoring the progress of each solver with respect to the function

value at the initial iterate x
(p)
0 .

24

Apart from the last basic properties of quality profiles a number of theoretical results can be proved
for them, included the next two ones.

Lemma 9.2. Quality Profiles are invariant under any affine transformation of the objective func-
tions.

Proof. Let us consider, without loss of generality, the benchmark problem p ∈ P and the corre-
sponding objective function f (p)(x). For any a > 0 and b ∈ R we define the affine transformation
af (p)(x) + b so that from the definition of {Qs(τ)}, and for any s ∈ S, it is[(

af
(p)
s (x∗) + b

)
−

(
af

(p)
L + b

)]
= a

[
f
(p)
s (x∗)− f

(p)
L

]
[(

af
(p)
s (x0) + b

)
−
(
af

(p)
L + b

)]
= a

[
f
(p)
s (x0)− f

(p)
L

]
.

Thus, the next two inequalities are equivalent[(
af

(p)
s (x∗) + b

)
−
(
af

(p)
L + b

)]
≤ τ

[(
af (p)(x0) + b

)
−
(
af

(p)
L + b

)]
a
[
f
(p)
s (x∗)− f

(p)
L

]
≤ τa

[
f (p)(x0)− f

(p)
L

]
,

so that the definition of {Qs(τ)} proves the result.

Lemma 9.3. For any p ∈ P, let f (p)(x0) ≥ f
(p)
L . Then, for any s ∈ S the function Qs(τ) :

[0, 1] → [0, 1] is nondecreasing.

Proof. Given τ1, τ2 ∈ [0, 1], with τ1 ≤ τ2, let p ∈ P. Then, by the definition of Qs(τ), if

f (p)
s (x∗)− f

(p)
L ≤ τ1

[
f (p)(x0)− f

(p)
L

]
then we have also

f (p)
s (x∗)− f

(p)
L ≤ τ1

[
f (p)(x0)− f

(p)
L

]
≤ τ2

[
f (p)(x0)− f

(p)
L

]
.

Thus, the benchmark problems where the leftmost inequality in the last relation is fulfilled, is
included in the set of benchmark problems where the rightmost inequality is fulfilled. Hence, the
definition of Qs(τ) yields the result.

Lemma 9.4. Let f (p)(x0) ̸= f
(p)
L for any p ∈ P, and let

τM = max
s∈S, p∈P

{
f
(p)
s (x∗)− f

(p)
L

f (p)(x0)− f
(p)
L

}
.

Then Qs(τ) = 1 for any τ ≥ τM and s ∈ S.

Proof. The proof straightforwardly follows from (9.6) and the definition of Qs(τ).

Observation 9.5. The functions {Qs(τ)}, for τ ∈ [0, 1], may be of difficult comparison in case the
number of solvers increases, in particular when τ ∈ {0, 1} (i.e. at the extremes of the interval for
τ). The last fact may be due to close tracks associated to the functions {Qs(τ)} when τ belongs to
{0, 1}. This suggests that a more sophisticated tool needs to be introduced in order to compress
/ expand portions of the plot of the functions {Qs(τ)}, both along the abscissa and the ordinate
axes of the quality profile. On this purpose, note that any logarithm / exponential scaling would
be unadvisable, because of the range of interest [0, 1] on both the axes.

25

The last observation suggests that to compress / expand portions of a quality profile, in order to
better sort and rank the different tracks associated with codes, we can modify (9.5) into (τ ∈ [0, 1])

[Qs(τ)]
r2 =

1

|P|
size

{
p ∈ P : f (p)

s (x∗)− f
(p)
L ≤ τ r1

[
f (p)(x

(p)
0)− f

(p)
L

]}
. (9.7)

where r1 and r2 are positive real numbers, so that

� for r1 ∈ {1, 2, 3, 4, . . .} we obviously have 0 ≤ τ r1 ≤ 1. Moreover, for a given solver s ∈ S,
when r1 increases, the portion of the quality profile corresponding to small values of the
abscissa (say equivalently τ close to zero) will be expanded. Conversely, when r1 increases,
the portion of the quality profile corresponding to large values of the abscissa (say equivalently
τ close to one) will be compressed. As an example, note that when r1 = 1 the mid–value
of the abscissa axis is 1/2, while for r1 = 5 the mid–value of the abscissa axis becomes
(1/2)5 = 1/32;

� for r1 ∈ {1, 1/2, 1/3, 1/4, . . .} we obviously have again 0 ≤ τ r1 ≤ 1. Moreover, now for smaller
values of r1 the portion of the quality profile corresponding to large values of the abscissa
(say equivalently τ close to one) will be expanded, and for larger values of r1 the portion of
the quality profile corresponding to small values of the abscissa (say equivalently τ close to
zero) will be compressed;

� a dynamics similar to the one detailed in the previous items is experienced by increasing
r2 ∈ {1, 2, 3, 4, . . .} or decreasing r2 ∈ {1, 1/2, 1/3, 1/4, . . .}. As an example, when r2 = 1 the
mid–value of the ordinate axis is 1/2 while for r2 = 6 the mid–value of the ordinate axis is
(1/2)6 = 1/64.

The last considerations, along with relation (9.2), reveal a straightforward result (the proof is
omitted) summarized in the next lemma.

Lemma 9.6. Given the test set P and the set of solvers S = {s1, . . . , sr}, the relative ranking
among the non-negative quantities [Qs1(τ)]

r2 , . . . , [Qsr (τ)]
r2 , when τ ∈ [0, 1], is invariant with

respect to the choice of the positive parameters r1 and r2.

An extension of quality profiles to multi-objective smooth optimization and to derivative-free
optimization is reported in the Appendix B. In a further study they will be better investigated
with specific reference to the context in the corresponding literature.

9.4 A numerical experience with quality profiles

In Section 9.1, when comparing TN and TN-NC1 algorithms, we already highlighted how per-
formance profiles may be inadequate for ranking algorithms which show convergence to different
solution points, on a set of test problems. Hence, we now complete the comparison between these
two algorithms by using the quality profiles detailed in Section 9.3, so that the quality of the ob-
tained solutions can be duly considered. An introductory example of application for quality profiles
can be found in Figure 9.3, which corresponds to set in (9.7) the values of r1 and r2 reported in
Table 9.2. We can immediately appreciate that the outcomes in Figure 9.3 definitely comply, as
expected, with all the results in Lemmas 9.2, 9.3 and 9.4, along with Observation 9.5. As a fur-
ther consideration, unlike performance and data profiles, the chance to possibly zoom in any region
of the quality profiles (i.e., the area [0, 1] × [0, 1]) is definitely appealing and allows to precisely
distinguish among the relative positions of the tracks associated with the solvers. On the overall,
plots in Figure 9.3 clearly show that, as expected, in terms of quality of the solution found, the
algorithm TN-NC1 which uses negative curvature directions outperforms the algorithm TN which
does not.

Moreover, in the spirit of carrying out the investigation on the use of negative curvature di-
rections, to enhance the capability of an algorithms to determine better local minimizers, we now
include in the comparison also the results obtained by algorithms TN-NC2, TN-NC3 described in

26

(a) r1 = 1 and r2 = 1 in (9.7). (b) r1 = 1 and r2 = 6 in (9.7).

(c) r1 = 5 and r2 = 1 in (9.7). (d) r1 = 5 and r2 = 6 in (9.7).

(e) r1 = 10 and r2 = 1 in (9.7). (f) r1 = 10 and r2 = 6 in (9.7).

Figure 9.3: Samples of Quality Profiles with the two solvers TN and TN-NC1.

27

(a) r1 = 1 r2 = 1
(b) r1 = 1 r2 = 6
(c) r1 = 5 r2 = 1
(d) r1 = 5 r2 = 6
(e) r1 = 10 r2 = 1
(f) r1 = 10 r2 = 6.

Table 9.2: Values of r1 and r2 in (9.7) adopted in the quality profiles

Section 9.2 (which use alternative negative curvature directions). The Figure 9.4 reports a compar-
ison, adopting quality profiles, for the 4 different algorithms TN, TN-NC1, TN-NC2 and TN-NC3.
As for Figure 9.3, the same values for the parameters r1 and r2 reported in Table 9.2 were adopted
in Figure 9.4, too.

We highlight that not all the four tracks in the last figure converge to the same value (i.e. one)
when τ = 1. This can indeed be easily explained (see also Section 9.3) by recalling that the piece
of information related to the number of failures associated to each solver is duly taken into account
by quality profiles. The last consideration can be regarded as a counterpart of a similar property
that holds for performance and data profiles.

Finally, observe that all the quality profiles in Figures 9.3 and 9.4 report five tickers on both the
axes. They correspond, on each axis, to the five values {0, 1/4, 1/2, 3/4, 1} transformed through
the selection of the values r1 and r2 in the corresponding quality profile. E.g. when r1 = 1
and r2 = 6 (see the quality profile in the position (b) of the Figures 9.3 and 9.4) the values
{0, 1/4, 1/2, 3/4, 1} appear unaltered on the abscissa axis (since r1 = 1), while they are mapped
to the points {06 , (1/4)6 , (1/2)6 , (3/4)6 , 16} ≡ (0 , 1/4096 , 1/64 , 720/4096 , 1) on the
ordinate axis (since r2 = 6).

Once more, we strongly highlight the importance of introducing the scaling parameters r1 and
r2. Indeed, Figure 9.4a shows that the natural (i.e. without any scaling) choice r1 = r2 = 1 may
deteriorate our capability of distinguishing and ranking the quality among solvers. That is an
expected effect, associated to solvers that over a given region of the abscissa axis (in the quality
profile) have close tracks. Hence, a suitable alternative choice for r1 and r2 may represent a winning
strategy for precisely benchmarking multiple codes, for any given subset of the abscissa axis. On
this guideline, let us recall that a so precise choice for scaling parameters within performance and
data profiles is far from being possible. This is due to the fact that unlike quality profiles, where we
always find a unique interval for the abscissa values (say [0, 1]), performance and data profiles may
have to consider different abscissa intervals, depending on the achieved results for the compared
solvers.

The plots in Figure 9.4 confirm the fact that algorithms which use negative curvature directions
in most cases determine better local minimizers. Moreover, the most effective among the three
codes incorporating negative curvature directions seems to be TN-NC3. We recall that in this last
algorithm the negative curvature direction is computed only selecting information associated to
the first negative eigenvalue of the diagonal matrix Dk in (4.1). The last fact confirms what was
also pointed out in [21], and reveals that on selected large scale settings the accurate and expensive
computation of a negative curvature direction can be possibly dodged.

Observation 9.7. As a further comment, observe that given the set of benchmark functions, the
area below any plot of a quality profile is uniquely associated with the corresponding algorithm.
Hence, recalling the rationale behind performance and quality profiles, the larger that area the
better the corresponding algorithm in terms of performance. Furthermore, in quality profiles the
range of values of the abscissa is always [0, 1], while for performance profiles it can be much different
depending on the performance of any algorithm. Hence, for a given set of benchmark functions,
the idea of associating a unique positive number to any track (i.e. the area below the track) of
a quality profile cannot immediately be extended also to performance profiles and data profiles.
This last comment highlights an additional feature of our proposal, with respect to the current

28

(a) r1 = 1 and r2 = 1 in (9.7). (b) r1 = 1 and r2 = 6 in (9.7).

(c) r1 = 5 and r2 = 1 in (9.7). (d) r1 = 5 and r2 = 6 in (9.7).

(e) r1 = 10 and r2 = 1 in (9.7). (f) r1 = 10 and r2 = 6 in (9.7).

Figure 9.4: Samples of Quality Profiles with the four solvers TN, TN-NC1, TN-NC2 and TN-NC3.

29

literature on performance benchmarking, within the Continuous Optimization community.

The use of quality profiles to benchmark multiple codes should possibly not be confined only to
algorithms that converge to second order critical points. Indeed, quality profiles can also provide
a tool that can confirm the effectiveness of algorithms converging to first order critical points, too.
In particular, the use of quality profiles can also be a valuable tool for first order methods, to show
the reliability of the solutions they yield.

Finally, the arrangement in (9.7), with respect to (9.5), is subject to further generalizations,
since the power τ r1 can be replaced by another continuous function ϕ1(τ), such that

(a) 0 ≤ ϕ1(τ) ≤ 1;

(b) ϕ1 is strictly increasing;

(c) ϕ1(0) = 0 and ϕ1(1) = 1.

As an example, the choice of ϕ1(τ) may be driven by the functions {Qsi(τ)}, first computed using
(9.5), with si ∈ S, so that these functions can be better scattered in [0, 1]× [0, 1] after introducing
ϕ1(τ) in (9.7), and defining a measure for scattering. A similar alternative arrangement can be
conceived for the ordinate axes in the quality profiles, i.e. replacing the power [Qs(τ)]

r2 by an
alternative function ϕ2[Qs(τ)] endowed with properties analogous to (a)-(c). Observe, that in
principle, the idea of rewriting (9.7) as

ϕ2 [Qs(τ)] =
1

|P|
size

{
p ∈ P : f (p)

s (x∗)− f
(p)
L ≤ ϕ1(τ)

[
f (p)(x

(p)
0)− f

(p)
L

]}
, 0 ≤ τ ≤ 1,

where both ϕ1 and ϕ2 satisfy the above assumptions and the tracks {ϕ2 [Qs(τ)]}s∈S are better
scattered in the area [0, 1] × [0, 1], may correspond to find ϕ1 and ϕ2 such that they solve the
maximization problem

max
ϕ1,ϕ2

∫ 1

0

∑
s,t∈S,
s ̸=t

{
ϕ2[Qs(τ)]− ϕ2[Qt(τ)]

}2

dτ. (9.8)

This last issue (strictly related to quality profiles) deserves additional attention, since proving the
existence and the uniqueness of the solution of (9.8) needs further investigation, with the specific
reference to the criticisms raised in [25]. Indeed, the chance to select ϕ1 and ϕ2 so that a clear
ranking among solvers is also identified, would be definitely appealing.

30

A Appendix

In this appendix we give the complete results obtained in our experimentation. They are reported
in terms of number of outer iterations (it), number of functions evaluations (f-eval), number of inner
iterations (inner-it), optimal function value (function value) and CPU time (time) in seconds. In
the case an algorithm incorporates negative curvature directions, the number of negative curvature
directions (neg. curv.) actually used by the algorithm is reported, too

In particular, Tables A.1, A.2 and A.3 include the results obtained by the algorithm that does
not use negative curvature directions, namely TN. Tables A.4, A.5 and A.6 report the results for
the algorithm TN-NC1; Tables A.7, A.8 and A.9 refer to results for the algorithm TN-NC2; finally,
in Tables A.10, A.11 and A.12 the results for the algorithm TN-NC3 are included.

Observe that when “> 3600” is reported in the column time it means that the corresponding
algorithm experiences a failure due to exceeded CPU allowed. On the contrary, “-” in the column
time indicates indeed a linesearch failure (i.e., a too small stepsize was computed).

31

PROBLEM n it f-eval inner-it function value time
ARWHEAD 1000 6 6 6 1.690288D-10 0.01
ARWHEAD 5000 6 6 6 1.110001D-12 0.01
ARWHEAD 10000 6 13 6 4.440448D-12 0.02
BDQRTIC 1000 13 13 79 3.983818D+03 0.01
BDQRTIC 5000 13 13 75 2.000626D+04 0.05
BDQRTIC 10000 13 13 75 4.003431D+04 0.11
BROYDN7D 1000 166 674 76121 5.598036D+02 3.53
BROYDN7D 5000 380 1899 756275 3.125637D+03 146.81
BROYDN7D 10000 4293 18481 146179 1.233247D+00 95.26
BRYBND 1000 8 8 55 4.530351D-12 0.01
BRYBND 5000 12 17 80 2.788633D-16 0.06
BRYBND 10000 11 12 67 6.060220D-16 0.12
CHAINWOO 1000 183 517 46530 4.324322D+02 2.55
CHAINWOO 4000 263 852 248636 2.294394D+03 48.60
CHAINWOO 10000 472 1785 1080439 6.305963D+03 513.12
COSINE 1000 12 14 46 -9.985153D+02 0.01
COSINE 5000 10 15 23 -4.999000D+03 0.02
COSINE 10000 10 14 23 -9.999000D+03 0.04
CRAGGLVY 1000 15 15 144 3.364231D+02 0.02
CRAGGLVY 5000 15 15 131 1.688215D+03 0.08
CRAGGLVY 10000 17 17 174 3.377956D+03 0.20
CURLY10 1000 163 450 153010 -9.765683D+04 7.83
CURLY10 5000 395 1370 1925009 -4.665618D+05 442.00
CURLY10 10000 20 26 102819 -1.002761D+06 46.46
CURLY20 1000 140 383 129945 -9.814893D+04 9.34
CURLY20 5000 537 1246 2635010 -4.844972D+05 866.32
CURLY20 10000 21 30 105447 -1.002861D+06 69.23
CURLY30 1000 128 284 116050 -9.854450D+04 10.72
CURLY30 5000 322 970 1556214 -4.929491D+05 661.91
CURLY30 10000 – – – – > 3600
DIXMAANA 1500 7 7 10 1.000000D+00 0.02
DIXMAANA 3000 7 7 10 1.000000D+00 0.01
DIXMAANB 1500 8 8 9 1.000000D+00 0.00
DIXMAANB 3000 8 8 9 1.000000D+00 0.01
DIXMAANC 1500 9 9 11 1.000000D+00 0.00
DIXMAANC 3000 9 9 10 1.000000D+00 0.01
DIXMAAND 1500 9 9 11 1.000000D+00 0.00
DIXMAAND 3000 10 10 12 1.000000D+00 0.01
DIXMAANE 1500 42 164 21636 1.000000D+00 1.56
DIXMAANE 3000 10 10 401 1.000000D+00 0.06
DIXMAANF 1500 15 15 518 1.000000D+00 0.05
DIXMAANF 3000 20 34 1458 1.000000D+00 0.25
DIXMAANG 1500 15 16 516 1.000000D+00 0.05
DIXMAANG 3000 15 15 704 1.000000D+00 0.12
DIXMAANH 1500 18 22 691 1.000000D+00 0.06
DIXMAANH 3000 15 16 689 1.000000D+00 0.13
DIXMAANI 1500 16 24 2757 1.000000D+00 0.20
DIXMAANI 3000 11 11 7062 1.000000D+00 0.92
DIXMAANJ 1500 16 16 4971 1.000000D+00 0.39
DIXMAANJ 3000 18 21 12784 1.000000D+00 1.86
DIXMAANK 1500 25 43 11852 1.000000D+00 0.91
DIXMAANK 3000 17 17 9132 1.000000D+00 1.38
DIXMAANL 1500 21 29 9771 1.000000D+00 0.78
DIXMAANL 3000 17 17 8050 1.000000D+00 1.18
DQDRTIC 1000 6 6 13 4.807773D-32 0.00
DQDRTIC 5000 6 6 13 2.106842D-30 0.01
DQDRTIC 10000 6 6 13 4.441441D-30 0.02

Table A.1: Results of the algorithm TN which does not use negative curvature direction – Part 1

32

PROBLEM n it f-eval inner-it function value time
DQRTIC 1000 23 23 814 6.455565D-02 0.03
DQRTIC 5000 26 26 3947 1.609143D+00 0.58
DQRTIC 10000 27 27 7866 1.051569D+01 2.08
EDENSCH 1000 14 14 35 6.003285D+03 0.01
EDENSCH 5000 14 15 31 3.000328D+04 0.03
EDENSCH 10000 16 19 37 6.000328D+04 0.08
ENGVAL1 1000 10 10 33 1.108195D+03 0.01
ENGVAL1 5000 10 10 27 5.548668D+03 0.02
ENGVAL1 10000 9 20 26 1.109926D+04 0.06
FLETCBV2 1000 1 1 0 -5.013384D-01 0.00
FLETCBV2 5000 1 1 0 -5.002682D-01 0.00
FLETCBV2 10000 1 1 0 -5.001341D-01 0.00
FLETCBV3 1000 4 4 555 -1.083664D+05 0.02
FLETCBV3 5000 9 9 13937 -2.221834D+07 2.67
FLETCBV3 10000 5 5 14372 -1.321473D+09 5.64
FLETCHCR 1000 1478 1685 27648 3.676966D-17 1.72
FLETCHCR 5000 7334 8325 146111 1.594618D-16 37.98
FLETCHCR 10000 13 15 130 2.591926D-11 0.10
FMINSURF 1024 37 285 9170 1.000000D+00 1.34
FMINSURF 5625 30 257 26526 1.000000D+00 20.54
FMINSURF 10000 36 277 45680 1.000000D+00 62.69
FREUROTH 1000 9 13 33 1.214697D+05 0.01
FREUROTH 5000 10 14 24 6.081592D+05 0.02
FREUROTH 10000 11 16 24 1.216521D+06 0.05
GENHUMPS 1000 17155 119689 16873677 3.252751D+02 937.81
GENHUMPS 5000 – – – – > 3600
GENHUMPS 10000 – – – – > 3600
GENROSE 1000 519 1619 81661 1.000000D+00 3.57
GENROSE 5000 2451 8199 1541388 1.000000D+00 295.86
GENROSE 10000 6451 14531 1027183 1.000000D+00 396.17
LIARWHD 1000 14 14 22 1.177518D-14 0.01
LIARWHD 5000 14 14 20 1.556232D-13 0.02
LIARWHD 10000 15 17 21 6.526480D-09 0.04
MOREBV 1000 2 2 374 1.600522D-09 0.01
MOREBV 5000 2 2 603 2.260918D-11 0.11
MOREBV 10000 2 2 738 3.774461D-12 0.24
MSQRTALS 1024 5644 14198 5777101 3.423661D-04 3038.87
MSQRTALS 4900 – – – – > 3600
MSQRTBLS 1024 2319 11064 2372611 3.364740D-10 1241.25
MSQRTBLS 4900 – – – – > 3600
NCB20 1010 159 670 79375 9.663298D+02 33.78
NCB20 5010 106 457 41608 -1.394735D+03 102.11
NCB20 10010 13 26 341 -2.642929D+03 1.92
NCB20B 1000 9 11 859 1.676011D+03 0.39
NCB20B 5000 9 13 454 7.351301D+03 1.17
NCB20B 10000 17 25 3540 1.423567D+04 18.32
NONCVXUN 1000 1188 12111 1187000 2.405825D+03 147.97
NONCVXUN 5000 – – – – > 3600
NONCVXUN 10000 – – – – > 3600
NONCVXU2 1000 875 8650 874000 2.381367D+03 108.75
NONCVXU2 5000 – – – – > 3600
NONCVXU2 10000 – – – – > 3600
NONDIA 1000 7 7 8 5.328548D-12 0.01
NONDIA 5000 5 5 5 9.325523D-09 0.01
NONDIA 10000 5 5 5 5.799705D-10 0.01

Table A.2: Results of the algorithm TN which does not use negative curvature direction – Part 2

33

PROBLEM n it f-eval inner-it function value time
NONDQUAR 1000 44 124 11367 3.035378D-07 0.33
NONDQUAR 5000 51 135 7591 3.959005D-06 1.01
NONDQUAR 10000 55 146 7631 1.170181D-05 1.99
PENALTY1 1000 41 43 53 9.686175D-03 0.01
PENALTY1 5000 45 46 55 4.929490D-02 0.04
PENALTY1 10000 47 49 57 9.900151D-02 0.08
POWELLSG 1000 20 20 72 1.805168D-08 0.01
POWELLSG 5000 20 20 71 1.155101D-07 0.02
POWELLSG 10000 21 29 72 7.617756D-08 0.05
POWER 1000 31 37 1327 1.532847D-10 0.05
POWER 5000 33 49 3736 3.009006D-10 0.54
POWER 10000 36 64 6058 1.001399D-10 1.69
QUARTC 1000 23 23 814 6.455565D-02 0.03
QUARTC 5000 26 26 3947 1.609143D+00 0.50
QUARTC 10000 27 27 7866 1.051569D+01 1.91
SCHMVETT 1000 6 6 60 -2.994000D+03 0.02
SCHMVETT 5000 6 6 52 -1.499400D+04 0.06
SCHMVETT 10000 5 7 41 -2.999400D+04 0.10
SINQUAD 1000 17 23 33 -2.942505D+05 0.01
SINQUAD 5000 17 20 27 -6.757014D+06 0.04
SINQUAD 10000 21 25 41 -2.642227D+07 0.10
SPARSINE 1000 23 123 16537 6.341091D+05 1.34
SPARSINE 5000 55 352 203006 1.567241D+07 82.12
SPARSINE 10000 175 4207 1570334 6.448147D+07 1362.71
SPARSQUR 1000 20 20 118 6.930295D-09 0.02
SPARSQUR 5000 22 22 129 7.653730D-09 0.09
SPARSQUR 10000 23 23 70 9.235821D-09 0.14
SPMSRTLS 1000 8292 10435 8283328 6.321999D+01 573.30
SPMSRTLS 4999 – – – – > 3600
SPMSRTLS 10000 41 128 5421 2.937016D+00 3.58
SROSENBR 1000 8 8 9 3.831667D-09 0.00
SROSENBR 5000 8 8 9 1.915834D-08 0.01
SROSENBR 10000 8 18 9 1.844479D-08 0.01
TESTQUAD 1000 9 9 1200 1.638736D-19 0.04
TESTQUAD 5000 10 10 2022 8.895678D-14 0.27
TESTQUAD 10000 11 11 2662 5.122922D-13 0.70
TOINTGSS 1000 4 4 7 1.001002D+01 0.00
TOINTGSS 5000 3 3 3 1.000200D+01 0.00
TOINTGSS 10000 2 3 1 1.000100D+01 0.00
TQUARTIC 1000 2 2 2 7.228532D-24 0.00
TQUARTIC 5000 8 12 9 8.085249D-05 0.01
TQUARTIC 10000 7 11 8 4.812590D-04 0.01
TRIDIA 1000 8 8 592 1.631743D-14 0.02
TRIDIA 5000 10 10 1340 9.481966D-15 0.19
TRIDIA 10000 12 12 2458 2.819989D-20 0.65
VARDIM 1000 18 140 4027 3.072518D-18 0.14
VARDIM 5000 40 141 126509 4.692765D-17 17.93
VARDIM 10000 48 160 322402 2.857023D-16 90.24
VAREIGVL 1000 14 14 1146 7.926475D-09 0.08
VAREIGVL 5000 15 15 921 5.571834D-09 0.30
VAREIGVL 10000 18 28 1795 5.990309D-09 1.11
WOODS 1000 36 42 129 3.976477D-15 0.01
WOODS 4000 52 69 181 1.378622D-11 0.06
WOODS 10000 48 61 157 1.011483D-14 0.13

Table A.3: Results of the algorithm TN which does not use negative curvature direction – Part 3

34

PROBLEM n it f-eval inner-it function value neg. curv. time
ARWHEAD 1000 6 6 6 1.690288D-10 0 0.00
ARWHEAD 5000 6 6 6 1.110001D-12 0 0.01
ARWHEAD 10000 6 13 6 4.440448D-12 0 0.02
BDQRTIC 1000 13 13 79 3.983818D+03 0 0.02
BDQRTIC 5000 13 13 75 2.000626D+04 0 0.08
BDQRTIC 10000 13 13 75 4.003431D+04 0 0.16
BROYDN7D 1000 88 815 38611 3.047159D+02 59 2.82
BROYDN7D 5000 405 3977 797871 1.659976D+03 230 248.63
BROYDN7D 10000 11 20 65 6.883895D+03 1 0.12
BRYBND 1000 8 8 55 4.530351D-12 0 0.01
BRYBND 5000 15 29 186 1.431842D-13 3 0.20
BRYBND 10000 11 12 67 6.060220D-16 0 0.17
CHAINWOO 1000 114 598 17537 2.514980D+02 30 1.64
CHAINWOO 4000 153 975 65718 1.582515D+03 49 21.11
CHAINWOO 10000 353 2743 577517 2.890864D+03 124 453.78
COSINE 1000 6 6 8 -9.990000D+02 2 0.00
COSINE 5000 6 6 8 -4.999000D+03 2 0.01
COSINE 10000 6 6 8 -9.999000D+03 2 0.02
CRAGGLVY 1000 15 15 144 3.364231D+02 0 0.02
CRAGGLVY 5000 15 15 131 1.688215D+03 0 0.11
CRAGGLVY 10000 17 17 174 3.377956D+03 0 0.31
CURLY10 1000 33 214 11362 -1.003125D+05 19 0.92
CURLY10 5000 22 36 38038 -5.015815D+05 8 14.06
CURLY10 10000 16 42 60984 -1.003163D+06 2 44.82
CURLY20 1000 26 94 10463 -1.003093D+05 12 1.26
CURLY20 5000 26 81 44709 -5.015758D+05 11 25.39
CURLY20 10000 22 89 89161 -1.003162D+06 5 101.19
CURLY30 1000 122 742 113366 -1.000507D+05 45 18.04
CURLY30 5000 24 66 41499 -5.015808D+05 10 31.68
CURLY30 10000 22 50 83642 -1.003162D+06 5 129.58
DIXMAANA 1500 7 7 10 1.000000D+00 0 0.00
DIXMAANA 3000 7 7 10 1.000000D+00 0 0.01
DIXMAANB 1500 8 8 9 1.000000D+00 0 0.00
DIXMAANB 3000 8 8 9 1.000000D+00 0 0.01
DIXMAANC 1500 9 9 11 1.000000D+00 0 0.01
DIXMAANC 3000 9 9 10 1.000000D+00 0 0.01
DIXMAAND 1500 9 9 11 1.000000D+00 0 0.00
DIXMAAND 3000 10 10 12 1.000000D+00 0 0.01
DIXMAANE 1500 55 392 13842 1.000000D+00 37 1.59
DIXMAANE 3000 10 10 401 1.000000D+00 0 0.09
DIXMAANF 1500 19 72 744 1.000000D+00 9 0.10
DIXMAANF 3000 32 223 2519 1.000000D+00 19 0.67
DIXMAANG 1500 36 193 1429 1.000000D+00 22 0.21
DIXMAANG 3000 28 160 1935 1.000000D+00 16 0.51
DIXMAANH 1500 31 143 1258 1.000000D+00 16 0.18
DIXMAANH 3000 19 58 1012 1.000000D+00 6 0.27
DIXMAANI 1500 12 18 4848 1.000000D+00 1 0.54
DIXMAANI 3000 11 11 7062 1.000000D+00 0 1.51
DIXMAANJ 1500 41 220 16204 1.000000D+00 17 2.07
DIXMAANJ 3000 40 128 49606 1.000000D+00 7 12.11
DIXMAANK 1500 60 403 32987 1.000000D+00 35 4.24
DIXMAANK 3000 31 115 27373 1.000000D+00 10 6.69
DIXMAANL 1500 55 395 25739 1.000000D+00 32 3.34
DIXMAANL 3000 28 65 19015 1.000000D+00 6 4.78
DQDRTIC 1000 6 6 13 4.807773D-32 0 0.00
DQDRTIC 5000 6 6 13 2.106842D-30 0 0.01
DQDRTIC 10000 6 6 13 4.441441D-30 0 0.02

Table A.4: Results of the algorithm TN-NC1 which uses negative curvature direction – Part 1

35

PROBLEM n it f-eval inner-it function value neg. curv. time
DQRTIC 1000 23 23 814 6.455565D-02 0 0.04
DQRTIC 5000 26 26 3947 1.609143D+00 0 0.70
DQRTIC 10000 27 27 7866 1.051569D+01 0 2.68
EDENSCH 1000 14 14 35 6.003285D+03 0 0.01
EDENSCH 5000 14 15 31 3.000328D+04 0 0.03
EDENSCH 10000 17 18 40 6.000328D+04 1 0.10
ENGVAL1 1000 10 10 33 1.108195D+03 0 0.01
ENGVAL1 5000 10 10 27 5.548668D+03 0 0.02
ENGVAL1 10000 9 20 26 1.109926D+04 0 0.05
FLETCBV2 1000 1 1 0 -5.013384D-01 0 0.00
FLETCBV2 5000 1 1 0 -5.002682D-01 0 0.00
FLETCBV2 10000 1 1 0 -5.001341D-01 0 0.00
FLETCBV3 1000 5 6 1121 -3.189503D+03 3 0.08
FLETCBV3 5000 8758 8758 20753 -6.880147D+07 4378 22.56
FLETCBV3 10000 5 5 9680 -1.147714D+09 2 6.22
FLETCHCR 1000 1476 1682 27568 5.746676D-13 1 2.29
FLETCHCR 5000 7338 8351 146138 6.757181D-14 1 55.25
FLETCHCR 10000 13 15 130 2.591926D-11 0 0.11
FMINSURF 1024 37 285 9170 1.000000D+00 0 3.32
FMINSURF 5625 30 257 26526 1.000000D+00 0 40.04
FMINSURF 10000 36 277 45680 1.000000D+00 0 121.36
FREUROTH 1000 10 18 32 1.214697D+05 1 0.01
FREUROTH 5000 11 18 30 6.081592D+05 1 0.03
FREUROTH 10000 11 16 24 1.216521D+06 0 0.06
GENHUMPS 1000 12964 135467 12857731 2.359907D-10 7518 1124.97
GENHUMPS 5000 – – – – – > 3600
GENHUMPS 10000 – – – – – > 3600
GENROSE 1000 455 2965 19072 1.000000D+00 387 1.41
GENROSE 5000 1263 9720 139446 1.000000D+00 1159 43.45
GENROSE 10000 4287 26124 142729 1.000000D+00 3608 94.96
LIARWHD 1000 14 14 22 1.177518D-14 0 0.01
LIARWHD 5000 14 14 20 1.556232D-13 0 0.02
LIARWHD 10000 15 17 21 6.526480D-09 0 0.04
MOREBV 1000 2 2 374 1.600522D-09 0 0.02
MOREBV 5000 2 2 603 2.260918D-11 0 0.16
MOREBV 10000 2 2 738 3.774461D-12 0 0.38
MSQRTALS 1024 2563 9854 2622210 3.210999D-04 398 2719.62
MSQRTALS 4900 – – – – – > 3600
MSQRTBLS 1024 552 3657 563003 1.329878D-06 156 582.05
MSQRTBLS 4900 – – – – – > 3600
NCB20 1010 106 1103 36483 9.208174D+02 83 30.93
NCB20 5010 110 1173 18243 -1.447533D+03 92 88.67
NCB20 10010 137 995 4643 -5.313355D+03 124 50.34
NCB20B 1000 19 75 5636 1.676011D+03 4 4.75
NCB20B 5000 9 13 454 7.351301D+03 0 2.23
NCB20B 10000 19 73 2534 1.423567D+04 3 25.90
NONCVXUN 1000 1294 21376 1293000 2.327616D+03 746 302.93
NONCVXUN 5000 – – – – – > 3600
NONCVXUN 10000 – – – – – > 3600
NONCVXU2 1000 1127 17481 1117982 2.317103D+03 621 260.82
NONCVXU2 5000 – – – – – > 3600
NONCVXU2 10000 – – – – – > 3600
NONDIA 1000 7 7 8 5.328548D-12 0 0.01
NONDIA 5000 5 5 5 9.325523D-09 0 0.01
NONDIA 10000 5 5 5 5.799705D-10 0 0.01

Table A.5: Results of the algorithm TN-NC1 which uses negative curvature direction – Part 2

36

PROBLEM n it f-eval inner-it function value neg. curv. time
NONDQUAR 1000 44 124 11367 3.035378D-07 0 0.46
NONDQUAR 5000 51 135 7591 3.959005D-06 0 1.45
NONDQUAR 10000 55 146 7631 1.170181D-05 0 2.92
PENALTY1 1000 41 43 53 9.686175D-03 0 0.01
PENALTY1 5000 45 46 55 4.929490D-02 0 0.05
PENALTY1 10000 47 49 57 9.900151D-02 0 0.09
POWELLSG 1000 20 20 72 1.805168D-08 0 0.01
POWELLSG 5000 20 20 71 1.155101D-07 0 0.03
POWELLSG 10000 21 29 72 7.617756D-08 0 0.05
POWER 1000 31 37 1327 1.532847D-10 0 0.06
POWER 5000 33 49 3736 3.009006D-10 0 0.76
POWER 10000 36 64 6058 1.001399D-10 0 2.40
QUARTC 1000 23 23 814 6.455565D-02 0 0.04
QUARTC 5000 26 26 3947 1.609143D+00 0 0.65
QUARTC 10000 27 27 7866 1.051569D+01 0 2.51
SCHMVETT 1000 6 6 60 -2.994000D+03 0 0.03
SCHMVETT 5000 6 6 52 -1.499400D+04 0 0.11
SCHMVETT 10000 5 7 41 -2.999400D+04 0 0.17
SINQUAD 1000 19 35 44 -2.942505D+05 9 0.02
SINQUAD 5000 16 27 30 -6.757014D+06 6 0.05
SINQUAD 10000 13 17 24 -2.642315D+07 4 0.09
SPARSINE 1000 952 10241 901142 1.618616D+05 566 127.99
SPARSINE 5000 42 358 121002 1.697258D+07 13 90.18
SPARSINE 10000 55 438 302382 7.005234D+07 14 479.08
SPARSQUR 1000 20 20 118 6.930295D-09 0 0.03
SPARSQUR 5000 22 22 129 7.653730D-09 0 0.13
SPARSQUR 10000 23 23 70 9.235821D-09 0 0.19
SPMSRTLS 1000 128 1248 61408 5.608497D-02 84 7.32
SPMSRTLS 4999 – – – – – > 3600
SPMSRTLS 10000 26 114 1439 3.409363D-11 9 1.78
SROSENBR 1000 8 8 9 3.831667D-09 0 0.00
SROSENBR 5000 8 8 9 1.915834D-08 0 0.01
SROSENBR 10000 8 18 9 1.844479D-08 0 0.02
TESTQUAD 1000 9 9 1200 1.638736D-19 0 0.05
TESTQUAD 5000 10 10 2022 8.895678D-14 0 0.36
TESTQUAD 10000 11 11 2662 5.122922D-13 0 0.93
TOINTGSS 1000 4 4 7 1.001002D+01 0 0.00
TOINTGSS 5000 3 3 3 1.000200D+01 0 0.01
TOINTGSS 10000 2 3 1 1.000100D+01 0 0.00
TQUARTIC 1000 2 2 2 7.228532D-24 0 0.00
TQUARTIC 5000 8 18 10 3.582716D-08 1 0.01
TQUARTIC 10000 7 11 8 4.812590D-04 0 0.02
TRIDIA 1000 8 8 592 1.631743D-14 0 0.03
TRIDIA 5000 10 10 1340 9.481966D-15 0 0.25
TRIDIA 10000 12 12 2458 2.819989D-20 0 0.90
VARDIM 1000 18 140 4027 3.072518D-18 0 0.18
VARDIM 5000 40 141 126509 4.692765D-17 0 25.49
VARDIM 10000 49 240 300755 5.942719D-17 0 119.93
VAREIGVL 1000 14 14 1146 7.926475D-09 0 0.13
VAREIGVL 5000 15 15 921 5.571834D-09 0 0.50
VAREIGVL 10000 15 34 110 6.162802D-16 3 0.17
WOODS 1000 37 63 133 2.352916D-13 3 0.01
WOODS 4000 46 69 158 2.110406D-12 7 0.07
WOODS 10000 47 66 153 2.271874D-15 7 0.15

Table A.6: Results of the algorithm TN-NC1 which uses negative curvature direction – Part 3

37

PROBLEM n it f-eval inner-it function value neg. curv. time
ARWHEAD 1000 6 6 6 1.690288D-10 0 0.00
ARWHEAD 5000 6 6 6 1.110001D-12 0 0.01
ARWHEAD 10000 6 13 6 4.440448D-12 0 0.02
BDQRTIC 1000 13 13 79 3.983818D+03 0 0.02
BDQRTIC 5000 13 13 75 2.000626D+04 0 0.08
BDQRTIC 10000 13 13 75 4.003431D+04 0 0.16
BROYDN7D 1000 118 1193 62826 3.918212D+02 89 4.52
BROYDN7D 5000 535 4976 709815 1.949549D+03 485 206.70
BROYDN7D 10000 11 20 65 6.883895D+03 1 0.10
BRYBND 1000 8 8 55 4.530351D-12 0 0.01
BRYBND 5000 15 29 186 1.431842D-13 3 0.18
BRYBND 10000 11 12 67 6.060220D-16 0 0.14
CHAINWOO 1000 130 675 22818 3.333991D+02 35 1.82
CHAINWOO 4000 164 1212 105743 1.249443D+03 64 31.70
CHAINWOO 10000 276 2288 384586 3.465589D+03 119 285.69
COSINE 1000 6 6 8 -9.990000D+02 2 0.00
COSINE 5000 6 6 8 -4.999000D+03 2 0.01
COSINE 10000 6 6 8 -9.999000D+03 2 0.02
CRAGGLVY 1000 15 15 144 3.364231D+02 0 0.02
CRAGGLVY 5000 15 15 131 1.688215D+03 0 0.09
CRAGGLVY 10000 17 17 174 3.377956D+03 0 0.24
CURLY10 1000 32 196 13857 -1.003125D+05 20 1.02
CURLY10 5000 27 69 38270 -5.015777D+05 12 13.33
CURLY10 10000 16 42 60984 -1.003163D+06 2 42.18
CURLY20 1000 33 238 17797 -1.003100D+05 22 1.97
CURLY20 5000 32 146 52112 -5.015599D+05 16 27.98
CURLY20 10000 19 44 76689 -1.003163D+06 2 82.78
CURLY30 1000 54 388 44582 -1.001797D+05 35 6.55
CURLY30 5000 24 48 47539 -5.015815D+05 9 34.25
CURLY30 10000 22 42 86066 -1.003162D+06 4 123.96
DIXMAANA 1500 7 7 10 1.000000D+00 0 0.00
DIXMAANA 3000 7 7 10 1.000000D+00 0 0.01
DIXMAANB 1500 8 8 9 1.000000D+00 0 0.00
DIXMAANB 3000 8 8 9 1.000000D+00 0 0.01
DIXMAANC 1500 9 9 11 1.000000D+00 0 0.00
DIXMAANC 3000 9 9 10 1.000000D+00 0 0.01
DIXMAAND 1500 9 9 11 1.000000D+00 0 0.00
DIXMAAND 3000 10 10 12 1.000000D+00 0 0.01
DIXMAANE 1500 66 485 25372 1.000000D+00 55 2.62
DIXMAANE 3000 10 10 401 1.000000D+00 0 0.09
DIXMAANF 1500 19 73 1030 1.000000D+00 9 0.13
DIXMAANF 3000 27 145 1925 1.000000D+00 15 0.47
DIXMAANG 1500 30 148 1734 1.000000D+00 18 0.21
DIXMAANG 3000 23 107 1832 1.000000D+00 11 0.44
DIXMAANH 1500 24 89 945 1.000000D+00 11 0.12
DIXMAANH 3000 22 79 1277 1.000000D+00 8 0.30
DIXMAANI 1500 12 18 4848 1.000000D+00 1 0.49
DIXMAANI 3000 11 11 7062 1.000000D+00 0 1.44
DIXMAANJ 1500 56 364 34229 1.000000D+00 33 3.93
DIXMAANJ 3000 46 251 45955 1.000000D+00 23 10.36
DIXMAANK 1500 68 509 29825 1.000000D+00 47 3.44
DIXMAANK 3000 38 202 48353 1.000000D+00 16 10.90
DIXMAANL 1500 51 375 28045 1.000000D+00 36 3.25
DIXMAANL 3000 34 125 19781 1.000000D+00 16 4.47
DQDRTIC 1000 6 6 13 4.807773D-32 0 0.00
DQDRTIC 5000 6 6 13 2.106842D-30 0 0.01
DQDRTIC 10000 6 6 13 4.441441D-30 0 0.02

Table A.7: Results of the algorithm TN-NC2 which uses negative curvature direction – Part 1

38

PROBLEM n it f-eval inner-it function value neg. curv. time
DQRTIC 1000 23 23 814 6.455565D-02 0 0.03
DQRTIC 5000 26 26 3947 1.609143D+00 0 0.64
DQRTIC 10000 27 27 7866 1.051569D+01 0 2.48
EDENSCH 1000 14 14 35 6.003285D+03 0 0.01
EDENSCH 5000 14 15 31 3.000328D+04 0 0.03
EDENSCH 10000 17 18 40 6.000328D+04 1 0.07
ENGVAL1 1000 10 10 33 1.108195D+03 0 0.01
ENGVAL1 5000 10 10 27 5.548668D+03 0 0.02
ENGVAL1 10000 9 20 26 1.109926D+04 0 0.03
FLETCBV2 1000 1 1 0 -5.013384D-01 0 0.00
FLETCBV2 5000 1 1 0 -5.002682D-01 0 0.00
FLETCBV2 10000 1 1 0 -5.001341D-01 0 0.00
FLETCBV3 1000 6 6 1323 -1.038422D+04 3 0.08
FLETCBV3 5000 5567 5567 13195 -5.273278D+07 2840 12.16
FLETCBV3 10000 5 5 9680 -9.857319D+08 1 5.91
FLETCHCR 1000 1476 1682 27568 5.746676D-13 1 2.08
FLETCHCR 5000 7338 8351 146138 6.757181D-14 1 48.44
FLETCHCR 10000 13 15 130 2.591926D-11 0 0.10
FMINSURF 1024 37 285 9170 1.000000D+00 0 2.23
FMINSURF 5625 30 257 26526 1.000000D+00 0 36.25
FMINSURF 10000 36 277 45680 1.000000D+00 0 116.85
FREUROTH 1000 10 18 32 1.214697D+05 1 0.01
FREUROTH 5000 11 18 30 6.081592D+05 1 0.03
FREUROTH 10000 11 16 24 1.216521D+06 0 0.05
GENHUMPS 1000 10472 121609 10353839 5.929871D-11 8651 792.12
GENHUMPS 5000 – – – – – > 3600
GENHUMPS 10000 – – – – – > 3600
GENROSE 1000 474 3009 33425 1.000000D+00 417 2.32
GENROSE 5000 1526 10358 115887 1.000000D+00 1402 36.25
GENROSE 10000 4484 27144 151983 1.000000D+00 3888 99.17
LIARWHD 1000 14 14 22 1.177518D-14 0 0.01
LIARWHD 5000 14 14 20 1.556232D-13 0 0.02
LIARWHD 10000 15 17 21 6.526480D-09 0 0.04
MOREBV 1000 2 2 374 1.600522D-09 0 0.02
MOREBV 5000 2 2 603 2.260918D-11 0 0.15
MOREBV 10000 2 2 738 3.774461D-12 0 0.37
MSQRTALS 1024 413 3745 420485 4.327283D-10 237 433.83
MSQRTALS 4900 – – – – – > 3600
MSQRTBLS 1024 374 3332 380548 6.404756D-12 206 391.64
MSQRTBLS 4900 – – – – – > 3600
NCB20 1010 276 1936 85039 9.063045D+02 248 71.15
NCB20 5010 85 688 16166 -1.472158D+03 73 77.45
NCB20 10010 160 916 8840 -5.275134D+03 148 92.16
NCB20B 1000 21 103 6405 1.676011D+03 9 5.36
NCB20B 5000 20 122 5368 7.351301D+03 10 25.79
NCB20B 10000 19 73 2534 1.423567D+04 3 25.89
NONCVXUN 1000 1548 21219 1547000 2.325729D+03 1093 380.37
NONCVXUN 5000 – – – – – > 3600
NONCVXUN 10000 – – – – – > 3600
NONCVXU2 1000 896 12067 894904 2.333203D+03 629 210.15
NONCVXU2 5000 – – – – – > 3600
NONCVXU2 10000 – – – – – > 3600
NONDIA 1000 7 7 8 5.328548D-12 0 0.01
NONDIA 5000 5 5 5 9.325523D-09 0 0.01
NONDIA 10000 5 5 5 5.799705D-10 0 0.01

Table A.8: Results of the algorithm TN-NC2 which uses negative curvature direction – Part 2

39

PROBLEM n it f-eval inner-it function value neg. curv. time
NONDQUAR 1000 44 124 11367 3.035378D-07 0 0.46
NONDQUAR 5000 51 135 7591 3.959005D-06 0 1.43
NONDQUAR 10000 55 146 7631 1.170181D-05 0 2.86
PENALTY1 1000 41 43 53 9.686175D-03 0 0.01
PENALTY1 5000 45 46 55 4.929490D-02 0 0.04
PENALTY1 10000 47 49 57 9.900151D-02 0 0.09
POWELLSG 1000 20 20 72 1.805168D-08 0 0.01
POWELLSG 5000 20 20 71 1.155101D-07 0 0.02
POWELLSG 10000 21 29 72 7.617756D-08 0 0.05
POWER 1000 31 37 1327 1.532847D-10 0 0.06
POWER 5000 33 49 3736 3.009006D-10 0 0.74
POWER 10000 36 64 6058 1.001399D-10 0 2.37
QUARTC 1000 23 23 814 6.455565D-02 0 0.04
QUARTC 5000 26 26 3947 1.609143D+00 0 0.64
QUARTC 10000 27 27 7866 1.051569D+01 0 2.49
SCHMVETT 1000 6 6 60 -2.994000D+03 0 0.03
SCHMVETT 5000 6 6 52 -1.499400D+04 0 0.11
SCHMVETT 10000 5 7 41 -2.999400D+04 0 0.16
SINQUAD 1000 19 35 44 -2.942505D+05 9 0.02
SINQUAD 5000 16 27 30 -6.757014D+06 6 0.05
SINQUAD 10000 – – – – – –
SPARSINE 1000 2571 28325 2469982 2.806062D-06 2025 346.66
SPARSINE 5000 369 4084 1002629 1.626756D+07 254 731.20
SPARSINE 10000 165 1881 855419 6.961817D+07 97 1337.03
SPARSQUR 1000 20 20 118 6.930295D-09 0 0.03
SPARSQUR 5000 22 22 129 7.653730D-09 0 0.13
SPARSQUR 10000 23 23 70 9.235821D-09 0 0.19
SPMSRTLS 1000 538 2470 507351 1.136539D+01 155 59.88
SPMSRTLS 4999 – – – – – > 3600
SPMSRTLS 10000 26 167 1300 1.561664D-12 15 1.58
SROSENBR 1000 8 8 9 3.831667D-09 0 0.00
SROSENBR 5000 8 8 9 1.915834D-08 0 0.01
SROSENBR 10000 8 18 9 1.844479D-08 0 0.01
TESTQUAD 1000 9 9 1200 1.638736D-19 0 0.05
TESTQUAD 5000 10 10 2022 8.895678D-14 0 0.36
TESTQUAD 10000 11 11 2662 5.122922D-13 0 0.93
TOINTGSS 1000 4 4 7 1.001002D+01 0 0.00
TOINTGSS 5000 3 3 3 1.000200D+01 0 0.01
TOINTGSS 10000 2 3 1 1.000100D+01 0 0.00
TQUARTIC 1000 2 2 2 7.228532D-24 0 0.00
TQUARTIC 5000 8 18 10 3.582716D-08 1 0.01
TQUARTIC 10000 7 11 8 4.812590D-04 0 0.02
TRIDIA 1000 8 8 592 1.631743D-14 0 0.02
TRIDIA 5000 10 10 1340 9.481966D-15 0 0.25
TRIDIA 10000 12 12 2458 2.819989D-20 0 0.89
VARDIM 1000 18 140 4027 3.072518D-18 0 0.18
VARDIM 5000 40 141 126509 4.692765D-17 0 25.96
VARDIM 10000 49 240 300755 5.942719D-17 0 121.87
VAREIGVL 1000 14 14 1146 7.926475D-09 0 0.13
VAREIGVL 5000 15 15 921 5.571834D-09 0 0.50
VAREIGVL 10000 15 34 110 6.162802D-16 3 0.17
WOODS 1000 37 63 133 2.352916D-13 3 0.02
WOODS 4000 46 69 158 2.110406D-12 7 0.06
WOODS 10000 47 66 153 2.271874D-15 7 0.15

Table A.9: Results of the algorithm TN-NC2 which uses negative curvature direction – Part 3

40

PROBLEM n it f-eval inner-it function value neg. curv. time
ARWHEAD 1000 6 6 6 1.690288D-10 0 0.00
ARWHEAD 5000 6 6 6 1.110001D-12 0 0.01
ARWHEAD 10000 6 13 6 4.440448D-12 0 0.02
BDQRTIC 1000 13 13 79 3.983818D+03 0 0.02
BDQRTIC 5000 13 13 75 2.000626D+04 0 0.08
BDQRTIC 10000 13 13 75 4.003431D+04 0 0.15
BROYDN7D 1000 31 124 11736 2.460676D+02 13 0.84
BROYDN7D 5000 38 160 36259 1.415682D+03 22 10.72
BROYDN7D 10000 11 20 65 6.883895D+03 1 0.09
BRYBND 1000 8 8 55 4.530351D-12 0 0.01
BRYBND 5000 15 29 186 1.431842D-13 3 0.17
BRYBND 10000 11 12 67 6.060220D-16 0 0.13
CHAINWOO 1000 143 744 31837 3.298250D+02 43 2.52
CHAINWOO 4000 161 931 112160 1.159655D+03 50 33.04
CHAINWOO 10000 169 945 125135 8.922417D+02 54 90.96
COSINE 1000 6 6 8 -9.990000D+02 2 0.00
COSINE 5000 6 6 8 -4.999000D+03 2 0.01
COSINE 10000 6 6 8 -9.999000D+03 2 0.02
CRAGGLVY 1000 15 15 144 3.364231D+02 0 0.02
CRAGGLVY 5000 15 15 131 1.688215D+03 0 0.09
CRAGGLVY 10000 17 17 174 3.377956D+03 0 0.24
CURLY10 1000 22 37 8991 -1.003157D+05 9 0.67
CURLY10 5000 22 45 36107 -5.015815D+05 9 12.57
CURLY10 10000 16 42 60984 -1.003163D+06 2 42.10
CURLY20 1000 21 38 8919 -1.003163D+05 8 0.99
CURLY20 5000 26 60 47582 -5.015682D+05 11 25.72
CURLY20 10000 19 35 76231 -1.003163D+06 1 83.02
CURLY30 1000 36 218 18401 -1.003119D+05 20 2.72
CURLY30 5000 24 48 47539 -5.015815D+05 9 34.21
CURLY30 10000 22 43 95292 -1.003163D+06 4 137.47
DIXMAANA 1500 7 7 10 1.000000D+00 0 0.00
DIXMAANA 3000 7 7 10 1.000000D+00 0 0.01
DIXMAANB 1500 8 8 9 1.000000D+00 0 0.00
DIXMAANB 3000 8 8 9 1.000000D+00 0 0.01
DIXMAANC 1500 9 9 11 1.000000D+00 0 0.00
DIXMAANC 3000 9 9 10 1.000000D+00 0 0.01
DIXMAAND 1500 9 9 11 1.000000D+00 0 0.01
DIXMAAND 3000 10 10 12 1.000000D+00 0 0.01
DIXMAANE 1500 11 15 1797 1.000000D+00 3 0.19
DIXMAANE 3000 10 10 401 1.000000D+00 0 0.09
DIXMAANF 1500 21 83 1112 1.000000D+00 10 0.14
DIXMAANF 3000 18 47 1088 1.000000D+00 6 0.26
DIXMAANG 1500 26 115 1511 1.000000D+00 15 0.19
DIXMAANG 3000 21 58 1162 1.000000D+00 7 0.28
DIXMAANH 1500 30 138 1346 1.000000D+00 17 0.17
DIXMAANH 3000 29 117 1612 1.000000D+00 15 0.39
DIXMAANI 1500 12 18 4848 1.000000D+00 1 0.50
DIXMAANI 3000 11 11 7062 1.000000D+00 0 1.40
DIXMAANJ 1500 40 200 21845 1.000000D+00 20 2.52
DIXMAANJ 3000 23 83 10082 1.000000D+00 11 2.29
DIXMAANK 1500 34 153 18163 1.000000D+00 16 2.09
DIXMAANK 3000 39 264 54797 1.000000D+00 25 12.87
DIXMAANL 1500 19 56 4006 1.000000D+00 7 0.47
DIXMAANL 3000 50 287 44881 1.000000D+00 30 10.15
DQDRTIC 1000 6 6 13 4.807773D-32 0 0.00
DQDRTIC 5000 6 6 13 2.106842D-30 0 0.01
DQDRTIC 10000 6 6 13 4.441441D-30 0 0.02

Table A.10: Results of the algorithm TN-NC3 which uses negative curvature direction – Part 1

41

PROBLEM n it f-eval inner-it function value neg. curv. time
DQRTIC 1000 23 23 814 6.455565D-02 0 0.03
DQRTIC 5000 26 26 3947 1.609143D+00 0 0.64
DQRTIC 10000 27 27 7866 1.051569D+01 0 2.48
EDENSCH 1000 14 14 35 6.003285D+03 0 0.01
EDENSCH 5000 14 15 31 3.000328D+04 0 0.03
EDENSCH 10000 17 18 40 6.000328D+04 1 0.07
ENGVAL1 1000 10 10 33 1.108195D+03 0 0.01
ENGVAL1 5000 10 10 27 5.548668D+03 0 0.02
ENGVAL1 10000 9 20 26 1.109926D+04 0 0.04
FLETCBV2 1000 1 1 0 -5.013384D-01 0 0.00
FLETCBV2 5000 1 1 0 -5.002682D-01 0 0.00
FLETCBV2 10000 1 1 0 -5.001341D-01 0 0.00
FLETCBV3 1000 5 5 501 -2.079032D+03 2 0.03
FLETCBV3 5000 8698 8698 10530 -6.833002D+07 4348 16.26
FLETCBV3 10000 5 5 9680 -9.857319D+08 1 5.64
FLETCHCR 1000 1476 1682 27568 5.746676D-13 1 2.08
FLETCHCR 5000 7338 8351 146138 6.757181D-14 1 48.32
FLETCHCR 10000 13 15 130 2.591926D-11 0 0.10
FMINSURF 1024 37 285 9170 1.000000D+00 0 2.23
FMINSURF 5625 30 257 26526 1.000000D+00 0 36.86
FMINSURF 10000 36 277 45680 1.000000D+00 0 113.88
FREUROTH 1000 10 18 32 1.214697D+05 1 0.01
FREUROTH 5000 11 18 30 6.081592D+05 1 0.03
FREUROTH 10000 11 16 24 1.216521D+06 0 0.05
GENHUMPS 1000 4315 23860 4200513 2.140010D-10 2126 313.22
GENHUMPS 5000 – – – – – > 3600
GENHUMPS 10000 – – – – – > 3600
GENROSE 1000 506 2893 16262 1.000000D+00 419 1.22
GENROSE 5000 1517 9729 66684 1.000000D+00 1381 21.59
GENROSE 10000 4664 26843 143374 1.000000D+00 3968 94.67
LIARWHD 1000 14 14 22 1.177518D-14 0 0.01
LIARWHD 5000 14 14 20 1.556232D-13 0 0.02
LIARWHD 10000 15 17 21 6.526480D-09 0 0.04
MOREBV 1000 2 2 374 1.600522D-09 0 0.02
MOREBV 5000 2 2 603 2.260918D-11 0 0.15
MOREBV 10000 2 2 738 3.774461D-12 0 0.37
MSQRTALS 1024 213 2072 214535 2.453652D-10 186 219.79
MSQRTALS 4900 – – – – – > 3600
MSQRTBLS 1024 641 3084 653017 1.054637D-06 193 671.55
MSQRTBLS 4900 54 365 162001 1.761111D-09 24 1885.52
NCB20 1010 47 176 11836 9.036323D+02 40 10.07
NCB20 5010 39 154 9836 -1.478669D+03 25 47.08
NCB20 10010 96 300 2436 -5.229099D+03 84 26.56
NCB20B 1000 19 95 6157 1.676011D+03 6 5.15
NCB20B 5000 19 100 5189 7.351301D+03 9 24.81
NCB20B 10000 19 73 2534 1.423567D+04 3 26.20
NONCVXUN 1000 306 2708 304021 2.325970D+03 180 72.16
NONCVXUN 5000 – – – – – > 3600
NONCVXUN 10000 – – – – – > 3600
NONCVXU2 1000 304 2598 298606 2.320695D+03 200 68.99
NONCVXU2 5000 – – – – – > 3600
NONCVXU2 10000 – – – – – > 3600
NONDIA 1000 7 7 8 5.328548D-12 0 0.01
NONDIA 5000 5 5 5 9.325523D-09 0 0.01
NONDIA 10000 5 5 5 5.799705D-10 0 0.01

Table A.11: Results of the algorithm TN-NC3 which uses negative curvature direction – Part 2

42

PROBLEM n it f-eval inner-it function value neg. curv. time
NONDQUAR 1000 44 124 11367 3.035378D-07 0 0.46
NONDQUAR 5000 51 135 7591 3.959005D-06 0 1.43
NONDQUAR 10000 55 146 7631 1.170181D-05 0 2.86
PENALTY1 1000 41 43 53 9.686175D-03 0 0.01
PENALTY1 5000 45 46 55 4.929490D-02 0 0.05
PENALTY1 10000 47 49 57 9.900151D-02 0 0.09
POWELLSG 1000 20 20 72 1.805168D-08 0 0.01
POWELLSG 5000 20 20 71 1.155101D-07 0 0.02
POWELLSG 10000 21 29 72 7.617756D-08 0 0.05
POWER 1000 31 37 1327 1.532847D-10 0 0.06
POWER 5000 33 49 3736 3.009006D-10 0 0.75
POWER 10000 36 64 6058 1.001399D-10 0 2.39
QUARTC 1000 23 23 814 6.455565D-02 0 0.03
QUARTC 5000 26 26 3947 1.609143D+00 0 0.64
QUARTC 10000 27 27 7866 1.051569D+01 0 2.48
SCHMVETT 1000 6 6 60 -2.994000D+03 0 0.03
SCHMVETT 5000 6 6 52 -1.499400D+04 0 0.11
SCHMVETT 10000 5 7 41 -2.999400D+04 0 0.16
SINQUAD 1000 19 35 44 -2.942505D+05 9 0.02
SINQUAD 5000 16 27 30 -6.757014D+06 6 0.05
SINQUAD 10000 – – – – – –
SPARSINE 1000 256 2390 251060 1.186251D-07 209 35.34
SPARSINE 5000 419 3725 2073882 6.356014D-07 299 1501.92
SPARSINE 10000 – – – – – > 3600
SPARSQUR 1000 20 20 118 6.930295D-09 0 0.04
SPARSQUR 5000 22 22 129 7.653730D-09 0 0.13
SPARSQUR 10000 23 23 70 9.235821D-09 0 0.19
SPMSRTLS 1000 112 837 54826 3.711627D-11 92 6.48
SPMSRTLS 4999 36 186 7818 3.165356D-01 20 4.43
SPMSRTLS 10000 22 133 1483 3.352784D-08 11 1.74
SROSENBR 1000 8 8 9 3.831667D-09 0 0.00
SROSENBR 5000 8 8 9 1.915834D-08 0 0.01
SROSENBR 10000 8 18 9 1.844479D-08 0 0.01
TESTQUAD 1000 9 9 1200 1.638736D-19 0 0.05
TESTQUAD 5000 10 10 2022 8.895678D-14 0 0.36
TESTQUAD 10000 11 11 2662 5.122922D-13 0 0.93
TOINTGSS 1000 4 4 7 1.001002D+01 0 0.00
TOINTGSS 5000 3 3 3 1.000200D+01 0 0.01
TOINTGSS 10000 2 3 1 1.000100D+01 0 0.00
TQUARTIC 1000 2 2 2 7.228532D-24 0 0.00
TQUARTIC 5000 8 18 10 3.582716D-08 1 0.01
TQUARTIC 10000 7 11 8 4.812590D-04 0 0.02
TRIDIA 1000 8 8 592 1.631743D-14 0 0.03
TRIDIA 5000 10 10 1340 9.481966D-15 0 0.25
TRIDIA 10000 12 12 2458 2.819989D-20 0 0.89
VARDIM 1000 18 140 4027 3.072518D-18 0 0.18
VARDIM 5000 40 141 126509 4.692765D-17 0 25.07
VARDIM 10000 49 240 300755 5.942719D-17 0 117.72
VAREIGVL 1000 14 14 1146 7.926475D-09 0 0.13
VAREIGVL 5000 15 15 921 5.571834D-09 0 0.50
VAREIGVL 10000 15 34 110 6.162802D-16 3 0.17
WOODS 1000 37 63 133 2.352916D-13 3 0.02
WOODS 4000 46 69 158 2.110406D-12 7 0.06
WOODS 10000 47 66 153 2.271874D-15 7 0.14

Table A.12: Results of the algorithm TN-NC3 which uses negative curvature direction – Part 3

43

B Appendix

B.1 Quality Profiles for multi–objective smooth optimization

In this section we want to extend the definition of Quality Profiles also to smooth multi–objective
optimization problems, so that we need some cares to generalize what detailed in Section 9.3. On
this purpose, let us consider the set of solvers S and the set of multi–objective benchmark problems
P. Then, following a similar taxonomy reported in Section 9.3, we denote by

� f
(p)
i (x) the i-th objective function of the test problem p ∈ P, i = 1, . . . ,m;

� f
(p)
is (x∗) the optimal value of the i-th objective function of the test problem p ∈ P, i = 1, . . . ,m,
obtained by the solver s;

� f
(p)
iL the reference value of the i-th objective function of the test problem p ∈ P, i = 1, . . . ,m.

For any s ∈ S and for any τ ∈ [0, 1] we define the vector

Qs(τ) =

Q

(1)
s (τ)
...

Q
(m)
s (τ)

 ∈ Rm

according with the following relations
Q

(1)
s (τ) =

1

|P|
size

{
p ∈ P : f

(p)
1s (x∗)− f

(p)
1L ≤ τ

[
f
(p)
1 (x

(p)
0)− f

(p)
1L

]}
...

...

Q
(m)
s (τ) =

1

|P|
size

{
p ∈ P : f (p)

ms(x
∗)− f

(p)
mL ≤ τ

[
f (p)
m (x

(p)
0)− f

(p)
mL

]}
.

Then, for any solver s ∈ S, when τ ranges in [0, 1] we obtain the sequence of m dimensional vectors

{Qs(τ)} ,

that can be used to build the two fronts Lmin
s and Lmax

s as follows:

Lmin
s

def
=

{
Q ∈ {Qs(τ)} , τ ∈ [0, 1] : ∄ Q̄ ∈ {Qs(τ)} s.t. Q̄(i) ≤ Q(i), i = 1, . . . ,m,
and Q̄(j) < Q(j) for at least an index j ∈ {1, . . . ,m}

}
,

Lmax
s

def
=

{
Q ∈ {Qs(τ)} , τ ∈ [0, 1] : ∄ Q̄ ∈ {Qs(τ)} s.t. Q̄(i) ≥ Q(i), i = 1, . . . ,m,
and Q̄(j) > Q(j) for at least an index j ∈ {1, . . . ,m}

}
,

Observe that according with the definitions of Lmin
s and Lmax

s , we can indicate that for any solver
s ∈ S we have Lmin

s ⪯ Lmax
s , meaning that

Lmin
s ⪯ Lmax

s ⇐⇒ for all Q̄ ∈ Lmin
s , for all Q̃ ∈ Lmax

s , Q̄(i) ≤ Q̃(i), i = 1, . . . ,m.

As a more general statement, given s1, s2 ∈ S, s1 ̸= s2, we say that:

� L∗
s1 ⪯ L∗∗

s2 , where “∗” and “∗∗” may be either “min” or “max”, if

for all Q̄ ∈ L∗
s1 , for all Q̃ ∈ L∗∗

s2 , Q̄(i) ≤ Q̃(i), i = 1, . . . ,m;

� L∗
s1 ≺ L∗∗

s2 , where “∗” and “∗∗” may be either “min” or “max”, if

for all Q̄ ∈ L∗
s1 , for all Q̃ ∈ L∗∗

s2 , Q̄(i) < Q̃(i), i = 1, . . . ,m.

44

Finally, compare two selected solvers s1, s2 ∈ S, according with the next taxonomy:

� if Lmin
s1 ≺ Lmin

s2 , then we say that s1 min–dominates s2;

� if Lmin
s1 ⪯ Lmin

s2 , then we say that s1 min–weakly dominates s2;

� if Lmax
s1 ≺ Lmax

s2 , then we say that s2 max–dominates s1;

� if Lmax
s1 ⪯ Lmax

s2 , then we say that s2 max–weakly dominates s1.

Of course, for any pair of solvers s1, s2 there is the chance that none of the last four cases
possibly holds, because the fronts Lmin

s1 , Lmin
s2 and/or Lmax

s1 , Lmax
s2 might show several intersection

points. This can be interpreted by saying that the above four cases may hold in just some sub–
intervals of values of τ ∈ [0, 1]. Hence, as an example we can conclude that the solver s1 can be
min–dominated / min–weakly dominated (respectively max–dominated / max–weakly dominated)
by the solver s2 in the sub–interval of values τ ∈ [τ1, τ2] ⊆ [0, 1].

Note that as regards the comments in Observation 9.5, some additional care should be consid-
ered in the multi–objective framework.

B.2 Quality Profiles for derivative–free optimization

As for the derivative–free frameworks, where an n dimensional non–smooth function is minimized,
we know that Data Profiles [36] are an effective tool to measure performances, depending on
different budgets (i.e. number of function evaluations) allowed when running the different solvers.
In particular, each data profile basically represents a performance profile among solvers (where in
the abscissa axis we consider the number of simplex evaluations) built using a partial information.
The last partial information is obtained for each solver s ∈ S, and represents the computational
effort (i.e. the number of function evaluations) needed by s to solve different fractions of the test
set, assuming that the accuracy required for the solution is given.

As an example, we can plot several data profiles, being each plot with respect to the number
of function evaluations (one simplex evaluation is equivalent to n + 1 function evaluations), and
the relative accuracy is given by setting a value σi ∈ [0, 1]. The value σi is used to compute the
performances (number of function evaluations) of each solver s, on the set of benchmark problems
P, so that (borrowing the taxonomy used in Section 9.3)

f (p)
s (x∗)− f

(p)
L ≤ σi

[
f (p)(x

(p)
0)− f

(p)
L

]
. (B.1)

This yields a sequence of ℓ data profile plots, each of which is associated to a different precision
level

σ1 < · · · < σℓ.

The basic idea of adopting quality profiles for derivative–free frameworks is that of reversing
the rationale behind data profiles. Indeed, each quality profile is explicitly built in accordance with
a relation similar to (B.1). Hence, we might conceive a sequence of quality profiles where, from
a plot to another one, the budget allowed for the computation (by each solver) changes. Hence,
considering e.g. the above problem of comparing the performances in terms of function evaluations,
we might set the budget levels nf1 < · · · < nfℓ and build a quality profile for each value in the
sequence {nfi}. Thus, as an example, the corresponding first plot in the sequence will report a
quality profile allowing for each solver a maximum number of function evaluations equal to nf1.

We strongly remark that, by the respective definitions of data profiles and quality profiles, even
if they are both built focusing on the number of function evaluations, on the overall they definitely
provide different outcomes for the solvers.

45

References

[1] Avelino, C.P., Moguerza, J.M., Olivares, A., Prieto, F.J.: Combining and scaling descent and
negative curvature directions. Mathematical Programming 128, 285–319 (2011)

[2] Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks 2(1), 53–58 (1989)

[3] Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large–scale machine learning.
SIAM Review 60, 223–311 (2018)

[4] Bray, A.J., Dean, D.S.: Statistics of critical points of Gaussian fields on large-dimensional
spaces. Physical review letters 98(15), 150,201 (2007)

[5] Bunch, J., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric
linear equations. Mathematics of Computations 31, 163–179 (1977)

[6] Caliciotti, A., Fasano, G., Potra, F., Roma, M.: Issues on the use of a modified Bunch and
Kaufman decomposition for large scale Newton’s equation. Computational Optimization and
Applications 77, 627—651 (2020)

[7] Caliciotti, A., Fasano, G., Roma, M.: Novel preconditioners based on quasi–Newton updates
for nonlinear conjugate gradient methods. Optimization Letters 11, 835–853 (2017)

[8] Caliciotti, A., Fasano, G., Roma, M.: Preconditioned nonlinear conjugate gradient methods
based on a modified secant equation. Applied Mathematics and Computation 318, 196–214
(2018)

[9] Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D. thesis, Yale
University, New Haven (1978). Research Report 129

[10] Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces of
multilayer networks. In: Artificial intelligence and statistics, pp. 192–204. PMLR (2015)

[11] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust–region methods. MPS–SIAM Series on Opti-
mization, Philadelphia, PA (2000)

[12] Cullum, J., Willoughby, R.: Lanczos algorithms for large symmetric eigenvalue computations.
Birkhauser, Boston (1985)

[13] Curtis, F.E., Robinson, D.P.: Exploiting negative curvature in deterministic and stochastic
optimization. Mathematical Programming 176, 69–94 (2019)

[14] Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. Advances
in neural information processing systems 27 (2014)

[15] De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: Iterative grossone-based computation
of negative curvature directions in large-scale optimization. Journal of Optimization Theory
and Applications 186(2), 554–589 (2020)

[16] Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM Journal on Numerical
Analysis 19, 400–408 (1982)

[17] Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained opti-
mization. Mathematical Programming 26, 190–212 (1983)

[18] Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math-
ematical Programming 91, 201–213 (2002)

46

[19] Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained optimization,
Part 1: Theory. Journal of Optimization Theory and Applications 125, 523–541 (2005)

[20] Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained optimization,
Part 2: Application. Journal of Optimization Theory and Applications 125, 543–558 (2005)

[21] Fasano, G., Lucidi, S.: A nonmonotone truncated Newton-Krylov method exploiting negative
curvature directions, for large scale unconstrained optimization. Optimization Letters 3, 521—
535 (2009)

[22] Fasano, G., Piermarini, C., Roma, M.: Bridging the gap between trust–region methods
(TRMs) and linesearch based methods (LBMs) for nonlinear programming: Quadratic sub–
problems. Department of Management, Università Ca’ Foscari Venezia, Working Paper (8)
(2022)

[23] Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale
optimization. Computational Optimization and Applications 38, 81–104 (2007)

[24] Ferris, M., Lucidi, S., Roma, M.: Nonmonotone curvilinear linesearch methods for uncon-
strained optimization. Computational Optimization and Applications 6, 117–136 (1996)

[25] Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans-
actions on Mathematical Software (TOMS) 43(2), 1–5 (2016)

[26] Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Exploiting negative curvature directions in
linesearch methods for unconstrained optimization. Optimization methods and software 14,
75–98 (2000)

[27] Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing
environment with safe threads. Computational Optimization and Applications 60, 545–557
(2015)

[28] HSL 2013: A collection of Fortran codes for large scale scientific computation. URL http:
//www.hsl.rl.ac.uk/

[29] Jiang, H., Robinson, D.P., Vidal, R., You, C.: A nonconvex formulation for low rank subspace
clustering: algorithms and convergence analysis. Computational Optimization and Applica-
tions 70, 395–418 (2018)

[30] Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton
methods in large scale unconstrained optimization. SIAM Journal on Optimization 8, 916–939
(1998)

[31] McCormick, G.: A modification of Armijo’s step-size rule for negative curvature. Mathemat-
ical Programming 13, 111–115 (1977)

[32] Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified Newton
method. Mathematical Programming 16, 1–20 (1979)

[33] Nash, S.: Newton-type minimization via the Lanczos method. SIAM Journal on Numerical
Analysis 21, 770–788 (1984)

[34] Nash, S.: A survey of truncated-Newton methods. Journal of Computational and Applied
Mathematics 124, 45–59 (2000)

[35] Olivares, A., Moguerza, J.M., Prieto, F.J.: Nonconvex optimization using negative curvature
within a modified linesearch. European Journal of Operational Research 189, 706–722 (2008)

[36] Wild, S., Moré, J.: Benchmarking derivative–free optimization algorithms. SIAM J. Opti-
mization 20, 172–191 (2009)

47

