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Preface

This book proposes neural network algorithms and advanced machine learning
techniques for processing nonlinear dynamic signals such as audio, speech, finan-
cial signals, feedback loops, waveform generations, filtering, equalization, signals
from arrays of sensors, and perturbation in the automatic control of industrial
production processes.

Computational intelligence (CI) and information communication technologies
(ICT) are research fields providing sophisticated processing methodologies able to
develop appropriate transmission codes, detection, and recognition algorithms to
manage promptly, efficiently, and effectively huge amount of data. To this aim,
neural networks, deep learning networks, genetic algorithms, fuzzy logic, and
complex artificial intelligence designs are favored because their easy handling of
nonlinearities while discovering new data structure and new original patterns to
enhance the efficiency of industrial and economic applications.

The growing interest in these research areas favors the presentation of a book
devoted to collect the current progress in Neural Advances in Processing Nonlinear
Dynamic Signals and shows the latest evolvements in these communities.

Key aspects considered are the integration of neural adaptive algorithms for the
recognition, analysis, and detection of dynamic complex structures and the
implementation of systems for discovering patterns in industrial and economic data.
The primary goal is to exploit the commonalities between computational intelli-
gence (CI) and information communication technologies (ICT) to promote
transversal skills and sophisticated processing techniques in industrial and eco-
nomic application.

The proposed contributions introduce computational intelligence thematic in
financial, industrial, and ICT engineering research. These fields are closely con-
nected to the problems they afford and provide fundamental insights for
cross-exchanges among these disciplines.

The chapters composing this book were first discussed at the international
workshop on neural networks (WIRN 2017) held in Vietri Sul Mare from June 14
to June16, 2017, in the regular and special sessions. In particular, it is worth to
mention the special session on: “Computational Intelligence and related
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techniques in industrial and ICT engineering” organized by Giovanni Angiulli,
Mario Versaci, and the special session on “Intelligent tools for decision making in
economics and finance” organized by Marco Corazza.

The scientists contributing to this book are specialists in their respective disci-
plines. We are indebted to them for making (through their chapters) the book a
meaningful effort. The coordination and production of this book have been bril-
liantly conducted by the Springer project coordinator for books production
Mr. Ayyasamy Gowrishankar, the Springer executive editor Dr. Thomas Ditzinger,
and the editor assistant Mr. Holger Schaepe. They are the recipient of our deepest
appreciation. This initiative has been skillfully supported by the editors in chief
of the Springer series Smart Innovation, Systems and Technologies, Profs. Jain
Lakhmi C. and Howlett Robert James, to whom goes out deepest gratitude.

Caserta, Itlay/Vietri sul Mare, Italy
Mataro, Spain
Reggio Calabria, Italy
Torino, Italy

Anna Esposito
Marcos Faundez-Zanuy

Francesco Carlo Morabito
Eros Pasero

The chapters submitted to this book have been carefully reviewed by the following
technical committee to which the editors are extremely grateful.

Technical Reviewer Committee

Altilio Rosa, Università di Roma “La Sapienza”
Alonso-Martinez Carlos, Universitat Pompeu Fabra
Angiulli Giovanni, Università Mediterranea di Reggio Calabria
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Chapter 1
Processing Nonlinearities

Anna Esposito, Marcos Faundez-Zanuy, Francesco Carlo Morabito
and Eros Pasero

Abstract The problem of non-linear data is one of the oldest in experimental sci-
ence. The solution to this problem is very complex, since the exact mechanisms that
describe a phenomenon and its nonlinearities, are often unknown. At the same time,
environmental factors such as the finite precision of the processing machine, noise,
and sensor limitations—among others—produce further inaccuracies making even
more unfitting the description of the phenomenon described by the collected data. In
this context, while developing complex systems, with optimal performance, capable
of interacting with the environment in an autonomous way, and showing some form
of intelligence, the ultimate solution is to process, identify and recognize such non-
linear dynamics. Problems and challenges in Computational Intelligence (CI) and
Information Communication Technologies (ICT) are devoted to implement sophis-
ticated detection, recognition, and signal processing methodologies, to promptly,
efficiently and effectively manage such problems. To this aim, neural networks, deep
learning networks, genetic algorithms, fuzzy logic, and complex artificial intelli-
gence designs, are favored because of their easy handling of nonlinearities while
discovering new data structure, and new original patterns to enhance the efficiency
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4 A. Esposito et al.

of industrial and economic applications. The collection of chapters presented in this
book offer a scenery of the current progresses in such scientific domain.

Keywords Financial and industrial process · Speech enhancement
Machine leaning methods · Neural networks · Artificial intelligence
Nonlinear signal processing · Decision making in economic and finance
Evolutionary algorithms

1.1 Introduction

Research onComputational Intelligence (CI) and Information Communication Tech-
nologies (ICT) aims to improve the quality of life of the end users by implementing
user friendly complex autonomous systems that simplify the solution of problems
related to their everyday needs. The difficulties associated with the dealing of non-
linear data is very challenging in these fields for practical and intellectual reasons.

From the practical point of view, solving such hindrances will improve produc-
tivity and facilitate the user interaction with engineering systems.

Intellectually, to accurately process nonlinear data hold considerable promises as
well as challenges, in the years to come, for scientists and developers alike. Consid-
ering the immense amount of research over the last three decades, one may wonder
why the processing of nonlinear data is still an unsolved problem.

This is because, when dealing with different nonlinear data, from an engineering
design point of view, there is the need to define a model for each data category.
When the number of data increase, the computational effort to process and handle
relations among them, increase exponentially.Basic researchmay continue to provide
mathematical models for distinct nonlinear categories. However, the exponential
complexity required by large amount of data with sophisticated relations among
them cannot be easily solved both in the short and long time period. The challenges
are to handle complex relations among the data and ensure optimality in the system
design.

Since automatize thenonlinear processingof large amount of data cannot be solved
only specifying data categories and relationships among them, the new approach is
to observe how living creatures successfully interact among them and within an
unpredictable environment. The principles governing such interactions, on the basis
of the daily experience, seem to be that of building iteratively changing models
of the data at the hand, and stores them in terms of iteratively extracted changing
features, and iteratively derived features representations. Then, when required from
the circumstances, choose the model and associated representation that best fit the
task at the hand and assess its likelihood of success on the basis of the limited resource
and available information.

Neural, adaptive systems seem to be the solution more appropriate under such
circumstances. These systems are able to solve the challenge to process nonlinear
data since they show characteristics of adaptation to the environment, distributed pro-



1 Processing Nonlinearities 5

cessing abilities due to their large number of computational elements, and resources,
in term of algorithms and mathematical models, to provide optimal solutions for the
constantly changing data. They allow continuously data learning, and when correctly
applied, provide solutions that outperform sophisticated conventional linear systems.
The revolutionary distinctiveness of such systemswith respect to the traditional engi-
neering design approach is in discarding a priori specifications of their parameters
and exploit external data to fix them automatically. To do so they apply learning
algorithms with feedback loops and cost functions that will converge to the desired
output through a continuously training that modify the system’s parameters exploit-
ing information on unremittingly changing external data.What remain to the designer
is to specify the architecture of the system (essentially the neural network topology),
define the most effective cost function, and decide the extent to which admit an error
from the system. Even these decisions are not left to the designer alone, since an
extensive research has been conducted on evaluating learning algorithms, training
procedures, and allowed errors for several neural network models and several appli-
cation contexts, such as signal recognition, separations, and enhancement, system
predictions, noise cancellation, patterns’ classification, and control [1–4, 6].

1.2 Content of This Book

The research reported in this book bring up the latest advances on neural processing
of nonlinear dynamic signals. The content of the book is organized in sections,
each dedicated to a specific topic, including peer-reviewed chapters, not published
elsewhere. The inspiring content of each chapters was discussed for the first time
at the International Workshop on Neural Networks (WIRN 2017) held in Vietri
sul Mare, Italy, from the 14th to 16th of June 2017. The workshop, is nowadays a
historical and traditional scientific event gathering together researchers from Europe
and overseas.

Part I describes the main motivations for a book on neural advances in processing
nonlinear dynamic signals through an introductory chapter proposed byAnna Espos-
ito, Marcos Faundez-Zanuy, Francesco Carlo Morabito and Eros Pasero, which are
the editors of the book.

Part II is dedicated to nonlinear data and techniques for data mining. This is
because the need for mining huge and complex data has become essential in educa-
tion, web mining, social network analysis, security, medicine, and health manage-
ment, as well as in many other engineering fields. Neural adaptive systems seems
to fail to handle these large amount of data, because they are too big to a certain
extent and hardly scalable. Solutions are however proposed in this section, always
exploiting neural systems and machine learning algorithms which succeed to scale
and mine such data.

Part III is dedicated to computational intelligence and related techniques in indus-
trial and ICT engineering. This section proposes neural adaptive systems able to
manage in a quick, effective and efficient manner the increasing amount of infor-
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mation to be shared and processed by organizations and industry, since previously
offered solutions were not able to handle the transformation of large amounts of data
(involving uncertainties) into knowledge. In this context, computational intelligence
techniques are proposed,mainly including artificial neural network, learning systems,
evolutionary computation, and fuzzy logic, to exactly extract (hidden) information
from data and make it useful for application such as fault diagnosis and forecasting,
product quality and process forecasting, smart maintenance systems, big data and
analytics transforms, knowledge management, production, planning and scheduling,
evolutionary big data interaction for predictive product design and marketing.

Part IV is intended to report on neural intelligent tools for decision making in eco-
nomics and finance, and the current exploitation of intelligent systems for modeling
economic behaviors which involve either evolutionary optimizers showing collective
intelligence—such as artificial bee colonies, genetic algorithms, particle swarm opti-
mizations—or machine learning techniques based on supervised and reinforcement
learning procedures, or unconventional fuzzy logic and rough sets. The contribu-
tions of this section embrace these research fields and highlight the benefits of using
intelligent tools in the investigation of economic/financial phenomena.

1.3 Conclusion

WhenMc Carthy and colleagues [5] suggested the basic idea of providing a machine
of “intelligence” he may have not been thinking to the processing of nonlinear data
and the detection, recognition, and analysis of complex data structures. He may
have even not been thinking to neural adaptive systems for processing nonlinear
dynamics even though his statement was “that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine
can be made to simulate it”. Currently, neural adaptive processing techniques, have
capacities and skills, such as—reacting flexibly to situations, taking advantage of
fortuitous circumstances, recognizing the relative importance of different elements
in a situation, finding similarities in different situations, synthesizing new concepts,
taking old concepts and linking them in a different way—which although are not
sufficient to define “intelligence”wisely, certainly have revolutionized the design and
modeling of complex engineering problems, offering better and more “intelligent”
solutions to them.
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Chapter 2
Temporal Artifacts from Edge
Accumulation in Social Interaction
Networks

Matt Revelle, Carlotta Domeniconi and Aditya Johri

Abstract There has been extensive research on social networks and methods for
specific tasks such as: community detection, link prediction, and tracing information
cascades; and a recent emphasis on using temporal dynamics of social networks to
improve method performance. The underlying models are based on structural prop-
erties of the network, some of which we believe to be artifacts introduced from
common misrepresentations of social networks. Specifically, representing a social
network or series of social networks as an accumulation of network snapshots is
problematic. In this paper, we use datasets with timestamped interactions to demon-
strate how cumulative graphs differ from activity-based graphs and may introduce
temporal artifacts.

2.1 Introduction

The modeling of social networks is an expansive and active area of research. While
models may incorporate other network features such as node attributes [4, 16, 25],
nearly all rely onnetwork structure.Manymethods are nowalso incorporating tempo-
ral dynamics [10, 12, 20, 22], but how the temporal information is integrated varies.
There are various approaches [20, 21] to representing a dynamic social network as
a series of networks, but until recently [15] all have lacked theoretical foundation.

Dynamic network representations which capture edge deactivation [20] have
shown to improve task-specific performance. However, many state-of-the-art meth-
ods [16, 24] are based on cumulative graphs and ignore edge deactivation. The
findings presented in this paper suggest that some existing models may be designed
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to accommodate temporal artifacts introduced by not including edge deactivation in
the processing of network data.

There are two social network phenomena which motivate our analysis: social
capacity [3] and bursty events [1]. Social capacity can be viewed as a per-node limit
on the number of incident edges active at any given time and thus conflicts with
the claim of densification and shrinking diameters in social networks [8, 11] unless
additional conditions are met. For example, a network where every new node has
a larger social capacity would lead to densification and shrinking diameters. While
variation in social capacity based on demographics has been observed [15] there has
been no evidence presented that would indicate social capacity is a function of when
a node joins the network.

In order to measure the existence of densification and shrinking diameters, we
first must construct a series of network snapshots which more accurately captures
network structure than simply accumulating all edges over time. We do this by using
communication activity between nodes as evidence that an edge is active. The bursty
dynamics of social communication are accounted for by measuring the inter-event
times and selecting an observation window large enough to minimize incorrectly
deactivating an active edge. Thus we are able to construct a series of activity graphs
which provide a more accurate approximation of the network state at a given point
in time. This method of graph construction has been used previously on a mobile
phone network [15] to improve understanding of communication strategies. We can
then measure and compare evidence of densification and shrinking diameters in both
a cumulative graph series and an activity graph series.

Densification and diameter shrinking are accepted as basic characteristics of
dynamic social networks. However, this paper presents results which contradict those
findings. When edge deactivation is incorporated, we do not find evidence of den-
sification and diameter shrinking appears to be dependent on the rate of new nodes
entering the network. We suggest this may be an effect of social capacity.

2.2 Related Work

Existingmethods for social network tasks have either ignored temporal dynamics [16,
25] or proposed methods to filter edges with a decay function [20] or sliding window
[21]. While these attempts to account for temporal dynamics may be effective, they
are ad-hoc and lack a theoretical justification. The work by Miritello et al. [14]
proposes the selection of an observation window size based on inter-event statistics
and a simple method for identifying edge activation and deactivation. While similar
to existing sliding window approaches, this method is motivated by social interaction
patterns (bursty events). This approach is used to construct the activity graph series
for our experiments.

Models of dynamic social networks based on node interaction activity [9, 17]
have been introduced. These models are capable of generating a final network which
resembles a real world network but they are unable to construct a network series



2 Temporal Artifacts from Edge Accumulation in Social Interaction Networks 13

which corresponds to a real-world network series. However, their ability to generate
networks with realistic structure indicates they are an alternative to previous models
which heavily rely on preferential attachment [2] or community affiliation [24] and
ignore social interaction patterns. There are many types of temporal networks [6] and
this paper presents observations on dynamic social networks, specifically person-to-
person communication networks.

2.3 Background

The concepts of social capacity [3] and bursty communications [1, 19] have been
considered separately and more recent literature [13–15] has attempted to measure
and use these to determine the state of edges in a large social network.

Social capacity captures the maximum number of relationships one prefers to
maintain at any given time and there is evidence that social capacity is conserved
over time [5, 7, 15]. The term bursty is used to describe the temporal patterns
of social interactions between pairs of nodes. That is, humans tend to interact in
bursts and these patterns must be considered in order to correctly identify the acti-
vation/deactivation of edges.

The observation of social capacity and burstiness of human interaction in some
networks suggests careful consideration is required to construct accurate static views
of these networks. In fact, accepted claims of graph evolution [8, 11] appear to fail
when graph series are constructed based on timestamped interactions rather than
accumulated without regard for edge deactivation.

Previous literature [24] introduced densification and diameter shrinking as com-
mon network characteristics and we briefly describe them here. Densification is the
super-linear growth of edges relative to nodes and results in a network becoming
denser over time. Diameter shrinking is the reported tendency for network diameters
to decrease over time as more edges are accumulated. We can see both how den-
sification contradicts the notion of social capacity and might account for diameter
shrinking.

2.4 Evidence of Temporal Artifacts

2.4.1 Dataset Descriptions

Adataset with timestamped interactions is required to construct an accurate temporal
series of networks. We use data from Scratch [18], an online community where users
may write and share programming projects, and Facebook [23].

In Scratch, there are several ways by which users may interact: project comments,
project remixes, gallery curation, and user following.More information about Scratch
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Fig. 2.1 The number of interaction events occurring by month in the Scratch dataset

and these interactionsmay be found in [18].We selected a single type of interaction to
simplify analysis. Project comments are a natural choice as they are themost-frequent
interaction between Scratch users and thus a better approximation of edge status
(active/inactive). These project comments serve as a means for users to communicate
within the context of a project. The comments in the Scratch dataset are timestamped
and thus we can create timestamped edges from comment authors to project authors.

The Scratch dataset spans over March 2007 to December 2011 and includes a
large period of rapid growth in Scratch users, shown in Fig. 2.1, which does not slow
until towards the end of the dataset. There are a total of 7,788,000 project comment
interactions between 164,205 users. There are many short-term interactions and we
filter out directed interactions between pairs which only occur once or twice when
measuring communication behavior. Such interactions have undefined or trivial inter-
event statistics as there are zero or one inter-event observations when only one or two
interactions are observed. There are a total of 1,799,050 of such interactions which
were removed, leaving 5,988,950 interactions. The Scratch dataset used to construct
the networks may be obtained from the MIT Media Lab website.1

1https://llk.media.mit.edu/scratch-data.

https://llk.media.mit.edu/scratch-data
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Facebook allows users to interact by posting on each other’s wall and these posts
are typically comments, photos, and web links. Each of these posts is recorded as an
interaction with a source user (the post author), a destination user (the owner of the
wall), and a timestamp.

The Facebook data includes wall post interactions between a subset of Facebook
users over October 2004 to January 2008. There are a total number of 876,993 wall
posts between 46,952 users. The Facebook networks were prepared similarly to the
Scratch networks, edges are only formed between node pairs that have at least a total
of three interactions over the entire dataset. The Facebook dataset used to construct
the networks may be obtained from the KONECT website.2

2.4.2 Methodology

As the relationships in the interaction networks are based on communication events
between nodes, we check for evidence of bursty patterns. Bursty communication can
be identified by the dispersion of inter-event times between node pairs. If commu-
nication is bursty then the standard deviation of inter-event time will be larger than
the mean. The ratio of the mean and standard deviation of inter-event times is the
coefficient of variation (cv) and used to measure dispersion. When cv > 1, there is
evidence of bursty communication. The use of dispersion to identify burstiness is
further discussed by Miritello et al. [14].

We hypothesize the observation of densification and diameter shrinking [8, 11]
may be attributed to the inclusion of deactivated edges in a network. To test this
we construct two graph series from each dataset. Each network in all the series
captures network activity over consecutive and non-overlapping periods. The size of
the observation windows are based on the inter-event times of the datasets. A three-
month observation window was selected for the Scratch series because it is large
enough to account for the majority of inter-event times (97% of inter-event times are
<62 days) and conveniently maps to annual quarters. The first series is a cumulative
graph series where new nodes and edges are added at each consecutive snapshot to
the previous network in the series. The second series is based on node interaction
activity and we refer to it as the activity graph series. The two Facebook series are
based on a six-month observation window that was calculated similarly.

Edge activity is determined by tracking the activation and deactivation of edges
between consecutive observation windows. A similar approach has been used in
previous literature [14]. An edge is considered to activate if it is not present in the
preceding observation window but an interaction event occurs in the current obser-
vation window. Similarly, an edge is deactivated if an event occurs in the current
observation window but not in succeeding period. Only edges active in each obser-
vation window are used to construct the activity graph series of both datasets.

2http://konect.uni-koblenz.de/networks/facebook-wosn-wall.

http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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The edge-node ratio ( num. of edges
num. of nodes ) is calculated for each graph in all series and used

to measure densification. If densification is present, we expect the number of edges
to grow super-linearly in the number of nodes [11]. We also measure the effective
diameter of every graph in both series to determine whether diameter shrinking is
observed. The effective diameter is the smoothed count of the smallest number of
hops at which at least 90% of all connected pairs of nodes can be reached [11]. We
prefer the effective diameter over the standard diameter because it was used in [11]
to report diameter shrinking and is more robust to degenerative graph structures.

2.4.3 Results

As shown in Fig. 2.2, bursty communication patterns are observed in the Scratch
dataset as the cv values are frequently greater than 1 (log(cv) > 0). Bursty commu-
nication patterns are also observed in the Facebook dataset, though somewhat less
frequently with just under half of interacting node pairs having cv values >1. The
reduced frequency of bursty communication patterns in Facebook may be due to
node pairs having either a single burst of interactions or interactions around a regular
event (e.g., posting on a friend’s Facebook wall for their birthday).

For Scratch, we see evidence of densification in the cumulative series but not in
the activity series—shown in Fig. 2.3. The accumulation of edges, without removal
of deactivated edges, appears to introduce densification as a temporal artifact in the

Fig. 2.2 The log(cv) for
node pairs in the Scratch
interaction network with at
least three events. A small
number of node pairs (1,038)
were removed for this plot as
they had a cv of zero and
thus were undefined
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Fig. 2.3 The edge-node
ratio over time in the Scratch
cumulative and activity
graph series
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Fig. 2.4 The effective
diameter over time in the
Scratch cumulative and
activity graph series
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Scratch interaction network. This is especially clear when the number of interactions
stops growing around July 2010, denoted by dashed vertical line in both Figs. 2.3
and 2.4.

An overall trend of diameter shrinking is not clearly observed in either Scratch
network series. After an initial decrease, Fig. 2.4 shows a generally increasing diam-
eter for both series and a larger variance in diameter for the activity series. The lack
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Fig. 2.5 The edge-node
ratio over time in the
Facebook cumulative and
activity graph series
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Fig. 2.6 The effective
diameter over time in the
Facebook cumulative and
activity graph series
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of diameter shrinking may be due to the growth of the Scratch website during the
period of time covered in the dataset. However, the effective diameter of the cumu-
lative series is generally smaller than that of the activity series. This is unsurprising
given that the cumulative snapshots contain additional edges which would reduce
the distances between pairs of nodes.
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Fig. 2.7 The node counts
over time in the Scratch
cumulative and activity
graph series
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Fig. 2.8 The node counts
over time in the Facebook
cumulative and activity
graph series
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In the Facebook network series we see trends similar to that of the Scratch network
series. As in Scratch, Fig. 2.5 shows that the edge density continues to increase in
the cumulative series but not in the activity series. While an initial decrease in the
diameter is observed in both Facebook network series, Fig. 2.6 depicts the diameter
of both series slowly increasing in the later network snapshots.

These findings are not unexpected but they are contrary to previous literature [8,
11] which has served as the basis for state-of-the-art network models. The edge-
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node ratio in the cumulative graphs is monotonically increasing over time and social
capacity is ignored. In contrast, the edge-node ratio in activity graphs may decrease
or stabilize as inactive edges are detected and removed.

Figures 2.7 and 2.8 reveal another interesting artifact caused by accumulating
inactive edges. In Fig. 2.7, we see that the number of nodes in the cumulative series
is increasing at a much larger rate than the activity series. The total number of nodes,
along with edge density, are exaggerated by not removing inactive edges. While this
is the case for the Scratch dataset, the snapshots in both of the Facebook network
series have a similar number of nodes.

This contrast between the Scratch and Facebook datasets indicates many Scratch
users do not remain activewhilemost users in theFacebookdataset do stay active. The
short membership of some nodes in the Scratch network is likely due to Scratch being
used as a teaching aid in classrooms. Students will create an account to participate
in class and then become inactive at the end of a school semester or year. Ignoring
edge deactivation may mask the actual node interaction patterns and contribute to
mistaken findings which appear reasonable, as demonstrated by the difference in
node lifetimes of the Scratch and Facebook datasets.

2.5 Conclusion

This paper presents evidence that temporal artifacts may be introduced in social
networks when the relationships represented by edges require allocation of inelastic
resource such as timeor attention.Ourfindings suggestmore accurate social networks
may be derived from ongoing dyadic interactions rather than one-time events such
as “following” or “friending”.

We plan to extend this work to include other datasets, explore how community
affiliation correlates to interaction patterns, and ultimately provide a model of social
networks which incorporates knowledge from these findings.
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Chapter 3
Data Mining by Evolving Agents for
Clusters Discovery and Metric Learning

Alessio Martino, Mauro Giampieri, Massimiliano Luzi and Antonello Rizzi

Abstract In this paper we propose a novel evolutive agent-based clustering algo-
rithmwhere agents act as individuals of an evolving population, each one performing
a random walk on a different subset of patterns drawn from the entire dataset. Such
agents are orchestrated by means of a customised genetic algorithm and are able
to perform simultaneously clustering and feature selection. Conversely to standard
clustering algorithms, each agent is in charge of discovering well-formed (compact
and populated) clusters and, at the same time, a suitable subset of features corre-
sponding to the subspace where such clusters lie, following a local metric learning
approach, where each cluster is characterised by its own subset of relevant features.
This not only might lead to a deeper knowledge of the dataset at hand, revealing
clusters that are not evident when using the whole set of features, but can also be
suitable for large datasets, as each agent processes a small subset of patterns.We show
the effectiveness of our algorithm on synthetic datasets, remarking some interesting
future work scenarios and extensions.

3.1 Introduction

In the era of information, data mining and knowledge discovery turned out to be two
of themost critical disciplines as they aim at the extraction and creation of knowledge
from observed data.
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Amongst the several techniques which may regard data mining and knowledge
discovery, cluster analysis certainly is one of the most acclaimed, since it is the
very basic approach to search for regularities in a dataset. In a general sense, data
clustering aims at discovering clusters (groups) of patterns such that, according to
some (dis)similarity measure, similar pattern will lie in the same cluster whereas
dissimilar patterns will fall into different clusters. Indeed, throughout the years,
several families of clustering algorithms have been proposed in literature, such as
partitional clustering (e.g. k-means [14]), density-based clustering (e.g. DBSCAN
[8], OPTICS [2]) and hierarchical clustering (e.g. BIRCH [22], CURE [10]).

Further, in recent years the multi-agent clustering paradigm emerged (see
Sect. 3.1.1): in such paradigm, a set of agents cooperates in either synchronous or
asynchronous manner in order to cluster the dataset at hand. The agent per-se is
an entity whose definition (i.e. tasks to be performed by the agent itself) strictly
depends on the specific considered algorithm, as well as the way agents cooperate
for a common objective. In this paper, such paradigm will be followed.

3.1.1 Contribution and State of the Art Review

Wepropose a novel agent-based clustering algorithm (EvolutiveAgentBasedCluster-
ing, hereinafter E-ABC) in which each agent runs a very simple clustering procedure
on a small subsample of the whole dataset. A genetic algorithm [9] orchestrates the
evolution of such agents in order to return a set of well-formed clusters, thus possible
regularities in the dataset at hand. Moreover, many clustering algorithms deal with a
global metric; that is, the set of patterns to be processed are modelled as vectors in
R

d and the same distance measure is adopted for discovering all possible clusters.
Conversely, in E-ABC, each agent is in charge of discovering clusters and, at the
same time, an instance of the parameters defining the considered parametric distance
measure, i.e. the subspace where these clusters are well-formed.

As the agent’s definition is vague and algorithm-dependent, there are several
agent-based clustering algorithms proposed in literature. To the best of our knowl-
edge, albeit some Authors proposed some evolutive algorithms (mainly Ant Colony
Optimisation) in order to orchestrate agents, none of them implied such evolutive
mechanisms to deal simultaneously with (a) searching for compact and populated
clusters and (b) searching for the subspace in which such clusters exist.

Indeed, in [1] a multi-agent approach has been used for local graph clustering
in which each agent performs a random walk on a graph with the main constraint
that such agents are “tied” together by a rope, forcing them to be close to each
other. In [5] a set of self-organising agents by means of Ant Colony Optimisation
has been applied to anomaly detection and network control. In [6] each agent runs a
different clustering algorithm in order to return the best one for the dataset at hand.
In [7] agents negotiate one another rather than being governed by a master/wrapper
process (e.g. evolutive algorithm). In [11] Ant Colony Optimisation has been used in
order to organise agents, where each ant “walks” on the dataset, building connections
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amongst points. In [17] each agent consists in a set of data points and agents link to
each other, thus leading to clustering. In [18] a genetic algorithm has been usedwhere
the agents’ genetic code is connection-based: each agent is a clustering result whose
genetic code builds a (sub)graph and, finally, such subgraphs can be interpreted as
clusters. In [19] the multi-agent approach collapses into two agents: a first agent runs
a cascade of Principal Component Analysis, Self Organizing Maps and k-means
in order to cluster data and a second agent validates such results: the two agents
interactively communicate with each other. Finally, in [3] a multi-agent algorithm
has been proposed in which agents perform aMarkovian randomwalk on a weighted
graph representation of the input dataset. Each agent builds its own graph connection
matrix amongst data points, weighting the edges according to the selected distance
measure parameters, and performs a random walk on such graph in order to discover
clusters. This algorithm has been employed in [4] to identify frequent behaviours of
mobile network subscribers starting from a set of call data records. Conversely, the
E-ABC approach consists in deploying many agents, each performing very simple
tasks.

The remainder of this paper is structured as follows: Sect. 3.2 introduces the
proposed algorithm, describing the agent behaviour (Sect. 3.2.1), the whole evolutive
framework (Sect. 3.2.2) and the output collection (Sect. 3.2.3); Sect. 3.3 will describe
someexperimental results, by introducing the datasets (Sect. 3.3.1) and the evaluation
metrics (Sect. 3.3.2) used in order to address E-ABC performances (Sect. 3.3.3).
Finally, Sect. 3.4 will draw some conclusions, discussing some future works and
some further applications.

3.2 Proposed Algorithm

3.2.1 Agent Definition

InE-ABCeach agent is in charge of running a core clustering algorithmona randomly
chosen subset R of the total number of patterns NP .

Specifically, it runs a variant of the Basic Sequential Algorithmic Scheme (BSAS)
algorithm [21], namely RL-BSAS, which adds some Reinforcement Learning-based
behaviour [20] to the standard BSAS by means of two additional parameters (reward
factor α and forgetting factor β), together with the maximum allowed cluster radius
θ . Basically, each new cluster discovered by RL-BSAS starts with a strength value
S = 1. As in BSAS, the first pattern is used to initialise the first cluster by setting its
centroid; successively, for each new pattern, its distance with respect to the existing
centroids should be evaluated in order to check whether to assign such pattern to
one of these clusters, or to initialise a new cluster with the pattern at hand. Then,
the strength of the cluster to which the new pattern has been possibly assigned to is
incremented by α, whereas the strengths of the other clusters is decremented by β.
All clusters whose strength vanishes will be removed from the agent.
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BSAS (and, by extension, RL-BSAS) does not need to know a-priori the number
of clusters to be found (e.g. as in k-means) but, at the same time, BSAS is very
sensitive to the parameter θ , as well as the order in which patterns in the dataset are
presented to the clustering algorithm. Specifically, very low θ values usually lead to
a huge number of clusters. In order to avoid such solutions, each agent is entitled
to discover at most M clusters (with M a-priori defined). However, RL-BSAS is
characterised by a low computational cost, well suited to be considered as the core
clustering algorithm in this agent-based approach, where many agents are designed
to perform low computational cost tasks.

E-ABC must be capable of discovering clusters in a given subspace; to this end,
the dissimilarity measure between patterns will be evaluated according to a weighted
Euclidean distance:

d(a,b,w) =
√
√
√
√

N
∑

i=1

wi (ai − bi )2 (3.1)

where a,b ∈ R
N are two generic patterns drawn from the dataset and w ∈ {0, 1}N ,

where N is the number of features, which basically states whether a given feature is
considered (1, true) or not (0, false). The latter has a strong impact on the dissimilarity
measure as it acts as a feature selector.

Regarding the two Reinforcement Learning parameters (α and β), since β can
be seen as clusters’ death rate, one shall have α, β ∈ [0; 1] with α > β. Also, it is
possible to define a linear relationship between the two parameter (i.e. α = m · β)
whichmight, however, differ from dataset to dataset and should be estimated a-priori.
This is the reason why only the β parameter can be considered to be included in the
agent genetic code, together with the metric’s parameters w and the θ vector:

[

β θ w
]

(3.2)

At the end of the clustering procedure, each agent will return a set of clusters which
will lie in the subspace given by w where, in turn, each cluster is described by its
centroid, radius, strength and the list of patterns belonging to it.

The reason why θ in (3.2) has been defined as a vector strictly depends on the
agent’s behaviour whichmust be discussed inmore detail. Each new agent starts with
a single value in θ which actually indicates the maximum allowed radius, unique for
all clusters discovered by the agent. At the end of the clustering procedure an agent
can discover at most M clusters whose actual radii might be smaller; thus, their
actual radii will be re-evaluated and stored in θ which, at this stage, is a proper
vector whose length is at most M . After the evolutive steps (Sect. 3.2.2), agents with
more than one value in θ can survive to the next generation, thus receiving a new
random dataset shard to be processed. As |θ | > 1, such agents will not run a vanilla
RL-BSAS; rather, they will bootstrap using such already known clusters and they
will use the new random dataset shard to either:
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(a) if |θ | < M , try to include its patterns in one of the already known clusters or
create new clusters

(b) if |θ | = M , just check whether such new patterns can be included in one of the
already known M clusters.

At the end of its clustering task, in order to shrink the output size, each agent will
perform the intra-agent fusion procedure: if the distance between two centroids of
two generic clusters A and B is below a user-defined threshold θ f us :

1. incorporate patterns from cluster B to cluster A
2. re-evaluate centroid and radius for cluster A
3. since A is now a brand new cluster, its strength will be re-set to its original,

starting value
4. remove cluster B from the agent’s pool.

3.2.2 Evolutive Environment

The first generation will consist in NA agents whose genetic codes of the form (3.2)
will be randomly generated.

Each agent will operate according to Sect. 3.2.1 returning its own list of (possi-
bly fused) clusters. After all agents have finished their run, a further fusion step is
triggered: indeed, different agents can share the very same weights vector w, thus
working in the very same subspace. Such additional inter-agents fusion procedure is
defined as follows:

1. group agents by subspace
2. identify clusters across all agents that can be merged
3. try to merge clusters (i.e. using the θ f us procedure as in Sect. 3.2.1), removing

duplicate patterns, if any
4. assign the resulting clusters to the agents with higher fitness value, re-evaluate

clusters’ parameters and re-set their strength values
5. remove all empty agents.

The inter-agents fusion procedure is important as it reduces the number of agents
per metric (freeing up some space—in terms of individuals—so that some more
agents can be re-spawned, allowing a deeper subspaces exploration) while keeping
all relevant (and removing all redundant) information collected so far.

At this point the output will be built and the stopping criterion will be verified
(Sect. 3.2.3): if such check has a negative result, the whole procedure in order to
produce the next generation is triggered.

As in every evolutionary optimisation algorithm, each individual is evaluated by
a fitness function. To this end, each agent i will compute (for each cluster j in its
pool) the following measures, namely normalised compactness ( f1) and normalised
cardinality ( f2):
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f1(i, j) = 1 − 1√
N

∑

x∈Ci, j
d(x, ci, j )

|Ci, j | (3.3)

f2(i, j) = |Ci, j |/NP (3.4)

The former (normalised compactness) is defined as the complement of dispersion,
where the dispersion is in turn defined as the normalised average distance between
each pattern x in the j th cluster of i th agent (Ci, j ) and its centroid (ci, j ). The latter
(normalised cardinality) is defined as the ratio between the cardinality of the cluster
and the total number of patterns. Normalisations in Eqs. (3.3) and (3.4) ensure that
f1, f2 ∈ [0; 1]. Since each agent i will have at most M cluster(s), it will evaluate
the average cardinality ( f̄1) and the average compactness ( f̄2) amongst its clusters,
which in turn are used to compute a fitness function of the form:

F(i) = λ · f̄1(i) + (1 − λ) · f̄2(i) (3.5)

where λ ∈ [0; 1] is a trade-off parameter. After all individuals have been evaluated
by the fitness (3.5), they will be sorted according to it and customised versions1 of the
standard genetic operators (elitism, selection, crossover, mutation) will be applied in
order to form the next generation as follows:

1. copy the elite unaltered to the next generation
2. given the number of individuals to be selected,2 perform the selection operator

in order to gather the list of individuals to be mutated and the list of individuals
to be crossovered (parents)

3. perform crossover
4. perform mutation, either big or small depending on the fitness value
5. merge elite and new offsprings to form the next generation.

3.2.3 Stopping Criterion and Output Collection

E-ABC iteratively builds the final output, properly collecting each generation’s
results (i.e. after the inter-agents fusion procedure, Sect. 3.2.2). Starting from the
second generation, the output will be built by merging all clusters in the current gen-
eration in a unique list of clusters, regardless of the agent who identified them. In this
manner, each entry in the output list contains the whole set of clusters (along with
their parameters) for a given metric. Each cluster in the output list will be mapped
with the very same fitness function3 of the form (3.5) in order to verify the stopping
criterion. E-ABC will run up to a maximum, a-priori defined, number of generations

1In the sense that they must be able to deal with an heterogeneous genetic code such as (3.2).
2Such value is user-configurable and it is defined as a percentage of the number of survived agents.
3Such value now acts more like a cluster quality measure rather than a fitness value, as we are
evaluating a list of clusters rather than individuals from a genetic population.
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NG with a stopping criterion based on the average fitness values amongst the output
items: if for an a-priori defined number of generations NST OP

G the average fitness
does not change significantly, the algorithm halts.

At the end of thewhole evolution the entire final output list (after all fusion phases)
will be collected, not just the best item. That is because:

• instead of using a genetic algorithm to solve a standard, numerical optimisation
problem, it serves as a proper orchestrator with the final goal of evolving the
population as a whole

• collecting just the best itemwill return clusters in just one of the possible subspaces,
restricting the local metric learning capabilities.

3.3 Experimental Results

In order to validate our approach, a set of experiments is proposed in order to address
E-ABC efficiencywith respect to the dataset size (both in terms of number of patterns
and number of features) and its effectiveness in terms of clusters identification in
given subspaces and accurate estimation of their parameters (namely, centroid and
radius).

3.3.1 Dataset Description

To this end, eight synthetic datasets built as follows will be considered:

1. let G1,G2, ...,G8 be eight Gaussian distributions with mean values linearly
spaced in μ ∈ [0.15; 0.85] and standard deviation σ = 0.03

2. four datasets by concatenating four clusters in R
4 are built as follows:

cluster1 : G1 G2 ∼ ∼
cluster2 : G3 G4 ∼ ∼
cluster3 : ∼ ∼ G5 G6

cluster4 : ∼ ∼ G7 G8

where features marked as ∼ are “noisy” features, drawn from a uniform distribu-
tion in [0; 1]. Specifically, these four datasets contain 1000, 10000, 100000 and
1000000 patterns per cluster

3. four additional datasets are built by adding 6 features (i.e. columns) of pure
random noise to the previous four datasets and then random shuffling by columns;
after which theGaussian features for cluster 1were in columns 1 and 6, for cluster
2 were in columns 3 and 9, for cluster 3 were in columns 2 and 5 and, finally, for
cluster 4 were in columns 7 and 10.
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3.3.2 Evaluation Metrics

In order to address E-ABC ability in discovering clusters and, more importantly, in
estimating their parameters, the following two evaluation measures are proposed:

• Estimation Quality (EQ): whose task is to judge radius and centroid estimation
accuracy as

EQ = 1 − [(1 − ε) · δc + ε · δθ ] (3.6)

where δc is the Euclidean distance between true and estimated centroids, δθ is the
absolute difference between true and estimated radii and ε ∈ [0; 1] is a trade-off
parameter. Obviously EQ ∈ [0; 1] and as EQ → 1, the more accurate the results.

• Identified Patterns (IP): which basically counts how many patterns within the
estimated cluster are indeed part of the ground-truth cluster. Such value (NC ) is
then normalised by the size of the cluster itself (|C |), in order to have I P ∈ [0; 1]
and as I P → 1, the more accurate the results:

I P = NC/|C | (3.7)

3.3.3 Tests Results

Figures3.1 and 3.2 show the average results (both in terms of efficiency and effec-
tiveness) amongst five runs (changing the random number generator seed) obtained
by E-ABC on the eight datasets from Sect. 3.3.1 under two different scenarios. As
the dataset size increases:

1. both the number of agents and the number of patterns per agent have been kept
constant

2. the number of agents has been kept constant whilst the number of patterns per
agent increases

All of these tests have been performed on a Linux CentOS machine with an Intel(R)
Xeon(R) E5520 CPU @ 2.27GHz and 32GB RAM. E-ABC has been developed in
Python using the NumPy library for efficient numerical computation.

In Fig. 3.1 the average results regarding the first scenario are shown. Clearly, since
the number of patterns per generation does not change even if the dataset size does,
the running time is rather constant. Coherently, the percentage of identified patterns
slightly decreases as the dataset size increases. Despite that, the estimation quality
is in both cases (R4 and R

10) always above 90%. Such results have been obtained
with NA = 25, |R| = 100 in R4 and NA = 100, |R| = 150 in R10.

In Fig. 3.2 the average results regarding the second scenario are shown. Obviously,
as the dataset shard size increases, the running time increases as well. For the same
reason, the percentage of identified patterns is rather constant. As in the previous
case, the estimation quality is in both cases (R4 and R

10) always above 90%. Such
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Fig. 3.1 Scenario 1: both the number of agents and the number of patterns per agent have been
kept constant

results have been obtained with NA = 25, |R| = [50; 100; 200; 300; 400] inR4 and
NA = 100, |R| = [100; 200; 300; 400; 500] in R10.

Leaving NA and |R| aside, all the other parameters have been kept constant
amongst such different experiments: ε = 0.5, λ = 0.2 and M = 3.

From Figs. 3.1 and 3.2 it is possible to see that:

(a) EQ values are rather high, which means that both centroids and radii have been
accurately estimated. Recall that in all cases ε = 0.5, thus correct estimations
of centroids and radii have the same importance

(b) IP values are generally lower than EQwhich should not surprise: indeed, E-ABC
does not guarantee processing of the whole dataset as it will be randomly sub-
sampled. In other words some patterns might be frequently selected by several,
different agents and, similarly, some patterns might not be selected at all

In order to further explore the final E-ABC output (i.e. the final list of clusters)
in Table3.1 part of the genetic code is shown (namely, the weights vector and the
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Fig. 3.2 Scenario 2: the number of agents has been kept constant whilst the number of patterns per
agent increases

estimated cluster radius4) associated to each cluster, for four of the eight datasets for
the first scenario only. Also, we will show the estimated centroids and, for the sake
of ease, we will match the estimated values (marked with a hat) with the true values
from the ground-truth datasets (Sect. 3.3.1).

Finally, from Table3.1a, b, c and d it is possible to see that:

(a) true and estimated radii and centroids are very close, coherently to the high EQ
values in Figs. 3.1 and 3.2

(b) centroids shrunk down from R
4 (R10) to R

2 as only two features have been
selected (see their respective w)

(c) clusters in the output lists exactly corresponds to the four clusters from the
ground-truth datasets: not only the clusters parameters have been accurately
estimated, but also the subspaces inwhich they exist havebeen correctly detected;
indeed, it is easy to match the 1’s in w with the Gaussian components and 0’s
with noisy features (Sect. 3.3.1).

4We omit the penalty factorβ (and, by extension, the reward factorα) as theymainly driveRL-BSAS
rather then describe the final clusters and/or agents.
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Table 3.1 E-ABC Final Output. For the sake of readability, the notation {0}x indicates a sequence
of x zeros

c / ĉ w

cluster 1
0.222
0.105

[
0.162 0.250

]
[
0.156 0.249

]
[
1 1 0 0

]

cluster 2
0.198
0.233

[
0.360 0.451

]
[
0.365 0.460

]
[
1 1 0 0

]

cluster 3
0.219
0.166

[
0.551 0.629

]
[
0.548 0.629

] [
0 0 1 1

]

cluster 4
0.212
0.168

[
0.750 0.820

]
[
0.752 0.819

]
[
0 0 1 1

]

(a) 4000-patterns in R4

c / ĉ w

cluster 1
0.229
0.117

[
0.187 0.250

]
[
0.188 0.255

]
[
1 {0}4 1 {0}4]

cluster 2
0.236
0.215

[
0.350 0.450

]
[
0.354 0.451

]
[{0}2 1 {0}5 1 0

]

cluster 3
0.222
0.233

[
0.550 0.651

]
[
0.549 0.650

] [
0 1 {0}2 1 {0}5]

cluster 4
0.230
0.231

[
0.751 0.813

]
[
0.738 0.827

]
[{0}6 1 {0}2 1

]

(b) 40000-patterns in R
10

c / ĉ w

cluster 1
0.259
0.211

[
0.215 0.250

]
[
0.212 0.241

]
[
1 1 0 0

]

cluster 2
0.250
0.213

[
0.400 0.450

]
[
0.392 0.456

]
[
1 1 0 0

]

cluster 3
0.250
0.322

[
0.550 0.591

]
[
0.548 0.590

]
[
0 0 1 1

]

cluster 4
0.266
0.234

[
0.750 0.772

]
[
0.739 0.756

] [
0 0 1 1

]

(c) 400000-patterns in R
4

c / ĉ w

cluster 1
0.288
0.225

[
0.246 0.276

]
[
0.252 0.280

]
[
1 {0}4 1 {0}4]

cluster 2
0.303
0.196

[
0.350 0.450

]
[
0.366 0.455

]
[{0}2 1 {0}5 1 0

]

cluster 3
0.287
0.233

[
0.550 0.650

]
[
0.555 0.633

]
[
0 1 {0}2 1 {0}5]

cluster 4
0.278
0.197

[
0.737 0.766

]
[
0.740 0.748

] [{0}6 1 {0}2 1
]

(d) 4000000-patterns in R
10

3.4 Conclusion

In this paper we presented a novel agent-based clustering technique in which each
agent independently processes a subsample of patterns randomly drawn from the
whole dataset and their results will be properly merged together. In order to orches-
trate agents’ evolution, a genetic algorithm has been used. Part of the agent’s genetic
code is a binary vector whose length is equal to the number of features: such vector
acts as a feature selector and therefore each agent can discover clusters in a suitable
(agent-dependent) subspace. Thus, the genetic algorithm orchestrates agents’ evo-
lution in (simultaneously) discovering clusters and selecting features. As a straight-
forward consequence, some more knowledge can be extracted from the dataset at
hand since each agent will discover one or more clusters in a given subspace without
using any exhaustive or bruteforce-like technique, which can be computationally
unfeasible (e.g. in R

d , 2d − 1 possible subspaces exist, leaving the all-zero combi-
nation aside). Experimental results on synthetic datasets demonstrated that E-ABC
is very capable of discovering clusters in subspaces of Rd and estimating their main
characteristics with high accuracy.

We will further investigate this approach, testing E-ABC in real-life scenar-
ios. Moreover, several further improvements and E-ABC variants can be devel-
oped: first, it is rather straightforward to distribute agents’ execution across several
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computational units in order to tackle massive datasets in a parallel and distributed
fashion; second, we will try to expand the E-ABC philosophy (i.e. swarm of very
simple agents performing very simple tasks on a small subset of data) in clustering
non-metric spaces [16]: indeed, E-ABC can be considered as a somewhat “template
algorithm” and BSAS-based algorithms do not strictly require an algebraic struc-
ture in order to compute clusters’ representatives (e.g. as in k-means). Indeed, by
changing the (dis)similarity measure (and its parameters, if any, in the genetic code)
and the evaluation of clusters’ representatives (e.g. medoid rather than centroid), as
discussed in [15], it is possible to (ideally) use any ad-hoc (dis)similarity measures
for the input space at hand. Seminal examples include the so-called edit distances
for sequences (e.g. [12]) and graphs (e.g. [13]).

Acknowledgements The Authors would like to thank Daniele Sartori for his help in implementing
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References

1. Alamgir M., Von Luxburg, U.: Multi-agent random walks for local clustering on graphs. In:
2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 18–27. IEEE (2010)

2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the
clustering structure. ACM Sigmod Rec. ACM 28, 49–60 (1999)

3. Bianchi, F.M., Maiorino, E., Livi, L., Rizzi, A., Sadeghian, A.: An agent-based algorithm
exploiting multiple local dissimilarities for clusters mining and knowledge discovery. Soft
Comput. 5(21), 1347–1369 (2015)

4. Bianchi, F.M., Rizzi, A., Sadeghian, A., Moiso, C.: Identifying user habits through data mining
on call data records. Eng. Appl. Artif. Intel. 54, 49–61 (2016)

5. Carvalho, L.F., Barbon, S., de Souza Mendes, L., Proença, M.L.: Unsupervised learning clus-
tering and self-organized agents applied to help network management. Expert Syst. Appl. 54,
29–47 (2016)

6. Chaimontree, S., Atkinson, K., Coenen, F.: Clustering in a multi-agent data mining environ-
ment. Agents Data Min. Interact., 103–114 (2010)

7. Chaimontree, S., Atkinson, K., Coenen, F.: A multi-agent based approach to clustering: har-
nessing the power of agents. In: ADMI, pp. 16–29. Springer (2011)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering
clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization andMachine Learning. Addison-
Wesley, Reading (1989)

10. Guha, S., Rastogi, R., Shim, K.: Cure: an efficient clustering algorithm for large databases.
ACM Sigmod Rec. ACM 27, 73–84 (1998)

11. Inkaya, T., Kayalıgil, S., Özdemirel, N.E.: Ant colony optimization based clustering method-
ology. Appl. Soft Comput. 28, 301–311 (2015)

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov.
Phys. Dokl. 10, 707–710 (1966)

13. Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16(3), 253–283 (2013)
14. MacQueen, J.: Some methods for classification and analysis of multivariate observations. Pro-

ceedings of the FifthBerkeleySymposiumonMathematical Statistics andProbability,Oakland,
CA, USA 1, 281–297 (1967)

15. Martino, A., Rizzi, A., Frattale Mascioli, F.M.: Efficient approaches for solving the large-scale
k-medoids problem. In: Proceedings of the 9th International JointConference onComputational
Intelligence, IJCCI, INSTICC, vol. 1, pp. 338–347. SciTePress (2017)



3 Data Mining by Evolving Agents for Clusters Discovery and Metric Learning 35

16. Martino, A., Giuliani, A., Rizzi, A.: Granular computing techniques for bioinformatics pattern
recognition problems in non-metric spaces. In: Chen, S.M., Pedrycz, W. (eds.) Computational
Intelligence for Pattern Recognition. Springer, Accepted for Publication (2018). https://rd.
springer.com/chapter/10.1007%2F978-3-319-89629-8_3

17. Ogston, E., Overeinder, B., Van Steen, M., Brazier, F.: A method for decentralized clustering
in large multi-agent systems. In: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 789–796. ACM (2003)

18. Pan, X., Chen, H.: Multi-agent evolutionary clustering algorithm based on manifold distance.
In: 2012 Eighth International Conference on Computational Intelligence and Security (CIS),
pp. 123–127. IEEE (2012)

19. Park, J., Oh, K.: Multi-agent systems for intelligent clustering. Proc. World Acad. Sci. Eng.
Technol. 11, 97–102 (2006)

20. Rizzi, A., Del Vescovo, G., Livi, L., Frattale Mascioli, F.M.: A new granular computing
approach for sequences representation and classification. In: The 2012 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–8. IEEE (2012)

21. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2008)
22. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very

large databases. ACM Sigmod Rec. ACM 25, 103–114 (1996)

https://rd.springer.com/chapter/10.1007%2F978-3-319-89629-8_3
https://rd.springer.com/chapter/10.1007%2F978-3-319-89629-8_3


Chapter 4
Neural Beamforming for Speech
Enhancement: Preliminary Results

Stefano Tomassetti, Leonardo Gabrielli, Emanuele Principi, Daniele Ferretti
and Stefano Squartini

Abstract In the field of multi-channel speech quality enhancement, beamforming
algorithms play a key role, being able to reduce noise and reverberation by spatial
filtering. To that extent, an accurate knowledge of the Direction of Arrival (DOA) is
crucial for the beamforming to be effective. This paper reports extremely improved
DOA estimates with the use of a recently introduced neural DOA estimation tech-
nique,when compared to a reference algorithm such asMultiple Signal Classification
(MUSIC). These findings motivated for the evaluation of beamforming with neural
DOA estimation in the field of speech enhancement. By using the neural DOA esti-
mation in conjunction with beamforming, speech signals affected by reverberation
and noise improve their quality. These first findings are reported to be taken as a
reference for further works related to beamforming for speech enhancement.

Keywords Beamforming · Speech enhancement · Artificial neural networks

4.1 Introduction

Algorithms for enhancing the quality and the intelligibility of speech signals find
application in many important practical scenarios. In smart home scenarios [21, 22],
automatic speech recognition (ASR) is widely employed and a cause of high word
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error rate is represented by the acoustic distortion due to additive noise and reverber-
ation [18, 23]. Speech intelligibility in noisy environments is severely compromised
for users of cochlear implants and during the communication with mobile phones
[19]. Due to the importance of the problem, the literature of speech enhancement
methods is vast and presents several different approaches. Hereby interest is given
to multi-channel methods, i.e. those methods exploiting the information contained
in signals acquired by multiple microphones.

Beamforming [4], i.e., the use of spatial filtering, is one of the most popular multi-
channel approaches and it is ideally equivalent to steering the microphone polar
pattern in the direction of the source. In delay-and-sum beamformer (DS), signals
are aligned by taking into account the phase shifts among the microphones signals,
while the filter-and-sum (FS) beamformer includes additional processing with linear
filters. More advanced beamformers such as the Minimum Variance Distortionless
Response (MVDR) [5] and the Generalized Sidelobe Canceller (GSC) [8, 9] adapt
to the acoustic environment.

Nonlinear speech enhancement [12] based on deep neural networks (DNN) has
also been recently proposed for enhancing speech from multiple microphone sig-
nals, in particular with the objective of improving the performance of ASRs. The
advantage of this approach is that the parameters of the enhancement algorithm, i.e.,
the network weights, can be trained jointly with the ASR acoustic model, thus they
are optimized under the same objective function. In [2], a DNN is employed as a
speaker separation stage and the ASR employs bottle neck features as well as filter-
bank coefficients extracted from multi-channel signals. In [24, 28], multi-channel
MEL filter bank coefficients are employed as input to an ASR based on convolutional
neural networks (CNNs). Hoshen et al. [11] developed a similar approach but using
raw waveforms as input to the network. Actual DNN-based beamformers for ASR
have been proposed in [17, 29]. In [29], the algorithm operates on multiple complex-
valued short-time Fourier transforms (STFTs) to estimate a single enhanced signal.
The network operates on generalized cross correlation (GCC) coefficients to esti-
mate the weights of a FS beamformer that then processes the STFTs related to the
microphone signals. The algorithm is employed as a preprocessing stage of an ASR
and it can be trained jointly with the acoustic model in order to further optimize
the process. A similar approach has been proposed in [17], where the spatial filter
coefficients are estimated by a long short-term memory (LSTM) network [10] that
takes raw waveform signals as input, instead of STFT coefficients. In [7, 32], the
authors employ a DNN and a Bidirectional-LSTM for estimating the time-frequency
mask in the MVDR beamformer.

Up to the authors’ knowledge, few works propose DNN-based algorithms tar-
geted at enhancing the quality and the intelligibility of the perceived speech. In an
early work [16], a single-layer perceptron filter is introduced in the GSC beamformer
framework to suppress noise. In [31], the work is extended by introducing alternative
structures of the noise reduction algorithm. In a more recent work [3], the authors
employ a denoising autoencoder with multi-channel features. In particular, they aug-
ment single-channel log-mel filter-bank features with information extracted from
multiple channels. The authors evaluated the noise suppression performance with
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segmental signal-to-noise ratio (SSNR) and the cepstral distortion (CD) measures,
and showed that employing pre-enhanced speech features their approach improves
with respect to the single-channel autoencoder.

These works suggest that investigating on the capabilities of neural networks
to improve current state-of-art speech enhancement algorithm may be fruitful. The
paper first compares a well known algorithm for DOA estimation, Multiple Signal
Classification (MUSIC) [26], with a recently introduced neural approach [30] with
the intent of verifying the effectiveness of the experiments conducted in [30] and
providing additional experimental information. The results are very promising and
motivated for application to a multi-channel speech enhancement scenario where
the estimated DOA angle feeds a FS beamforming algorithm to improve the intelli-
gibility of speech signals affected by noise and reverberation, showing a satisfying
improvement with respect to a state-of-the-art method. Adopting neural algorithms
for DOA estimation removes some constraints, i.e. those related to the microphone
array geometry.

4.2 Algorithm

In this work, the MUSIC method, is taken as a baseline and it is compared to a
more recent and promising technique for neural DOA estimation based on machine
learning reported in [30], from now on referred to as NDOA. NDOA follows a data-
driven approach, where a corpus of data is provided during the training phase to
estimate the algorithm parameters. A feature-set is first extracted and treated as input
to a multi-layer perceptron (MLP). The output of the MLP is the DOA estimate
required by subsequent stages (e.g. beamforming). Figure4.1 resumes the complete
algorithm, including beamforming and speech quality evaluation.

Among possible feature-sets, the generalized cross-correlation coefficients
(GCC) are employed for their wide acceptance in the field of DOA Estimation and
their ability in capturing phase related information [30]. Specifically, the GCC are
more reliable compared to time difference of arrival (TDOA). In our implementa-
tion, the GCC-PHAT algorithm [15] is used to extract GCC vectors, based on the
cross-correlation of spectral coefficients between all microphone pairs. For each
microphone pair combination C , only a part of the GCC values are taken, depending
on the microphones distance. Let D be the maximum distance between microphones
in the array, the time delay is τ = D/c seconds, or N = Fs · τ samples. Under such
conditions only the center 2N + 1 GCC values contain useful information, i.e. those
values corresponding to delays in the range±N samples. The rest of the GCC values
can be discarded. In more rigorous terms, the cross correlation between the power
spectra of any two microphone signals in the array, i.e. S12( f ), is defined as:

S12( f ) = X1( f ) ∗ X̊2( f )
∗, (4.1)
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Fig. 4.1 Flow diagram of
the dataset generation a and
neural DOA estimation b.
The clean speech is finally
compared to the processed
speech for the objective
evaluation

(b)
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where X̊2( f ) is a circular-shifted version of the FFT of x2(t) needed to operate
with coherent GCC vectors. The circular shift is of N samples, thus the only GCC
containing information are S12(0 ÷ 2N + 1).

To improve the robustness of the GCC, a further processing stage, histogram
equalization (HEQ) is undertaken. This improves reliability of theGCCby increasing
the spread between noisy and useful coefficients. Figure4.2 shows a GCC feature
set before and after histogram equalization.

Finally, under stationary conditions for the sound source position, averaging of
the GCC can be done between successive frames. Under testing and training this is
implemented by averaging all coefficients from the same file in the dataset, which is
known to be stationary. In real-world conditions, under the reasonable hypothesis of
a slowly time-varying position, a moving average can be employed, with a suitable
averaging window.

Once feature extraction is completed, the features are given as input to amultilayer
perceptron (MLP). The MLP employed for DOA classification has an input layer
with nodes equal to the input feature dimensions C(2N + 1). One hidden layer is
employed, with a sigmoid activation function. Differently from [30] the output layer
is fed to a nonlinear combination neuron which outputs a continuum estimate of
the DOA. In the original paper classes of 1◦ or more were used, making difficult to
compare different experiments with varying noise and reverberation.

A voice activity detection (VAD) algorithm [27] is employed to discardGCC from
audio frames not containing speech, that would harm learning.
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Fig. 4.2 GCC matrix extracted from a speech frame in the dataset before applying HEQ (a) and
after (b)

4.3 Dataset

The generation of the dataset for training and testing follows previous works in the
field. Specifically, the multichannel noisy speech is generated from a widely used
mono clean speech dataset withAmerican English sentences (WSJ0) [25]. All speech
signals are sampled at 16 kHz. The speech signals are transformed into multichannel
signals with noise and reverb, in order to test the robustness of the proposed approach.

The generation of the dataset assumes a microphone displacement following a
uniform circular array (UCA) of 8 microphones, with a radius of 0.1 m. Different
configurations of reverberation and additive noise are introduced to simulate different
use cases, and they have been applied according to the following rules:

1. Reverberation was added employing the RIR Generator1 tool for Matlab, based
on [1].

2. Three reverberation schemes were used, simulating small, medium and large
rooms, each one with the speaker in the far field or near field. One shortcoming
of the work in [30] was that three different datasets were created depending on
the room size, and each one was evaluated on its own.

3. The direction of arrival in the UCA were randomly selected.
4. Other randomly selected parameters were: speaker distance, room dimension,

T60 reverberation time, SNR, noise type.
5. The added noise came from noise samples provided by the REVERB CHAL-

LENGE dataset and its SNR was selected randomly from 0 to 20 dB. 40 different
types of noise were used, divided in simulated rooms, according to the REVERB
CHALLENGE [14].

1https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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Table 4.1 Training and Testing datasets details

Training Testing

Content 7768 sentences from the WSJ0
training set

507 sentences from the WSJ0 test
set

Room size (m) Small (7× 5), medium (12× 10),
large (17× 15)

Small (6× 4), medium (10× 8),
large (14× 12)

Distance (m) Near (1) and far (2, 4, 6.5 for
small, medium, large)

Near (1) and far (1.5, 3, 5 for
small, medium, large)

T60 (s) 0.1–1.0 s with 0.1 s step Three steps: 0.3, 0.6, 0.9 s

SNR (dB) Randomly selected from 0 to 20dB Randomly selected from 0 to 20dB

The microphone array displacement affects some of the algorithm parameters.
Specifically, the maximum distance D = 0.1 m implies a delay of N = 10 samples,
and the selection of 21 GCC coefficients. The array of 8 microphones allowsC = 28
combinations of signals to compute the GCC. A total of 588 features are, thus,
computed for each frame and are fed as input to the MLP. The signals sampling
frequency also affects the frame size employed for FFT of the input signals. In our
implementation the frame size chosen was 0.2 s with 50% overlap.

Training and Testing sets were organized as shown in Table4.1.

4.4 Implementation and Results

Training and testing has been performedusingKeras running onTheano as a backend,
while all the audio preprocessing was done in Matlab. For each MLP parameter set,
the training was done over 5000 epochs, interleaved with periodical validation every
1000 epochs.MLPweights were taken from the validation obtaining the lowest RMS
error.

Experimenting all possible parameter sets is not feasible as it would require a large
number of very time-consuming experiments. To reduce the number of trials, discrete
steps have been used for all numerical parameters. Furthermore, a heuristic procedure
has been employed to look for a sub-optimum. Its first step consists in conducting
several experiments by varying a single parameter, with all other parameters fixed
to a initial value. The value of the parameter under test yielding best results is taken
and the procedure is repeated for another parameter until all parameters have been
experimented with. Finally, a number of random experiments are conducted to gather
more confidence that there are no other RMS error minima below the one previously
found. Details regarding the experiments follow:

• MLP network size: from 80 to 512 in discrete steps;
• MLP update rule: stochastic gradient descent (SGD), Adam, AdaMax [13];
• activation functions: tanh, rectified linear unit (ReLU);
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Table 4.2 Some of the MLP parameter sets employed during training and the RMS error obtained
during testing of the related parameter set. The RMS error is expressed as the difference in angle
with respect to the correct DOA. The last layer has dimension 1 and outputs a floating point value

Net size Activations Optimizer RMS error

(588,100,80) C SGD 11.95

(588,100,80) A SGD 11.37

(588,100,80) B SGD 11.09

(588,100,80) B Adam 14.92

(588,100,80) B AdaMax 10.02

(588,250,200) B AdaMax 16.79

(588,160,80) B AdaMax 4.48

• mini-batch: 1–3000 in discrete steps;
• learning rate: 1e-9–1e-5 in discrete steps;
• momentum: 0.8, 0.9.

During preliminary tests, the latter three parameterswere shown to yield improved
performance with values, respectively, 3000, 1e-8, 0.9, notwithstanding the choice of
the former three parameters. Furthermore, preliminary tests show that the first three
combinations of the activation functions leading to good results are the following:

1. A: (tanh, tanh, tanh);
2. B: (tanh, ReLU, tanh);
3. C: (ReLU, ReLU, tanh).

Choice of MLP network size, weight optimization algorithm and activation func-
tions has been done according to the heuristic procedure described above. Some
results are reported in Table4.2. The activation functions combination yielding the
best results in first place is B. AdaMax, is found to be the best optimization algorithm
and a network size of (588, 160, 80) largely improves performance.

After training and selection of the best parameter set, a first evaluation has been
conducted on the DOA estimation algorithm with respect to the MUSIC algorithm.
The results are extremely convincing as the error decrease is larger than one order
of magnitude:

• MUSIC RMS Error: 122.8.
• NDOA RMS Error: 4.48.

The excellent capability of the NDOA algorithm to track the DOA is shown in
Fig. 4.3, where DOA estimation errors are reported from an excerpt of 75 randomly
selected sentences. Error values of NDOA are up two orders of magnitude below
MUSIC. This motivates for application of NDOA to many scenarios, such as speech
enhancement. To verify the effect of the improved accuracy of DOA estimation, both
NDOA andMUSIC are first applied to a FS beamforming algorithm and the resulting
speech quality is evaluated. Processed audio evaluation is carried on by employing
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Fig. 4.3 DOA estimation
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Table 4.3 Speech Quality comparison between unprocessed speech (NONE), beamformed speech
with NDOA (NDOA), beamformed speech with MUSIC, speech enhanced with [6] (SE), speech
enhanced with NDOA beamforming and [6] (NDOA+SE). Please note that with IS, lower values
correspond to better performance

NONE MUSIC NDOA SE NDOA + SE

PESQ 1.74 1.8 1.89 1.88 1.95

IS 3.4 3.55 3.49 3.28 3.11

two speech quality measures [20]: Perceptual Evaluation of Speech Quality (PESQ)
and Itakura-Saito distance (IS). The former is defined as a standard for speech qual-
ity assessment for communication technologies, standardized as ITU-T recommen-
dation P.862(02/01).2 It provides off-line evaluation of speech signals quality by
amplitude and time alignment, in order to provide a meaningful sample-by-sample
comparison of the original signal and the processed signal. Furthermore it makes use
of auditory transforms and cognitive models to predict a humanMean Opinion Score
(MOS) speech quality assessment. The Itakura-Saito distance, on the other hand, is
not a perceptual measure and it provides a measure of the difference between two
spectra, in this case the original signal and its processed version.

The results, reported in Table4.3 and compared to the original speech source (with
noise and reverb applied), show that the higher DOA estimation accuracy achieved
by the NDOA improves also the speech signal quality. Motivated by these findings,
we tested whether the NDOA can further improve speech quality when applied in
conjunction to an established speech enhancement technique by Ephraim et al. [6]
(in short SE).

2http://www.itu.int/rec/T-REC-P.862/en.

http://www.itu.int/rec/T-REC-P.862/en


4 Neural Beamforming for Speech Enhancement: Preliminary Results 45

These results are summarized in Table4.3. The speech quality improvement
obtained by the combination of both SE and NDOA, compared to SE only, is of
50% when evaluated with PESQ and of 70% when evaluated with IS. This confirms
the validity of the approach.

4.5 Discussion and Future Directions

The experiments reported in this work show that neural DOA estimation exhibits
excellent performance with respect to a reference technique such as MUSIC. When
used in conjunction with a classic beamforming algorithm, its higher precision also
improves its capability in enhancing the quality of speech affected by noise and
reverberation with respect to a MUSIC DOA estimator in conjunction with the same
beamforming algorithm. The performance, evaluated in terms of both PESQ and
Itakura-Saito distance, is further increased in conjunction with a well-known speech
algorithm by Ephraim et al.

These preliminary results in the field of speech enhancement motivate for fur-
ther research in neural beamforming for speech enhancement. More recent machine
learning algorithms can be applied to DOA estimation. For instance, while the com-
putational cost of a MLP network is lower compared to most RNN techniques, these
may potentially yield improved results in accuracy that are worth investigating. End-
to-end learning could be applied, resulting in a whole beamforming architecture
based solely on machine learning, with a deep neural network trained to cover both
DOA estimation and beamforming. One of the advantages of this approach is the
possibility to adopt irregular microphone array geometries. Preliminary experiments
by the authors are ongoing in this challenging field and the exploitation of both
classic and deep neural network architectures are under investigation.
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Chapter 5
Error Resilient Neural Networks
on Low-Dimensional Manifolds

Alexander Petukhov and Inna Kozlov

Abstract We introduce an algorithm that improves Neural Network classifica-
tion/registration of corrupted data belonging to low-dimensional manifolds. The
algorithm combines ideas of the Orthogonal Greedy Algorithm with the standard
gradient back-propagation engine incorporated in Neural Networks. Therefore, we
call it the Greedient algorithm.

Keywords Neural networks · Greedient algorithm · Error correction

5.1 Introduction

We consider the problem of classification of corrupted data with neural networks.
For the linear data model, this problem is mathematically equivalent to finding sparse
representation of the data. To our knowledge, the recently designed methods of the
data recovery/error elimination are based on “genuine” neural network ideas [6,
9, 10]. To reconstruct the encoded low-dimensional data approximately, the non-
linear function is constructed with unsupervised training of an appropriate Neural
Network (NN) which is known as an auto-encoder. Since the problem of the sparse
reconstruction is known as a problem with high complexity, increasing the system’s
capability can be reached bymaking the auto-encodermore complex.Another feature
of the methods based on the auto-encoder consists in the necessity to create and train
this (probably complex) auto-encoder [9, 10] even when the corrupted data has to
be just classified and no correction of the data is required.

Our approach is based on an “old-fashioned” compressed sensingwith theOrthog-
onal Greedy Algorithm (OGA) incorporated into a NN trained to register the fact
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that a vector belongs or does not belong to some low-dimensional manifold. It does
not require any auto-encoder over an existing trained NN.

5.1.1 Compressive Sampling

The interest of researchers in representation/extraction of low dimensional data
embedded into the spaces with high dimensions has been widely spread, especially
for the last 10–15years, which can be explained by their applicability to the real
world problems and the discovery of the way to solve the non-convex problems of
the sparse representations with the �1 convex relaxation [2, 3, 8]. The standard set-
ting of the numerical part of the problem can be described in the form of the recovery
of the data linearly representable in some redundant system with a sparse represen-
tation. A vector of data x ∈ R

n has to be represented in the form Ay = x, where A
is a matrix of size n × N , y ∈ R

N with m entries non-equal to 0, m < n < N . If a
sparse solution of the system above exists, then, for generic matrix, it is unique with
probability 1. However, generally speaking, finding this solution is a problem with
non-polynomial complexity. The convex relaxation allows to solve the convex prob-
lem ‖y‖1 → min instead of ‖y‖0 := #{yi | yi �= 0} → min, which requires direct
minimization of the sparsity.

The information theory interpretation of the problem above can be given in terms
of the error correcting codes. If we assume that data from a linear space of dimension
k are linearly encoded by applying the matrix B ∈ R

N×k to the data vector z ∈ R
k :

w = Bz, N > k, (5.1)

then (with the probability 1) the data will be protected from corruption of up to
N − k − 1 entries of the “code vector” w. When no corruption is applied to the
vector w, the data vector can be restored by the formula z = B+w, where B+ is the
pseudo-inverse matrix.

If the vector w is corrupted by an unknown sparse error vector y, the standard
way for precise recovering z is to multiply the corrupted vector w + y by the matrix
A := (B⊥)T , where the columns of the matrix B⊥ constitute an (orthonormal) basis
in the space orthogonal to the column space of the matrix B. Then the problem of
error correction is reduced to finding the sparse solution y of the system

Ay = x := (B⊥)T (w + y), (5.2)

i.e., the problem of error correction is equivalent to the recovery of sparse represen-
tations in a (tight) frame.

Since the time when the role of �1-minimization in compressed sensing was well
understood, other methods solving the problems were investigated. Among those
methods, greedy algorithms allowing to pick up the terms of sparse representation
one-by-one or by small groups of terms relying on some specific were studied.



5 Error Resilient Neural Networks on Low-Dimensional Manifolds 51

Greedy algorithms proved to be very efficient and, in most cases, outperformed
�1-optimization.

The problem considered above can be interpreted in the following way. If the
data set constitutes a low-dimensional linear manifold (a plane) S of dimension k
embedded into an ambient space R

N , N > k, then with overwhelming probability
the data vectors are protected from corruption of up to N − k − 1 entries.

5.1.2 Orthogonal Greedy Algorithm

The OGA has many nice features. It is most transparent among the group of algo-
rithms applied in compressive sampling settings. When implemented in an appropri-
ate way, it is extremely efficient from the point of view of computational complexity.

Wewill describe its fast version given in [7].Without loss of generality, we assume
that the rows of the matrix A in (5.2) constitute an orthonormal basis of its span.
Then its columns constitute a tight frame.

We denote by Λ the set of indexes of non-zero entries of the vector y. If we know
Λ, the problem of finding a vector y “loses” the non-polynomial complexity and
becomes a “simple” problem of finding the decomposition of x as a linear combi-
nation of those columns of A. However, if N is very large, the problem of solving a
large system of linear equations may become hard. At the same time, if operations
of multiplication by A and by AT are very computationally efficient, the iterative
decomposition algorithm can also be implemented efficiently. Any compactly sup-
ported tight wavelet frame is an example of such transform.

In what follows, the matrix PΛ is a diagonal matrix whose diagonal elements
are 1s for indexes from Λ and 0s otherwise; SΛ is a span of the columns of A with
indexes from Λ. The algorithm of the orthogonal projection on a span of the vectors
with index set Λ is as follows.

The Algorithm A:

1. Initialization. Set i = 0, x0 := x, y0 = 0.
2. Iteration xi+1 := xi − APΛAT xi ; yi+1 := yi + PΛAT xi ; i := i + 1.

For Algorithm A, Ayi converges (see [7]) to the orthogonal projection of x onto
SΛ, x∗ = PrSΛ

x. In particular, if (5.2) takes place, yi converges to its solution and
xi → 0. Generally, the solution is not unique when dim SΛ < #Λ.

The case, when the set Λ is known, corresponds to the case of data erasures. To
fight errors in data, we need to identify their location. Then Algorithm A can be
applied for this estimated set Λ. Let Â be the matrix A after normalization of its
columns. The following algorithm is a version of OGA:

Algorithm B.

1. Initialization. Set Λ0 := ∅; x0 := x; y0 := 0; δ, 0 < δ ≤ 1; i := 0.
2. Find

Mi := max
1≤ j≤N

{∣∣∣( ÂT xi ) j
∣∣∣
}

,
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3. Greedy Selection Step.

Λi+1 := Λi ∪ { j | |( ÂT xk) j | ≥ δMi }.

4. Orthogonal Projection Step Apply Algorithm A for x := xi , Λ := Λk . Using
its output y∗, x∗, update yi+1 := yi + y∗, xi+1 := xi − x∗.

5. If ‖xi+1‖ > ε, i := i + 1, go to Step 2.

While the Greedy Selection Step has a common sense justification as a selection
of directions most probable to be directions of the error vector, it may have a different
interpretation. Formula (5.1) gives a parametric description of a k-plane S, whereas
Ay (when A is a tight frame) defines the vector of orthogonal projection of y to the
orthogonal complement of S. Then the square of the magnitude of that projection
is r(x) = ‖x‖2 = yT AT Ay (the square of the distance from the k-plane) serves as a
measure of deviation of y from the k-plane. The gradient of r with respect to y can
be found as

∇yr(x) = 2AT Ay = 2AT x.

Thus, the update formulas in Algorithm A are just updates along the partial gradient
of the functional r , where the entries to be updatedwere selected as themost probable
(from the point of viewofOGA) corrupted entries. If the normalization is not used, the
greedy selection is implemented by comparing the magnitude of the gradient entries.
Unfortunately, the frames with equal lengths of all vectors are rare. Therefore, the
Greedy Selection Step in Algorithm B is different from the selection according to
the maximum of gradient entries.

Thus, in reconstruction iteration formulas we have

zi+1 := zi − PΛAT Ayi = zi − 1

2
PΛ∇yr(xi ),

xi+1 := xi − APΛAT xi ,

where z0 := z + y, x0 := x. This algorithm converges to the “clean data” zwhen the
projector PΛ is defined appropriately, i.e., when we know coordinates of corrupted
entries.

5.1.3 Non-linear Models and Neural Networks

Inmany real world problems themodel of the data sparsity ismuchmore complicated
than a linear manifold. Typically, the data redundancy is provided either by nature or
by attempting to measure and to describe the data in detail in overcomplete systems.
Two typical examples of such representations are:

(A) The results of medical tests of a patient may be redundant because they
are collected in different time without a goal to identify a specific type of illness.
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The redundant information may have errors and missing entries which still can be
recovered or at least will not lead to wrong conclusions.

(B) A celluloid film or any video footage contains information represented at
18–30 frames (images) per second. Due to the redundancy, the survived extremely
corrupted old films can be almost perfectly restored.

In the applied problems mentioned above, the linearity of the data model is ques-
tionable since the sum of two data vectors can be beyond of the data model. At the
same time, some small change of the information vectors probably keeps the result
within the data model. Therefore, it seems that the smooth manifold model is a good
extension of the classical linear error correction settings.

The goal of this paper is to conduct the feasibility study of the greedy algorithms
for registration of corrupted data belonging to some smooth manifold by means of a
NN trained on clean data.

Suppose that a low-dimensional manifold does not have any analytical description
available at the processing time and it is learned by a NN with the standard gradient
back-propagation algorithm.

We assume that the data vectors belonging to the class of our interest constitute a
k-dimensional manifold S in an N -dimensional linear space. The precise analytical
description is unknown, while significant amount of data from S as well as from
its complement S̄ := R

N\S is available. We will not discuss here the size of this
data set from S available. We just assume that it is significant for training a NN for
making a reliable decision: either a tested vector belongs to S or to S̄ . This decision
is made by means of the functional Φ(x) which has the range [0, 1]. It is obtained
by minimization of the loss function of a NN ending with the SoftMax layer. If
Φ(x) < 1/2, we make decision x ∈ S. Otherwise, x ∈ S̄.

The notion of an erasure is understood as missing information when the entry
value is unknown, whereas the coordinate of the missed information is available
for the tester. The notion of an error means that the data entry is corrupted and its
coordinate is unavailable. We will consider both types of corruption.

In this paper, we assume that the training set is free of errors. We want to test an
arbitrary vector for the property of belonging to a given smooth manifold if some of
vector entries may be corrupted or unavailable.

In particular, this means that if our algorithm introduces the “correction” of a
vector x + e → x̃ and Φ(x̃) < 1/2, we consider such experiment as “success” when
x ∈ S, even if x̃ is far from S.

5.2 Neural Network Architecture Description

In our experiments, we consider a few “toy” data models, which suffer from many
drawbacks, and a very simple network architecture. At the same time, the design of
a functional for the registration of vectors of a manifold learned by a NN is a very
hot research area (cf. [11]) in the framework of unsupervised NN training.
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We consider a simple NN consisting of 4 layers accepting data from the space
R

N , N = 10. This is the network architecture:

1. Fully connected layer with 100 neurons.
2. Activation layer x2+.
3. Fully connected layer with 2 neurons.
4. SoftMax layer.

The role of network training is to adapt the parameters of fully connected layers to
provide the minimum of the loss function on the set of input (labeled) data belonging
to either S or S̄.

When the parameters are optimized and fixed, the trained network provides the
(non-linear) functional Φ(y) as output of the channel corresponding to S̄ of the last
(SoftMax) network layer. ThenΦ is defined on the entireRN and has the range [0, 1].
In what follows,

Uλ := {y | Φ(y) < λ}, Sλ := {y | Φ(y) = λ}, 0 ≤ λ ≤ 1.

The decision y ∈ S is made when y ∈ U0.5. Otherwise, y ∈ S̄ .

5.3 Training and Testing Data

Obviously, linear or non-linearmanifolds are potentionally protected fromcorruption
of arbitrary k coordinates if and only if they do have at most one intersection point
with any k-plane parallel to some coordinate k-plane. At the same time, this property
can be omitted if we just want to register the fact that a (corrupted) point belongs to
the manifold.

Some difficulties are expected. Assume that our non-linear k-manifold can be
embedded in some linear m-plane, k ≤ m < N . Then, having a comparable number
of training points from S and S̄, the obvious simplification available for a trained
network is to set 2 parallel very close hyperplanes (or their minor deformation) as
the level surface S0.5 around S. Since the size of U0.5 between the hyperplanes can
be insignificant, a number of the test points from S̄ hitting this set (as well as their
contribution into average loss function) is insignificant. Thus, despite the seemingly
huge source of the false identification, i.e., identification of points from S̄ as points
from S, the rate of erroneous decisions is not suffer from this drawback, provided
that the models of training and testing sets are coordinated.

5.3.1 Models for S

For the manifold S, we use one of 3 models:
Model 1. The unit circumference in a random 2-plane of RN .
Model 2. The unit sphere in a random 3-plane of RN .
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Model 3. A spiral curve whose parametric representation coordinates are gen-
erated as {sinαi t}Ni=1, where αi = 1 + 3ηi , ηi are independent random variables
uniformly distributed on [0, 1].

The first two models refer to 2- and 3-planes. As we mentioned above, this, in
general, allows the NN not to follow a manifold shape but just to place it within a
thin 2D or 3D stripe. This stripe may have tiny N -measure. Hence, the points inside
(or even outside) the circle (or the sphere) will be classified as a point of S, i.e., the
classifier would actually work on linear subspaces of RN containing S rather than
on the non-linear 1D or 2D nonlinear manifolds. Model 3 is a 1D manifold that does
not have this potential drawback, provided that we select incomparable frequencies
{αi }.

5.3.2 Models for S̄

To get meaningful results, the set S̄ has to be selected according to the principles
which are different for training and testing sets.

For a training set, on the one hand, it should be close enough to S to obtain the
final functional having a sharp minimum at the points of S. On the other hand, it
should not be too close to allow a NN with a fixed number of neurons to separate S
and S̄.

For the test, the set S̄ does not have to be as close to S as for the training set. A
point close to S finds itself in the “zone of influence” of S. This phenomenon can
be described as follows. While S is a low-dimensional manifold, the set U0.5 is a
set of full dimension N . Then, if a point of S̄ is close to U0.5, any small change of
its one or a few coordinates with a high probability results in getting that point into
U0.5. This may look like a wrong error correction and may reduce the success rate
of the algorithm, while this point is “almost” a point of S from the point of view of
the Euclidean distance (or at least because of proximity of Φ(y) to 0.5). In fact, its
deviation fromU0.5 is within the radius of data noise. Hence, it should not be judged
as an algorithm failure.

We generate S̄ distributed over RN as a random variable

ξ = ν + ση, (5.3)

where ν is a point uniformly distributed over S and η has a standard normal distribu-
tion. We use σ = 1 for the training set and σ = 2 for the test. In all our experiments,
the train set has 104 point of RN , while the test set has 1000 points. In both cases,
we generate an equal number of points for S and S̄.
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5.3.3 Model for Errors

The set of errors in our experiments is an additive corruption introduced into randomly
selected data entries with probability perr . The value of corruption is generated by a
Gaussian distribution with the variance σerr = 0.5.We consider data corruption with
random erasureswith probability pers . In the classification algorithm, themissed data
are initialized with 0.

5.3.4 Greedient Algorithm Implementation

We train the NN described in Sect. 5.2 with the standard Stochastic Gradient Back-
Propagation algorithm. We apply 105 iterations to ensure the maximum accurate
separation in the training set consisting of clean (uncorrupted) data.

Due to back-propagation procedure, the trained NN generates a functional Φ(y)
which has to have minimal values at the points of S.

For a test data vectorΦ(y) < 0.5, wemake the decision y ∈ S. Otherwise, we run
the greedy gradient algorithm, checking the opportunity to change a few coordinates
of the vector y obtaining the vector y ∗ such that Φ(y ∗) < 0.5. If such change is
found, we make a decision that y is a corrupted version of some vector from S.
Otherwise, we consider y as (maybe corrupted version of) a vector from S̄ .

Using the back-propagation algorithm with a trained network we can compute
the values ∂Φ

∂y j
which allow to introduce corrections of the values of y toward smaller

values of Φ. We will apply the greedy approach to select coordinates to be used for
gradient descent iterations.

Algorithm C. (Greedient Algorithm)

1. Initialization. Set Λ0 := ∅; y0 := y; i := 0; n = 0; e := 0; γ, Imax , Kmax ,
Emax .

2. If e ≥ Emax , then Λi+1 := Λi , go to Step 5
3. Greedy selection step. Find

m := argmax1≤ j≤N , j /∈Λi

{∣∣∣∣
∂Φ

∂y j
(yi )

∣∣∣∣
}

,

4. Λi+1 := Λi ∪ {m}.
5. k := 0.
6. Orthogonal Projection Step. k := k + 1;

Update yi+1
j := yij − γ ∂Φ

∂y j
(yi ), j ∈ Λi+1; i := i + 1.

7. If k < Kmax , then go to 6;
8. If i < Imax , then go to Step 2.

We apply the greedient algorithm with the parameters γ = 1, Emax = 4, Kmax :=
4, Imax = 20 to all test vectors corrupted by errors. We also use the same iterations
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for the test vectors corrupted by erasures. However, in that case the set of erasures Λ

is known in advance and does not need not be updated. The Greedy selection steps
3 and 4 should be skipped as well as the partial iteration loops controlled by Step 7.
For erasures, we use Imax := 100 iterations of the gradient descent algorithm along
the coordinates corresponding to erasures.

Generally, like in [7], a group of the largest entries can be updated in Step 4.

5.4 Numerical Results

The results of numerical experiments are given in Tables5.1, 5.2 and 5.3. The last
two columns of each row of the table contain the misclassification rate for the raw
data (with no correction) followed by the rate for the data processed by the Greedient
Algorithm.

The first 3 rows of each table give results for data corrupted with erasures with
probabilities of missed entries pers = 0.1, 0.3, 0.5.

The remaining 3 rows present the results for data corrupted by sparse errors with
the same probabilities.

Table 5.1 Misclassification
Rate (%). Model 1

perr pers No correction Corrected

0 0.1 17.4 <0.1

0 0.3 32.4 0.3

0 0.5 40.0 4.5

0.1 0 19.7 2.5

0.3 0 43.0 4.2

0.5 0 47.5 14.7

Table 5.2 Misclassification
Rate (%). Model 2

perr pers No correction Corrected

0 0.1 12.4 0.1

0 0.3 31.0 1.2

0 0.5 33.0 7.0

0.1 0 17.5 3.0

0.3 0 41.3 4.0

0.5 0 48.3 12.2
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Table 5.3 Misclassification
Rate (%). Model 3

perr pers No correction Corrected

0 0.1 27.5 0.1

0 0.3 46.7 0.3

0 0.5 49.0 2.0

0.1 0 17.6 1.9

0.3 0 38.9 4.3

0.5 0 48.1 12.6

5.4.1 Result Discussion

The numerical results in Tables5.1, 5.2 and 5.3 show that the suggested algorithm
has a very good potential capability for better data classification.

For corruption in the form of erasures, gradient descent algorithm gives almost
perfect results when up to 30% of entries are missed. The improvement due to
correction is 2 orders of the magnitude less than for the raw data.

While the case pers = 0.5 does not look very impressive, the larger amount (2 ÷
7%) of misclassified data can be explained by reasons not related to the algorithm
capacity. In order to have at least theoretical opportunity to identify whether a vector
belongs to a K -dimensional manifold when P entries are missing or corrupted, the
inequality K + P < N has to be satisfied. It is easy to compute that,when pers = 0.5,
a big portion (more than half) of misclassification rate is due to the high probability
of the data not satisfying that condition. Therefore, the higher misclassification rates
can be completely explained by natural factors, those cannot be overcome by any
algorithm, and by inaccurate training rather than by a drawback of the error correction
procedure.

The experimental results show that themisclassification rate for data with errors is
much higher than for datawith erasures. Let us identifywhat factors have influence on
this rate. It turns out that if we run the test on clean data (no such line in Tables5.1,
5.2 and 5.3), for all three data models, the result is almost identical to the rows
with perr = 0.1. At the same time, if we do not run the error correcting block, the
misclassification rate is 0.

This result tells us that our decision, based on the descent gradient along the
always fixed number Emax = 4 of the “suspicious” coordinates, is too simplified.
It leads to reduction of the system capability. This is especially visible on the clean
data.

Nevertheless, turns out that the cost of those wrong decisions in classification
(y ∈ S instead of y ∈ S̄) is not too high. The misclassification occurs only for points
which are close to U0.5 with respect to the Euclidean distance. While more accu-
rate implementation of the greedy selector deserves an additional study, the current
algorithm version does not have any serious drawbacks even in the presented form.
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5.5 Conclusion

In this paper, we introduced a greedy algorithm to improve the capability of a NN
in processing corrupted data from low-dimensional manifolds. The algorithm does
not require any additional computational environment and is based on the standard
back-propagation engine incorporated in a NN. The Greedient Algorithm shows the
high performance on the corrupted synthetic data.
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Chapter 6
FIS Synthesis by Clustering
for Microgrid Energy Management
Systems

Stefano Leonori, Maurizio Paschero, Antonello Rizzi
and Fabio Massimo Frattale Mascioli

Abstract Microgrids (MGs) are the most affordable solution for the development
of smart grid infrastructures. They are conceived to intelligently integrate the gen-
eration from Distributed Energy Resources (DERs), to improve Demand Response
(DR) services, to reduce pollutant emissions and curtail power losses, assuring the
continuity of services to the loads as well. In this work it is proposed a novel Fuzzy
Inference System (FIS) synthesis procedure as the core inference engine of an Energy
Management System (EMS) for a grid-connected MG equipped with a photovoltaic
power plant, an aggregated load and an Energy Storage System (ESS). The EMS
is designed to operate in real time by defining the ESS energy flow in order to
maximize the revenues generated by the energy trade with the distribution grid con-
sidering a Time Of Use (TOU) energy prices policy. The FIS adopted is a first order
Tagaki-Sugeno type, designed through a data driven approach. In particular, multi-
dimensional Membership Functions (MFs) are modelled by a K-Means clustering
algorithm. Successively, each cluster is used to define both the antecedent and the
consequent parts of a tailored fuzzy rule, by estimating a multivariate Gaussian MF
and the related interpolating hyperplane. Results have been compared with bench-
mark references obtained by a Linear Programming (LP) optimization. The best
solution found is characterized by a small number of MFs, namely a limited number
of fuzzy rules. Its performances are close to the optimum solution in terms of profit
generated and, moreover, it shows a smooth exploitation of the ESS.
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6.1 Introduction

AMicrogrid (MG) is an electric grid able to intelligently manage local electric power
systems affected by stochastic and intermittent behaviours such as electric genera-
tion from renewable energy sources, electric vehicles charging and, controllable,
deferrable and shiftable loads. The MG infrastructure relies on power converters
able to connect the MG components in order to locally manage the MG power flows
and power exchange with the connected grid. It must be equipped with a communica-
tion infrastructure able to monitor and supervise the state of all the MG components
in real time.

Usually theMG is supported by anEnergyStorage System (ESS) able to guarantee
the quality of service, the electric stability and to give a certain autonomy to the system
when it is disconnected to the grid (i.e. islanded mode).

In [1] authors discuss the advantages in terms of power control and power effi-
ciency of a MG with the main bus in DC rather than AC, and how it will affect the
modernization of the distribution grid towards a smart grid [2].

The implementation of a suitable Demand Side Management (DSM) into the
EnergyManagement System (EMS) allows to applyDemandResponse (DR) services
to the costumer, which is referred to as prosumer, in case it is also equipped with a
power generation system.

In [3] are summarized the DRmain services (i.e. valley filling, load shifting, peak
shaving operations). These services, together with Vehicle-2-Grid (V2G) operations
and the intelligent use of the ESS, allow to reduce the stress caused by the MG to the
connected distribution grid in order to get incentives, avoid penalties, reduce both the
consumptions and the operational costs, which strictly depend on the energy price
policies adopted by the distribution grid. Concerning this topic, in [4, 5] it is discussed
the development of new energy policies which will involve the costumer to assume
an active role in the energymarket bymeans of the application of DR services. In this
work it is proposed an EMS able to define in real time the energy flow exchanged
with the grid in order to maximize the MG profit by considering a Time Of Use
(TOU) energy policy. The EMS synthesis is based on K-Means clustering algorithm
used to identify a set of Fuzzy Rules in a Fuzzy Inference System (FIS) optimized
off-line through a data driven approach.

The paper is organized in sections. The MG problem formulation is given in
Sect. 6.2. The EMS design and the considered benchmark solutions are illustrated
in Sect. 6.3. In Sect. 6.4 are reported the simulation settings, whereas the achieved
results are illustrated in Sect. 6.5. Finally, conclusion and future works are discussed
in Sect. 6.6.



6 FIS Synthesis by Clustering for Microgrid Energy Management Systems 63

6.2 MG Problem Formulation

In this paper it is considered a prosumer grid-connected MG equipped with a DSM
EMS. It is in charge of efficiently manage the MG components represented as aggre-
gated systems grouped in renewable sources power generation systems, aggregated
loads and ESSs. Their energy flows are managed in real time by an EMS that acts
as a decision making system. It must efficiently redistribute the prosumer energy
balance between the grid and the ESS by maximizing the profit of the energy trade
with the main grid. This work is based on several hypotheses that define the correct
level of abstraction to properly place the problem under analysis. The power value
of the MG components has been considered constant within each 15min time slot.
Low level operations such as voltage and reactive power control are not considered.
The power transmission losses within the MG are considered negligible. The on-
line control module ensure that the power balance is achieved during the real-time
operation. The EMS has a sample time equal to the time slot duration which is con-
siderably greater than the characteristic time of the ESS power control, therefore the
ESS inner loop has been neglected. The power converters which connects the MG
sub-components to each other, included the one allowing the MG-grid connection,
are neglected in terms of power losses and characteristic time of control.

TheMGaggregated energygeneration, aggregated load request, energy exchanged
with the ESS and energy exchangedwith the grid during the n-th time slot are denoted
with EL

n , E
G
n , E

S
n and EN

n , respectively. In Fig. 6.1 it is represented a schematic dia-
gram of the MG, where the power lines are drawn in black and the signal wires in
red. The Battery Management System (BMS) monitors the ESS and estimates its
State Of Charge (SoC) which is used as an input of the EMS [6, 7].

By assuming that the prosumer energy production EG
n has the priority to meet the

prosumer energy demand EL
n , the prosumer energy balance EGL

n can be defined as

EGL
n = EG

n + EL
n , n = 1, 2, . . . (6.1)

Moreover, in this work it is assumed that the prosumer energy balance EGL
n is a

known quantity read in real time by an electric meter. In each time slot, EGL
n must

Fig. 6.1 MG architecture.
Signal wires in red, power
lines in black

EGL
n−1

SoCn−1

Csell
n−1, C

buy
n−1 ES

n
EN
n -
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be exchanged with both the main grid and the ESS by fulfilling the following energy
balance relation

ES
n + EN

n + EGL
n = 0, n = 1, 2, . . . (6.2)

The energy ES
n is assumed positive or negative when the ESS is discharged or

recharged, respectively. Similarly, the energy EN
n is considered positive (negative)

when the network is selling (buying) energy to the MG. Considering a TOU price
policy, as made in previous works [8–10], it is possible to formulate the profit P
generated by the energy trade with the main grid in a time period composed by Nslot

time slots as

P =
Nslot∑

n=1

Pn where Pn =
{
EN
n · Cbuy

n if EN
n > 0

EN
n · Csell

n if EN
n ≤ 0

(6.3)

where Cbuy
n and Csell

n define the energy prices in purchase and sale during the n-
th time slot. According with [11], it is assumed that during the n-th time slot the
MG cannot exchange with the grid an amount of energy greater than the current
energy balance EGL

n . In other words, in case of over-production (over-demand) (i.e.
EGL > 0 (EGL < 0)) the ESS can be only charged (discharged).

6.3 FIS EMS Design

In the literature EMSs are designed following several different methods. In [12]
the MG EMS is formulated as a rolling horizon Markov decision process used for
the optimization of the MG power flow. In [13], it is considered an EMS for a V2G
service in a charge station. By assuming to know the future energy demand profile, the
authors formulated the problem in a closed formwhich allows to schedule the energy
flows through a Linear Programming (LP) formulation aimed to the maximization of
the profit generated by the energy exchangewith the grid. LP and stochastic approach
problem formulations are often difficult to be employed. In fact they need an accurate
MG state prediction model (i.e. MG generation and load prediction), a huge amount
of data samples, several simplifications that could compromise the accuracy of the
results, and high computational costs. Other works are rather based on the use of
FIS for EMS decision making process or other soft computing techniques such as
NeuralNetworks and clustering algorithms. FISs can be efficiently optimized through
heuristics which consider Single Objective or Multi Objective problem formulation.
Moreover, soft computing techniques can provide efficient and robust solutions even
when only a small dataset is available. In [14] a FIS is used to minimize the power
peaks and the fluctuations of the energy exchange with the connected grid while
keeping the battery SoC evolution within certain security limits. It is known that,
when the FIS has a large number of inputs, it can be affected by a huge Rule Base
system, especially if it is based on a grid partition approach. This fact, beside a huge
computational cost, could compromise an efficient design of the FIS.
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In this paper it has been studied the behaviour of a EMS FIS able to efficiently
estimate in real time the energy EN

n and ES
n to be exchanged during the n-th time

slot with the connected grid and the ESS, respectively (see Fig. 6.1). The EMS is
supposed to be fed by the input vector u constituted by 4 variables, namely, the
current energy balance EGL

n−1, the current energy prices in sale and purchase, Csell
n−1

and Cbuy
n−1 and the SoC value SoCn−1. It should be noted that whereas EGL

n−1, C
sell
n−1

and Cbuy
n−1 are instantaneous quantities read by the meters, Socn−1 is a status variable

depending on the previous history of the ESS.
Before entering the EMS, the EGL , Csell , Cbuy inputs, must be normalized in the

range [0, 1], whereas the SoC belongs to [0, 1] by its own definition. In the following,
the normalized input vector will be referred to as ū.

In order to measure and compare the performance of different FIS EMSs, two
benchmark solutions have been considered representing the upper and lower bound
of the profit (6.3), respectively.

For the lower benchmark solution it has been chosen to consider the MG without
ESS, which is obtained by considering ES

n = 0 and hence EN
n = −EGL

n for each n
(see (6.2)). The profit achieved in this situation will be referred to as Plower .

The upper benchmark solution referred to as Pupper corresponds to the optimal
solution achieved through a LP formulation relative to the maximization of the profit
defined in (6.3). The value of Pupper is evaluated by assuming the a priori knowledge
of the overall data set used in the MG simulation, namely the EGL and the Cbuy

Csell energy price profiles. The estimation of Pupper and Plower allows to define a
normalized performance index P̄ whichwill be used to fairly compare different EMS
synthesis.

P̄ = Pupper − P

Pupper − Plower
(6.4)

Moreover, it should be noted that the LP simulation allows to evaluate the SoCopt

and the EN
opt time sequences associated with the optimal solution. These sequences,

together with the measurable quantities EGL , Cbuy and Csell , will be used at training
stage in order to synthesize the FIS by means of K-Means algorithm [15, 16].

The FIS MFs are modeled by means of multivariate Gaussian functions which
assure the coverage of the entire fuzzy domain regardless of the number of employed
MFs. The generic MF �(ū) is defined as follows:

�(ū) = e− 1
2 (ū−µ)·C−1·(ūT −µT ) (6.5)

where µ and C are the mean value vector and the covariance matrix of the multi-
variate Gaussian function which assumes here the role of rule antecedent set. The
consequent fuzzy rule is modeled adopting a first order Takagi-Sugeno method. The
Rule Consequent (RC) EN , which represent the energy exchanged with the grid, is
represented by means of a suitable hyperplane defined as follows:
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EN = a0 + a1E
GL + a2C

sell + a3C
buy + a4SoC (6.6)

where the coefficient set A = {a0, . . . , a4} completely define the hyperplane. The
overall output of the FIS is computed by a Winner Takes All (WTA) strategy. The
synthesis of the FIS EMS is made through a data driven approach that rely on a
given dataset composed by an EGL , Cbuy and Csell profiles. The partitioning of the
dataset in Test Set (TsS), Validation Set (VlS) and Training Set (TrS) is made on a
daily base, i.e. all time slots associated with the same day will belong to a single set,
namely TsS or TrS or VlS. More precisely, the whole dataset is firstly divided in two
subsets having the same cardinality. The first subset constitutes the TsS whereas the
second one is partitioned in 5 different ways in order to constitute 5 different couples
of TrSs and VlSs.

The LP optimization is ran on the j-th TrS Tr Sj in order to evaluate the corre-
sponding values of (SoCopt ) j and (EN

opt ) j .
The construction of the FIS MFs is based on a clustering procedure performed

through an appropriately designed K-Means algorithm based on the Euclidean dis-
tance function. The K-Means algorithm is ran for all values of k ranging from k = 2
to k = 30 on the j-th sets � j constituted by the 4-dimensional patterns obtained by
joining the EGL , Cbuy and Csell samples belonging to the j-th TrS Tr Sj with the
corresponding j-th SoC time sequence (SoCopt ) j estimated bymeans of the LP opti-
mization. The K-Means algorithm, executed on the j-th set � j for a given k value,
is in charge of partitioning � j into k clusters and outputs the respective k centroids
and k covariance matrices that are then used to define the rule antecedent set accord-
ing with (6.5). Moreover, all the patterns of the j-th set � j associated with the k-th
cluster are collected in the � jk array. Similarly the values of (EN

opt ) j associated with
the � jk are collected in the (EN

opt ) jk set.
For the k-th cluster of the j-th TrS a suitable hyperplane can be defined.

Each hyperplane is represented by means of the coefficients set A jk estimated
through the Linear Least Square Regression (LLSR) on the set of input-output pairs
{�in

jk, (E
N
opt ) jk} (see (6.6)).

The previously described procedure results in 29 × 5 different FIS synthesis.
More precisely, for each k value there exist 5 different FIS corresponding to the
5 different TrSs. Each FIS in now simulated on the relative VlS and the achieved
normalized performance indexes are evaluated according with (6.4). For each value
of k, the best FIS F I Sbestk among the available 5 is selected whereas the remaining 4
are discarded. Finally, for each value of k, theMG is simulated on the TsS data on the
corresponding F I Sbestk and the corresponding profit P is estimated according whit
(6.3). The FIS F I Sbest , which produces the higher profit on the TsS, is selected to
design the final EMS. The overall procedure of the EMS FIS design and optimization
is illustrated in Algorithm 6.1.
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6.4 Simulation Setting

In this work it has been considered aMG composed by the following energy systems:
a PV generator of 19 kW, an aggregated load with a peak of power around 8 kW,
and ESS with an energy capacity of 24kWh. For the ESS modeling it has been taken
into consideration the Toshiba ESS SCiB module having a rated voltage of 300 [V],
a current rate of 8 [C-Rate] and a capacity of about 80 [Ah].

The dataset used in this work has been provided by AReti S.p.A., the electricity
distribution company of Rome. The energy prices are the same used in previous
works, [9, 10].

Algorithm 6.1 EMS Design
1: procedure EMS Design
2: Partition of the dataset in T sS and 5 pairs of Tr S j and VlS j
3: for j = 1 to 5 do � for each Tr S j
4: {EN

opt , SoCopt } j := LP(Tr S j ) � evaluation of the optimal solution on the 5 Tr S j

5: �in
j := {Tr S j , SoCopt } � join TrS and SoCopt

6: end for
7: for k = 2 to 30 do � for each value of k
8: for j = 1 to 5 do � for each Tr S j

9: {μk j ,Ck j , �k j } := KMeans(k, �in
j ) � K-Means execution

10: �k j := {μk j ,Ck j } � MF evaluation
11: select the points (EN

opt )k j corresponding to �k j

12: Akj := LLSR({�k j , (EN
opt )k j }) � hyperplanes evaluation

13: F I Sk j := {�k j , Akj } � FIS synthesis
14: simulation of F I Sk j (VlS j ) on the j-th VlS and evaluation of P̄k j
15: end for
16: selection of F I Sbestk among F I Sk j according with P̄k j
17: simulation of F I Sbestk (T sS) on TsS and evaluation of the profit Pk
18: end for
19: selection of F I Sbest among F I Sbestk according with Pk
20: end procedure

The considered dataset covers an overall period of 20 days sampled with a 15min
frequency. The overall dataset is shown in Fig. 6.2 together with the energy prices
both in sale (positive) and purchase (negative).

The even days are assigned to the TsS whereas the odd days are partitioned with
a random selection between the TrS and VlS in order to form 5 different TrS-VlS
partitions.Being theFISs designedon theTrS information it has been chosen to assign
the 70% of the odd days to the TrS and the reaming 30% to the VlS. Regarding the
K-Means, it is defined by a number of iterations equal to 20 and every execution
of the algorithm is repeated 30 times (i.e. number of replicates) with a new pattern
initialization which consists in a random selection of the centroids. The solution
chosen by the K-Means algorithm is that one which presents the minimum sum of
the Euclidean distances between the patterns and their respective centroids, i.e. the
one which maximizes the average of clusters compactness.
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Fig. 6.2 Dataset of the MG energy production and demand and energy prices

6.5 Results

In Table6.1 are reported the results of the best ten solutions sorted according with the
profit P achieved by the corresponding FIS simulated on the TsS values. Moreover,
for each solution it is reported the number of clusters, the Davies-Bouldin (DB) index
[17], the actual upper and lower profit expressed in [Monetary Units Per Day]
and the performance index P̄ calculated on the VlS. The best solution is achieved
for k = 9. In order to evaluate its performances, the upper and the lower limit of the
profit have been calculated for the TsS, obtaining Pupper

T sS = 8.84 and Plowper
T sS = 2.45,

Table 6.1 Best solutions results

FIS TrS VlS TsS

BD index P Pupper Plower P̄ P

Adim MU/day MU/day MU/day P.U. MU/day

F I Sbest9 0,75 10,00 11,33 5,62 0,23 7,66

F I Sbest4 0,32 10,18 11,33 5,62 0,20 7,49

F I Sbest11 1,04 9,99 11,33 5,62 0,23 7,46

F I Sbest7 0,49 10,05 11,33 5,62 0,22 7,42

F I Sbest5 0,34 10,09 11,33 5,62 0,22 7,41

F I Sbest3 0,19 9,85 11,33 5,62 0,26 7,39

F I Sbest6 0,39 10,08 11,33 5,62 0,22 7,37

F I Sbest12 1,12 12,78 14,26 9,71 0,32 7,35

F I Sbest15 1,67 13,45 14,82 10,25 0,30 7,34

F I Sbest17 2,27 13,34 14,82 10,25 0,32 7,34
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Fig. 6.3 MG energy flow profiles on the TsS: a Optimal solution b Proposed solution

respectively. By comparing these values with the profit achieved by each EMS it can
be stated that their performances are quite close to the optimal one. More precisely,
made 100 the Pupper profit and 0 the Plower one, the FIS based synthesized solution
is placed at 82. Moreover, by comparing the time evolution of the optimal solution
with the FIS based one, shown in Fig. 6.3a and b, respectively, it can be seen that
the optimal solution presents a strongly intermittent behaviour for both ES and EN ,
whereas the proposed FIS based one has much flatter energy profiles. The better
smoothness of the FIS based solution produces a lower degradation of the ESS,
whereas the optimal solution stresses much more the ESS due to the high variations
of power exchanged in short periods.
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6.6 Conclusion

In this work it is proposed a novel procedure to design a first order Takagi-Sugeno
FIS EMS with the aim to maximize the profit generated by energy trading with the
grid, assuming a TOU energy price policy. It is characterized by Gaussian multi-
dimensional MFs defined through a K-Means clustering algorithm on a given TrS.
Each of them is associated to a different RC hyperplane. By assuming to know a
priori the considered dataset, these are evaluated relying on the optimumMG energy
flows profiles by means of a LP problem formulation. In order to optimized the
EMS, different FISs have been synthesized, by considering different TrS-VlS pairs
and changing the number of clusters (i.e. MFs and RCs). For a given k value, the
best FIS has been selected testing the FISs performance on their respective VlSs. The
proposed synthesis procedure allows to considerably reduce the number ofMFs with
respect to a grid partition based synthesis approach adopted in previous works. The
FIS selected gives a profit on the TsS greater than 80% of the maximum performance
yielded by the LP solution. This benchmark solution shows irregular high oscilla-
tions of the ESS SoC that makes more tricky an efficient FIS EMS design, avoiding
solutions characterized by an high number of MFs (i.e. characterized by an higher
granularity). Therefore, for future works it will be investigated the implementation
of a smoother reference surface solution in order to give more regularity to it. In
particular, it will be taken into consideration a Multi Objective function formulation
in order to consider the degradation of the ESS as well.
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Chapter 7
Learning Activation Functions
from Data Using Cubic Spline
Interpolation

Simone Scardapane, Michele Scarpiniti, Danilo Comminiello
and Aurelio Uncini

Abstract Neural networks require a careful design in order to perform properly on
a given task. In particular, selecting a good activation function (possibly in a data-
dependent fashion) is a crucial step, which remains an open problem in the research
community. Despite a large amount of investigations, most current implementations
simply select one fixed function from a small set of candidates, which is not adapted
during training, and is shared among all neurons throughout the different layers.
However, neither two of these assumptions can be supposed optimal in practice. In
this paper, we present a principled way to have data-dependent adaptation of the acti-
vation functions, which is performed independently for each neuron. This is achieved
by leveraging over past and present advances on cubic spline interpolation, allow-
ing for local adaptation of the functions around their regions of use. The resulting
algorithm is relatively cheap to implement, and overfitting is counterbalanced by the
inclusion of a novel damping criterion, which penalizes unwanted oscillations from
a predefined shape. Preliminary experimental results validate the proposal.
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7.1 Introduction

Neural networks (NNs) are extremely powerful tools for approximating complex
nonlinear functions [7]. The nonlinear behavior is introduced in the NN architecture
by the elementwise application of a given nonlinearity, called the activation function
(AF), at every layer. Since AFs are crucial to the dynamics and computational power
of NNs, the history of the two over the last decades is deeply connected [15]. As
an example, the use of differentiable AFs was one of the major breakthroughs in
NNs, leading directly to the back-propagation algorithm. More recently, progress on
piecewise linear functions was shown to facilitate backward flow of information for
training very deep networks [4]. At the same time, it is somewhat surprising that the
vast majority of NNs only use a small handful of fixed functions, to be hand-chosen
by the practitioner before the learning process.Worse, there is no principled reason to
believe that a ‘good’ nonlinearity might be the same across all layers of the network,
or even across neurons in the same layer.

This is shown clearly in a recent work by Agostinelli et al. [1], where every
neuron in a deep network was endowed with an adaptable piecewise linear function
with possibly different parameters, concluding that “the standard one-activation-
function-fits-all approach may be suboptimal” in current practice. Experiments in
AF adaptation have a long history, but they have never met a wide applicability in the
field. The simplest approach is to parameterize each sigmoid function in the network
by one or more ‘shape’ parameters to be optimized, such as in the seminal 1996 paper
by Chen and Chang [3] or the later work by Trentin [16]. Along a similar line, one
may consider the use of polynomial AFs, wherein each coefficient of the polynomial
is adapted by gradient descent [11]. Additional investigations can be found in [2, 5,
9, 10, 19]. One strong drawback of these approaches is that the parameters involved
affect the AF globally, such that a change in one region of the function may be
counterproductive on a different, possibly faraway, region.

Several years ago, an alternative approach was introduced by using spline inter-
polating functions as AFs [6, 17], resulting in what was called a spline AF (SAF).
Splines are an attractive choice for interpolating unknown functions, since they can
be described by a small amount of parameters, yet each parameter has a local effect,
and only a fixed number of them is involved every time an output value is computed
[18]. The original works in [6, 17] had two main drawbacks that prevented a wider
use of the underlying theory. First, SAFs were only investigated in an online setting,
where updates are computed one sample at a time. Whether an efficient implementa-
tion is possible (and feasible) also for batch (or mini-batch) settings was not shown.
Secondly, the obtained SAFs had a tendency to overfit training data, resulting in
oscillatory behaviors which hindered performance. Inspired by recent successes in
the field of nonlinear adaptive filtering [13, 14], our aim in this paper is two-fold.
On one hand, we provide a modern introduction to the use of SAFs in neural net-
works, with a particular emphasis on their efficient implementation in the case of
batch (or mini-batch) training. Our treatment clearly shows that the major problem in
their implementation, which is evident from the discussion above, is the design of an
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efficient way to regularize their control points. In this sense, as a second contribution
we provide a simple (yet effective) ‘damping’ criterion to prevent unwanted oscil-
lations in the testing phase, which penalizes deviations from the original points in
terms of �2 norm. A restricted set of experiments shows that the resulting formula-
tion is able to achieve a lower test error than a standard NN with fixed AFs, while at
the same time learning non-trivial activations with different shapes across different
neurons.

The rest of the paper is organized as follows. Section7.2 presents the basic theory
of SAFs for the case of a single neuron. Section7.3 extends the treatment to the
case of a NN with one hidden layer, by deriving the gradient equations for the SAFs
parameters in the internal layer. Then, Sect. 7.4 goes over the experimental results,
while we conclude with some final remarks in Sect. 7.5.

7.2 The Spline Activation Function

We begin our treatment of SAFs with the simplest case of a single neuron endowed
with a flexible AF (see [13, 17] for additional details). Given a generic input x ∈ R

D ,
the output of the SAF is computed as:

s = wT x , (7.1)

y = ϕ(s;q) , (7.2)

where w ∈ R
D (we suppose that an eventual bias term is added directly to the input

vector), and the AF ϕ(·) is parameterized by a vector q ∈ R
Q of internal parameters,

called knots. The knots are a sampling of the AF values over Q representative points
spanning the overall function. In particular, we suppose the knots to be uniformly
spaced, i.e. qi+1 = qi + Δx , for a fixed Δx ∈ R, and symmetrically spaced around
the origin. Given s, the output is computed by spline interpolation over the closest
knot and its P rightmost neighbors. The common choice P = 3, which we adopt in
this paper, corresponds to cubic interpolation, and it is generally a good trade-off
between locality of the output and interpolating precision.

Given the index i of the closest knot, we can define the normalized abscissa value
between qi and qi+1 as:

u = s

Δx
−

⌊ s

Δx

⌋
, (7.3)

where �·� is the floor operator. From u we can compute the normalized reference
vector u = [

uP uP−1 . . . u 1
]T
, while from i we can extract the relevant control

points qi = [
qi qi+1 . . . qi+P

]T
. We refer to the vector qi as the i th span. The output

(7.2) is then computed as:
y = ϕ(s) = uTBqi , (7.4)
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where B ∈ R
(P+1)×(P+1) is called the spline basis matrix. In this work, we use the

Catmull-Rom (CR) spline with P = 3, given by:

B = 1

2

⎡
⎢⎢⎣

−1 3 −3 1
2 −5 4 −1

−1 0 1 0
0 2 0 0

⎤
⎥⎥⎦ . (7.5)

Different bases give rise to alternative interpolation schemes, e.g. a spline defined
by a CR basis passes through all the control points, but its second derivative is not
continuous.

Apart from the locality of the output, SAFs have two additional interesting proper-
ties. First, the output in (7.4) is extremely efficient to compute, involving only vector-
matrix products of very small dimensionality. Secondly, derivatives with respect to
the internal parameters are equivalently simple and can be written down in closed
form. In particular, the derivative of the nonlinearity ϕ(s) with respect to the input s
is given by:

∂ϕ(s)

∂s
= ϕ′(s) = ∂ϕ(s)

∂u
· ∂u

∂s
=

(
1

Δx

)
u̇Bqi , (7.6)

where:

u̇ = ∂u
∂u

= [
PuP−1 (P − 1)uP−2 . . . 1 0

]T
. (7.7)

Given this, the derivative of the SAF output y with respect to w is straightforward:

∂ϕ(s)

∂w
= ϕ′(s) · ∂s

∂w
= ϕ′(s)x , (7.8)

Similarly, for qi we obtain:

∂ϕ(s)

∂qi
= BTu . (7.9)

while we have ∂ϕ(s)
∂qk

= 0 for any element qk outside the current span qi .
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7.3 Designing Networks with SAF Neurons

7.3.1 Computing Outputs and Inner Derivatives

Now we consider the more elaborate case of a single hidden layer NN, with a D-
dimensional input, H neurons in the hidden layer, and O output neurons.1 Every
neuron in the network uses a SAF with possibly different adaptive control points,
which are set independently during the training process. For easiness of computation,
we suppose that the sampling set of the splines is the same for every neuron (i.e.,
each neuron has Q points equispaced according to the same Δx), and we also have
a single shared basis matrix B. The forward phase of the network is similar to that
of a standard network. In particular, given the input x, we first compute the output
of the i th hidden neuron, i = 1, . . . , H , as:

hi = ϕ(wT
hix;qhi ) . (7.10)

These are concatenated in a single vector h = [h1, . . . , hH , 1]T , and the i th output
of the network, i = 1, . . . , O , is given by:

fi (x) = yi = ϕ(wT
yih;qyi ) . (7.11)

The derivatives with respect to the parameters
{
wyi ,qyi

}
, i = 1, . . . , O can be com-

puted directly with (7.8)–(7.9), substituting x with h. By back-propagation, the
derivative of the i th output with respect to the j th (inner) weight vector wh j is
similar to a standard NN:

∂yi
∂wh j

= ϕ′(syi ) · ϕ′(sh j ) · �wh j �i · x , (7.12)

where with a slight abuse of notation we let syi denote the activation of the i th output
(and similarly for sh j ), �·�i extracts the i th element of its input vector, and the two
ϕ′(·) are given by (7.6). For the derivative of the control points of the j th hidden
neuron, denote by qh j ,k the currently active span, and by uh j the corresponding
reference vector. The derivative with respect to the i th output is then given by:

∂yi
∂qh j ,k

= ϕ′(syi ) · �wh j �i · BTuh j . (7.13)

1We note that the following treatment can be extended easily to the case of a network withmore than
one hidden layer. However, restricting it to a single layer allow us to keep the discussion focused
on the problems/advantages arising in the use of SAFs. We leave this extension to a future work.
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7.3.2 Initialization of the Control Points

An important aspect that we have not discussed yet is how to properly initialize the
control points. One immediate choice is to sample their values from an AF which
is known to work well on the given problem, e.g. a hyperbolic tangent. In this way,
the network is guaranteed to work similarly to a standard NN in the initial phase
of learning. Additionally, we have found good improvements in error by adding
Gaussian noise N (0, σ 2) with small variance σ 2 to a randomly chosen subset of
control points (around 5% in our experiments). This provides a good variability in
the beginning, similarly to how connections are set close to (but not identically equal
to) zero during initialization.

7.3.3 Choosing a Training Criterion

Suppose we are provided with a training set of N input/output pairs in the form
{xi ,di }Ni=1. For simplicity of notation, we denote byw the concatenation of all weight
vectors

{
whi

}
and

{
wyi

}
, and by q a similar concatenation of all control points.

Training can be formulated as the minimization of the following cost function:

J (w,q) = 1

N

N∑
i=1

L(di , f(xi )) + λwRw(w) + λq Rq(q) , (7.14)

where L(·, ·) is an error function, while Rw(·) and Rq(·) provide meaningful regu-
larization on the two set of parameters. The first two terms are well-known in the
neural network literature [7], and they can be set accordingly. Particularly, in our
experiments we consider a squared error term L(di , f(xi )) = ‖di − f(xi )‖22, and �2
regularization on the weights Rw(w) = ‖w‖22. The derivatives of L(·, ·) can be com-
puted straightforwardly with the formulas presented in Sect. 7.3.1.

The term Rq(q) is used to avoid overfitted solutions for the control points. In fact,
its presence is themajor difference with respect to previous attempts at implementing
SAFs in neural networks [17],wherein overfittingwas counterbalanced by choosing a
large value forΔx , which in away goes outside the philosophy of spline interpolation
itself. At the same time, choosing a proper form for the regularization term is non-
trivial, as the term should be cheap to compute, and it should introduce just as much
a priori information as needed, without hindering the training process. Most of the
literature on regularizing w cannot be used here, as the corresponding formulations
do not make sense in the context of spline interpolation. As an example, simply
penalizing the �2 norm of q leads to functions close to the zero function, while
imposing sparsity is also meaningless.

For the purpose of this paper, we consider the following ‘damping’ criterion:

Rq(q) = ‖q − qo‖22 , (7.15)
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where qo represents the initial values for the control points, as discussed in the
previous section (without considering additional noise). The criterionmakes intuitive
sense as follows: while for w we wish to penalize unwanted deviations from very
small weights (which can be justified with arguments from learning theory), in the
case of q we are interested in penalizing changes with respect to a ‘good’ function
parameterized by the initial control points qo, namely one of the standard AFs used
in NN training. In fact, setting a value for λq very high essentially deactivates the
adaptation of the control points. Clearly, other choices are possible, and in this sense
this paper serves as a starting point for further investigations towards this objective.
As an example, we may wish to penalize first (or second) order derivatives of the
splines in order to force a desired level of smoothness [18].

7.3.4 Remarks on the Implementation

In order to be usable in practice, SAFs require an efficient implementation to compute
outputs and derivatives concurrently for the entire training dataset or, alternatively,
for a properly chosen mini-batch (in the case of stochastic optimization algorithms).
To begin with, we underline that the equations for the reference vector (see 7.3) do
not depend on the specific neuron, and for this reason they can easily be vectorized
layer-wise on most numerical algebra libraries to obtain all vectors concurrently.
Additionally, the indexes and relative terms Bqi in (7.4) can be cached during the
forward pass, to be reused during the computation of the derivatives. In this sense,
the outputs of a layer and its derivatives can be computed by one 4 × 4 matrix-vector
computation, and three 4-dimensional inner products, which have to be repeated for
every pair input/neuron. In our experience, the cost of a relatively well-optimized
implementation does not exceed twice that of a standard network for medium-sized
batches, where the most onerous operation is the reshaping of the gradients in (7.9)
and (7.13) into a single vector of gradients relative to the global vector q.

7.4 Experimental Results

7.4.1 Experimental Setup

To evaluate the preliminary proposal, we consider two simple regression benchmarks
for neural networks, the ‘chemical’ dataset (included among MATLAB’s testbeds
for function fitting), and the ‘California Housing’.2 They have respectively 498 and
20640 examples, and 8 numerical features. Inputs are normalized in the [−1,+1]
range, while outputs are normalized in the [−0.5,+0.5] range. We compare a NN

2http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html.

http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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with 5 hidden neurons and tanh(·) AFs (denoted as ‘Standard’ in the results), and
a NN with the same number of neurons and SAF nonlinearities. The weight vec-
tor w is initialized with the method described in [4]. Each SAF is initialized from
a tanh(·) nonlinearity, and control points are defined in the [−2,+2] range with
Δx = 0.2, which is a good compromise between locality of the SAFs and the overall
number of adaptable parameters. For the first scenario, λq is kept to a small value
of 10−5. For each experiment, a random 30% of the dataset is kept for testing, and
results are averaged over 15 different splits to average out statistical effects. Error is
computed with the Normalized Root Mean-Squared Error (NRMSE). The optimiza-
tion problems are solved using a freely available MATLAB implementation of the
Polack-Ribiere variant of the nonlinear conjugate gradient optimization algorithm
by C. E. Rasmussen [12].3 The optimization process is allowed 1500 maximum iter-
ations. MATLAB code for the experiments is also available on the web.4 We briefly
remark that the MATLAB library, apart from repeating the experiments presented
here, is also designed to handle networks with more than a single hidden layer,
and implements the ADAM algorithm [8] for stochastic training in case of a larger
dataset.

7.4.2 Scenario 1: Strong Underfitting

As a first example, we consider a scenario of strong underfitting, wherein the user has
misleadingly selected a very large value of λw = 1, leading in turn to extremely small
values for the elements ofw after training. Results in terms of training and test RMSE
are provided in Table7.1. Since the activations of the NN tend to be very close to
0 (where the hyperbolic tangent operates in an almost-linear regime), standard NNs
have a constant zero output, leading to a RMSE of 1. Nonetheless, SAF networks
are able to reach a very satisfactory level of performance, which in the first case is
almost comparable to that of a fully optimized network (see the following section).

To show the reasons for this, we have plotted four representative nonlinearities
after training in Fig. 7.1. It is easy to see that the nonlinearities have adapted to act
as ‘amplifiers’ for the activations in their operating regime, with mild and strong
peaks around 0. Of particular interest is the fact that the resulting SAFs need not be
perfectly centered around 0 (e.g. Fig. 7.1c), or even symmetrical around the y-axis
(e.g. Fig. 7.1d). In fact, the splines are able to efficiently counterbalance a bad setting
for the weights, with behaviors which would be very hard (or close to impossible)
using standard setups with fixed, shared, mild nonlinearities.

3http://learning.eng.cam.ac.uk/carl/code/minimize/.
4https://bitbucket.org/ispamm/spline-nn.

http://learning.eng.cam.ac.uk/carl/code/minimize/
https://bitbucket.org/ispamm/spline-nn
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Table 7.1 Average results for scenario 1 (λw = 1), together with one standard deviation

Dataset Nonlinearity Tr. RMSE T.st NRMSE

Chemical Standard 1.00 ± 0.00 1.00 ± 0.01

SAF 0.29 ± 0.02 0.31 ± 0.02

Calhousing Standard 1.02 ± 0.00 1.01 ± 0.01

SAF 0.56 ± 0.01 0.57 ± 0.02
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Fig. 7.1 Non-trivial representative SAFs after training for scenario 1

7.4.3 Scenario 2: Well-Optimized Parameters

In our second scenario, we consider a similar comparison with respect to before,
but we fine-tune the parameters of the two methods using a grid-search with a 3-
fold cross-validation on the training data as performance measure. Both λw and λq

(only for the proposed algorithm) are searched in an exponential interval 2 j , with
j = −10, . . . , 5. Optimal parameters found by the grid-search are listed in Table7.2,
while results in terms of training and test NRMSE are collected in Table7.3.

Overall, we see that the NNs endowed with the SAF nonlinearities are able to
surpass by a large margin a standard NN, and the results from the previous scenario.
The only minor drawback evidenced in Table7.3 is that the SAF network has some
overfitting occurring in the ‘chemical’ dataset (around 2 points of NRMSE), showing
that there is still some roomfor improvement in termsof spline optimal regularization.

Also in this case, we plot some representatives SAFs after training (taken among
those which are not trivially identical to the tanh nonlinearity) in Fig. 7.2. As before,
in general SAFs tend to provide an amplification (with a possible change of sign)
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Table 7.2 Optimal parameters (averaged over the runs) found by the grid-search procedure for
scenario 2

Dataset Nonlinearity λw λq

Chemical Standard 10−3 –

SAF 10−2 10−4

Calhousing Standard 10−4 –

SAF 10−3 10−4

Table 7.3 Average results for scenario 2 (fine-tuning for parameters), together with one standard
deviation

Dataset Nonlinearity Tr. RMSE T.st NRMSE

Chemical Standard 0.32 ± 0.01 0.32 ± 0.02

SAF 0.26 ± 0.01 0.28 ± 0.02

Calhousing Standard 0.55 ± 0.01 0.55 ± 0.01

SAF 0.51 ± 0.02 0.51 ± 0.02

2

Sp
lin

e 
va

lu
e

-1

0

1

2

Sp
lin

e 
va

lu
e

-1

0

1

2

Sp
lin

e 
va

lu
e

-1

0

1

2

Sp
lin

e 
va

lu
e

-1

0

1

2

Sp
lin

e 
va

lu
e

-1

0

1

-2 0 -2 0 -2 0

-2 0 -2 0 -2 0 2

Sp
lin

e 
va

lu
e

-1

0

1

2

Fig. 7.2 Non-trivial representative SAFs after training for scenario 2

of their activation around some region of operation. It is interesting to observe that,
also in this case, the optimal shape need not be symmetric (e.g. Fig. 7.2a), and might
even be far from centered around 0 (e.g. Fig. 7.2c). Resulting nonlinearities can also
present some additional non-trivial behaviors, such as a small region of insensibility
around 0 (e.g. Fig. 7.2d), or a region of pre-saturation before the actual tanh saturation
(e.g. Fig. 7.2e and f).
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7.5 Conclusion

In this paper, we have presented a principled way to adapt the activation functions
of a neural network from training data, locally and independently for each neuron.
Particularly, each nonlinearity is implemented with cubic spline interpolation, whose
control points are adapted in the optimization phase. Overfitting is controlled by a
novel �2 regularization criterion avoiding unwanted oscillations. Albeit efficient, this
criterion does constrain the shapes of the resulting functions by a certain degree. In
this sense, the design of more advanced regularization terms is a promising line
of research. Additionally, we plan on exploring the application of SAFs to deeper
networks,where it is expected that the statistics of the neurons’ activations can change
significantly layer-wise [4].
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Chapter 8
Context Analysis Using a Bayesian
Normal Graph

Amedeo Buonanno, Paola Iadicicco, Giovanni Di Gennaro
and Francesco A. N. Palmieri

Abstract Contextual information can be used to help object detection in video and
images, or to categorize text. In this work we demonstrate how the Latent Variable
Model, expressed as a FactorGraph inReducedNormal Form, canmanage contextual
information to support a scene understanding task. In an unsupervised scenario our
model learns how various objects can coexist, by associating object variables to a
latent Bayesian cluster. The model, that is implemented using probabilistic message
propagation, can be used to correct or to assign labels to new images.

Keywords Object detection · Contextual information · Belief propagation
Bayesian network · Factor graph
8.1 Introduction

Contextual information can be very useful for improving object detection and for
approaching scene understanding tasks [1, 2]. The fact that, in a particular scene,
some objects may be more likely to occur than others, may improve our confidence
on a pattern recognition task, or on a smart image captioning procedure [3–7]. The
challenge is to build a probabilistic model that, as in the human visual system, can
store the statistical relationships among objects and between scene and objects to
support high-level image handling.
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(a) (b) (c) (d)

Fig. 8.1 FGrn components: a Variable; b Replicator; c SISO block (factor); d Source block. The
forward and backward messages are shown for each variable

Fig. 8.2 The LVM model as
a Bayesian graph (a) and as a
Factor Graph in Reduced
Normal Form (b)

(a) (b)

The relationship among objects and between object and context can be modeled
in a probabilistic way.We focus here on a Latent VariableModel (LVM) [8] (Fig. 8.2)
where the N variables {X j } j=1..N , representing absence, presence, or multiple pres-
ence of the objects, are related to the unobserved context variable S.

Probabilistic modeling for context analysis has been proposed before [4, 9] but,
to our knowledge, this is the first work that uses the Factor Graph in Reduced Normal
Form (FGrn) paradigm to tackle this type of problem.

The aim of this work is to demonstrate that the simple LVMmodel, together with
the FGrn framework, is a powerful and flexible tool to perform object detection tasks
using contextual information. Moreover the LVM, trained in an unsupervised way,
is able to recognize the context and, in inference, can use contextual information to
help correct and/or enrich scene description.

In Sects. 8.2 and 8.3 we briefly review the FGrn paradigm and how it is imple-
mented. In Sect. 8.4 we present a set of simulations on the standard COCO Dataset
[10]. Conclusions are reported in Sect. 8.5.

8.2 Factor Graphs in Reduced Normal Form

Using the FGrn framework, a Bayesian graph can be designed using only four build-
ing blocks: Variables, Replicators (orDiverters), Single-Input/Single-Output (SISO)
blocks andSource blocks (Fig. 8.1). TheFGrn paradigmallows to handle theBayesian
Graph architectures [11] in an easier way, using a unique learning equation [12],
distributed among several SISO blocks of the network. The great flexibility and
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modularity of this paradigm brought us to define a Simulink library for the rapid
prototyping of architectures based on this paradigm [13].

The parameters in the SISOand source blocks are learned frommessages available
locally. The learning process follows an Expectation Maximization [EM] algorithm
to maximize global likelihood of observed data (see [12] for derivations and compar-
isons). A complete review of the paradigm is beyond the scope of this work and the
interested reader can find more details in our recent works [12–15] or in the classical
papers [11, 16].

8.3 Latent Variable Model

The Latent-Variable Model (LVM) [8], that is the focus of this paper, is shown in
Fig. 8.2 with its N variables {X j } j=1:N , that take values from the discrete alphabet
X = {ξ1, ξ2, . . . , ξ|X |}.

The N variables are connected to one Hidden (Latent) Variable S that takes values
from the discrete alphabet S = {σ1, σ2, . . . , σ|S|}. The SISO blocks represent |S| ×
|X | row-stochastic probability conditional matrices: P(Xn|S) = [Pr{Xn = ξ j |S =
σi }] j=1:|X |

i=1:|S| .
This generative model can be seen also as a Mixture of Categorical Distribu-

tions [17] where each element of the alphabet S is a “Bayesian cluster” for the
N -dimensional stochastic vector,X = (X1, X2, ..., XN ). More information on LVM
described using FGrn can be found in [14, 15, 18, 19].

Note that in the FGrn formulation [12] each SISO block of Fig. 8.2 uses its own
backward message bX j at the bottom, and a different incoming message from the
diverter fS( j) . Similarly the sum rule produces specific forward messages fX j at the
bottom and different backward messages bS( j) toward the diverter.

In this work the N observed variables are the object categories in the current
scene and the hidden variable S represents the context variable. More specifically,
the label in X = 0, 1, 2, .., D, describes how many times that object category is
present in a realization and S groups the occurrences in a context by similarity to
previous outcomes. Generally the complexity of the whole system increases with the
cardinality of the defined alphabets. In our experiments we will use D = 2, where
we assign the value 2 when the number of occurrences is greater or equal to 2.

After learning, the network in Fig. 8.2 represents the joint probability distribution:

pX1,X2,...,XN ,S(x1x2...xN , s) = pX1|S(x1|s)pX2|S(x2|s) . . . pXN |S(xN |s)πS(s).

When an example (x1[n]x2[n]...xN [n]) at time n is observed, backward messages
bX j = δ(x j − x j [n]), j = 1, ..., N , are injected into the network, where δ is the Kro-
necker delta. After message propagation, the forward distribution at the i th variable
will be proportional to the posterior probability of Xi given all the other observed
variables. For example, for X1 we have:
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fX1(x1) = ∑
s∈S pX1|S(x1|s)pX2|S(x2[n]|s) . . . pXN |S(xN [n]|s)πS(s)

= pX1,X2,...,XN (x1x2[n]...xN [n]), (8.1)

which is proportional to the posterior distribution of the X1 given all the other
observed variables (pX1|X2,...,XN (x1|x2[n]...xN [n])). Note that variable S is never
observed and there is no interaction between forward and backward messages at
each Xi because the graph has no loops.

8.3.1 Model Evaluation

Once themodel parameters have been learned via probability propagation and theEM
algorithm [12], in this unsupervised scenario we need to define an appropriate metric
to evaluate the system in performing inference. In this paperwe use empirical average
likelihood, average entropy and error probability, as described in the following.

8.3.1.1 Likelihood

Note that, as in any cycle-free Bayesian network, the likelihood for each example is
available anywhere in the network. For example at time n at X1 we have:

L[n] = pX1,X2,...,XN (x1[n], x2[n], ..., xN [n])
= pX1,X2,...,XN (x1, x2[n], ..., xN [n])δ(x1 − x1[n]) = fX1(x1) · bX1(x1[n]),

(8.2)
and the product fX j (x j ) · bX j (x j [n]) at any other j would give the same result. To
get the exact values, we should not normalize messages during propagation but nor-
malization is important for numerical stability and we usually do so. Therefore to
estimate the likelihood for the nth example, we average among the different val-
ues obtained from different variables L[n] = 1

N

∑N
j=1 fX j (x j [n]). Since we have Ttr

training examples and Tva validation examples, we compute the Negative Log Likeli-
hood of the entire sets asLtr = − 1

Ttr

∑Ttr
n=1 log L[n] andLva = − 1

Tva

∑Tva
n=1 log L[n].

8.3.1.2 Entropy

To have amore detailed understanding of the capability of the system to provide sharp
responses for each variable, given all the others, we also compute the conditional
entropy or each variable Xi given all the others [20]. For example, for variable X1:

H(X1|X2...XN ) =
= −∑

x2..xN
p(x2...xN )

∑
x1
p(x1|x2, ..., xN ) log p(x1|x2, ..., xN )

= −∑
x1,x2,...,xN

p(x1, x2, ..., xN ) log p(x1|x2, ..., xN ),

(8.3)
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that can be computed from the messages as:

H(X1|X2 = x2[n], ..., XN = xN [n])
= −∑

x1
p(x1, x2[n], ..., xN [n]) log p(x1|x2[n], ..., xN [n])

∼ −∑
x1

fX1(x1) · log fX1(x1)
(8.4)

This computation can be performed for each {X j } j=1:N and possibly be averaged
over the Training or the Validation Set.

8.3.1.3 Error Probability

The marginal probability of each observed variable p(X j ) is proportional to the
product between the twomessages fX j (x j ) · bX j (x j ). However, during testing, when
X j is available, bX j (x j ) is a sharp distribution δ(x j − x j [n]) with x j [n] = δk =
[0, .., 1, .., 0] (a vector with all zero except for the k-th position), and the forward
distribution fX j [k] is the posterior distribution for that variable given all the others.
Therefore to evaluate the accordance between the ground truth, described by the
backward message bX j , and the posterior inferred by the network carried by the
forward message fX j , we can use a Maximum A Posteriori (MAP) criterion: given
that h is the position of the maximum of the forward message, if h is different from
k, the position of the ground truth value, we declare an error. The error count is
then averaged over the entire dataset and variables in order to provide a synthetic
measure of performance. Clearly some variables may be more accurately predicted
than others. This depends on the intrinsic dependence with the other variables and
with the cluster variable.

8.4 Simulations on the COCO Dataset

COCO Dataset [10] is a large collection of natural images with segmentation and
annotations provided for all objects in the scene. The complete Dataset (Release
2014) is composed by 123, 287 images representing 80 common objects resulting
in a total of 886, 284 labeled object instances. We have trained our model using a
subset of 3000 images and annotations randomly extracted from the complete COCO
Dataset.

Since our objective is to evaluate the presence of the 80 categories in the image,
we have represented each image with a vector of 80 observed category variables
X = {X j } j=1:80. Each observed variable X j is related to a forward message fX j and
to a backward message bX j .

The Training Set of 3000 images, can be represented as a matrix X of dimension
3000 × 80 with the generic element, {Xi j } j=1:80

i=1:3000, that can assume three possible
values:
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Fig. 8.3 aA scene from the Training Set; bBackwardmessages (b0, b1, b2) injected in the network
and forward messages ( f0, f1, f2) collected at the end of the inference process. Other 76 variables
have not been shown for space limitations but most of the objects they represent are not present in
the scene

{Xi j } j=1:80
i=1:3000 =

⎧
⎪⎨

⎪⎩

0 object of category j is absent in image i,

1 object of category j is present only once in image i,

2 object of category j is present more than once in image i.

To define a Validation Set we have randomly extracted from the COCO Dataset 750
images not included in the Training Set and without duplicated patterns.

In probabilistic terms the generic observed variable X j is a categorical vari-
able that can assume values in a vocabulary X = {ξ0 = 0, ξ1 = 1, ξ2 = 2}. Through
the injection of the backward messages into the network, we describe the evi-
dence related to each variable, with sharp one-hot representation (i.e. if the j-
th category is present once in the current image, we represent this situation as
bX j = [bX j (ξ0) = 0, bX j (ξ1) = 1, bX j (ξ2) = 0]).

For example, considering the scene in Fig. 8.3a, since the object chair is present
more than once, the backward message for the chair variable will be: bXchair =
[0, 0, 1].

In the learning phase we have 3000 backward messages. All the other messages
at the beginning of the learning process are initialized to uniform distributions. Also
the forward message (prior) for the latent variable is set to be uniform. For Ne epochs
these messages flow in the network and are used to learn the 80 SISO blocks in the
system, following the rules described in [12, 15].

In Figs. 8.4a, b and c we show, respectively, the Likelihood, the Entropy and the
Probability Error on the observed data when we vary the embedding space size on
the Training and the Validation Set. These trends are useful to choose the embedding
space size.

From Fig. 8.4a we can see that the Negative Log Likelihood on the Training Set
and on the Validation Set decreases until the embedding space size of about 85. After
that both curves become substantially stable even though on the Validation Set we
note a slow increase.

The Entropy (Fig. 8.4b) gives us the information on the capability of the network
to respond sharply for each variable, given all the others. It may be interpreted as
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(a) (b) (c)

Fig. 8.4 a Likelihood, b Entropy, c Error Probability of the LVM for various embedding space
dimension

the average uncertainty for all variables: low values should correspond to higher
model accuracy. In our simulations, both on the Training Set and on Validation Set,
when the embedding space increases, the Entropy decreases indicating that a higher
Embedding Space improves the model performance. At the Embedding Space of 25
the Entropy on the Validation Set starts to oscillate and after 85 it increases indicating
a reduction of the generalization power of the network.

The Error Probability (Fig. 8.4c) is estimated using the decision rule described
before applied to backward and forward messages. On the Training Set, and the
Validation Set the Error Probability decreases until the embedding space has size
approximately 85.

8.4.1 Inference

In the following we set the embedding space size |S| to 30 and, after learning, we
have inspected the information provided by the network. In Fig. 8.3b we can see the
backward and forward messages related to some observed variables for the image of
Fig. 8.3a (from the Training Set). For example, if we consider the variable bicycle, the
backward message, representing the ground truth, tells us that the bicycle is absent in
the scene. The forward message, that merges the information learned by the network,
confirms this evidence. The same behavior is shown by other vehicle objects (not
shown in the figure for space limitations) confirming that it is very unlikely to find
these type of objects in an internal environment as a kitchen.

As another example, consider the variable chair. The backwardmessage indicates
that this object is present various times in the current scene. The forward message
returned by our model says that it is very likely either find the chair more times, or
not at all in this type of scene. Instead it seems to be less unlikely that this object
is present only once. Another interesting situation is represented by the variable tv
that can be present in this type of scene, according to the forward message, once or
not at all, but it is completely unlikely that this object is present more than once.
Finally, if we consider the variable book, the backward message indicates that this
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Fig. 8.5 a A scene from the Validation Set; b Some backward (b0, b1, b2) and forward ( f0, f1, f2)
messages after the inference process. Other 76 variables have not been shown for space limitations
but most of the objects they represent are not present in the scene

object is present more than once in the current image. The model instead, that has
seen all images of the Training Set, has built an internal representation of the reality
that believes that, in this type of scene, the book can be absent or present more than
once. It has learned that it is less likely that a book is present only once.

In Fig. 8.5 an image from the Validation Set is shown with some backward and
forward messages. In particular, in this image there are two main objects: a bench in
the foreground and some boats in the background, as we can see from the backward
input messages. The small values for forward messages f1 and f2 for variables bench
and boat suggest it is unlikely that these two objects coexist in the same context
because in the Training Set this coexistence is rare.

8.4.2 Recall

If the backward messages for all observed variables are set to uniform except for
some variables (evidence), we can perform a Bayesian Recall task, obtaining the
prediction of the presence of other objects in the scene according to the provided
evidence (fill-in). For example, for image in Fig. 8.6a we set all observed variables in
our system to uniform except for variables: chair, dining table and bottle (for space
limitations only the dining table is represented in Fig. 8.6b), obtaining the forward
messages in Fig. 8.6b. In the context with the evidence injected, our model predicts
that it is more likely to have more instances of a person, than having one or none. At
the same time the model predicts the possible presence of forks and knives. Spoons
and bowls are also predicted (not shown for space limitations).
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Fig. 8.6 a A scene from the Training Set; b Some backward messages (b0, b1, b2) injected in the
network and some forwardmessages ( f0, f1, f2) collected at the end of the inference process. Other
76 variables have not been shown for space limitations but most of the objects they represent are
not present in the scene

8.4.3 Inspection of Learned Clusters

In order to inspect the learned representation and express the characteristics of the
clusters present in the observed data, we set the backward messages for all observed
variables to uniform and inject a delta distribution as forward message at the latent
variable S.

In this experiment we show results for an embedding space dimension equal to 10.
Figure8.7 shows the forward messages for three values of S (three of the ten learned
contexts). The first context (Fig. 8.7a) is clearly related to an indoor scene where
there are one person or more, at least one dinner table, fork and knife. The second
context (Fig. 8.7b) seems to be related to an outdoor sport activity with one person
or more, sport ball, tennis rackets and baseball ball. The third context (Fig. 8.7c) is
clearly related to a road scene, in fact there are more than one person, cars and the
probability of the presence of bus and traffic light is not negligible.

8.4.4 Error Correction

The context analysis can be useful also for error correction in a pattern recognition
task. Figure8.8a shows an image where we simulate a wrong detection of a dining
table and of a car in the considered scene. The LVMrespondswith a forwardmessage
that is proportional to the posterior probability on a detection given all the others
(Fig. 8.8b). These values can confirm or modify the injected evidence based on the
data observed during the Training Phase.

We can note that the network “corrects” the observation of the dining table because
this object is not coherent with the context inferred using the other observations.
Differently the observation of one car is a plausible detection: in fact the probability
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Fig. 8.7 Backwardmessages (b0, b1, b2) injected in the network and forwardmessages ( f0, f1, f2)
collected at the end of the inference process for three different context learned by the network

Fig. 8.8 a A scene from the Training Set; b Some backward (b0, b1, b2) and posterior ( f0, f1, f2)
messages after the inference process. Other 76 variables have not been shown for space limitations

of the presence of a car (or more than one), in similar context, is greater than zero.
Most observations of the other variables are substantially confirmed by the posterior
(not shown for space limitations) except for some observations that are not likely
(e.g. more than one horse).
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8.5 Conclusion

In this workwe have used a Latent VariableModel in the framework of Factor Graphs
in Reduced Normal Form for context analysis with experiments on a subset of the
COCODataset. The experiments conducted here demonstrate that the LVM is a very
flexible model that can manage the context variables in order to understand the scene
depicted in an image. The extreme flexibility of the FGrn paradigm permits the fusion
of the information coming from different situations and provides an embedded code
for a scene understanding task. In futureworkmore complex structures for automated
scene captioning systems based on the contextual information will be investigated.
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Chapter 9
A Classification Approach to Modeling
Financial Time Series

Rosa Altilio, Giorgio Andreasi and Massimo Panella

Abstract In this paper, several classification methods are applied for modeling
financial time series with the aim to predict the trend of successive prices. By using
a suitable embedding technique, a pattern of past prices is assigned a class if the
variation of the next price is over, under or stable with respect to a given threshold.
Furthermore, a sensitivity analysis is performed in order to verify if the value of such
a threshold influences the prediction accuracy. The experimental results on the case
study of WTI crude oil commodity show a good classification accuracy of the next
(predicted) trend, and the best performance is achieved by the K-Nearest Neighbors
classification strategy.

9.1 Introduction

Stock market prediction is one of the most challenging fields for time series fore-
casting. In RandomWalk Theory [1], prices do not follow a trend and therefore their
prediction is no worth of being considered. Nevertheless, in recent years a lot of
forecasting methods have been developed. Two approaches are commonly used to
analyze the movement of prices (i.e., up, down, hold, etc.) in order to predict future
trends [2]. The first one is the Fundamental Analysis, which utilizes economic factors
to estimate the intrinsic values of securities. The second one, known as Technical
Analysis, is based on the principles of the Dow Theory [3] and it uses the history of
prices to predict future movements, by considering the historical graph of prices and
looking for recurrent structures. Recently, other methods based on computational
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intelligence have been developed. These approaches have shown that it is possible
to achieve a high accuracy for prediction in spite of the early results obtained by
Random Walk Theory.

Themain problem for financial forecasting is that themajority of economic behav-
iors are nonlinear [4] and hence, if we use a linear model we cannot capture all the
information within the time series. Traditional models based on statistical assump-
tions, as Autoregressive Integrated Moving Average (ARIMA) [5] and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) [6], have limitations in
estimating the underlying structure of data due to the complexity that a real system
presents. Therefore, in recent years many machine learning models [7], as Artifi-
cial Neural Networks (ANNs) [8], Gaussian Mixture Models [9], Support Vector
Machine (SVM) [10], and Genetic Algorithms (GAs) [11], have been proposed for
modeling financial time series.

Generally speaking, the aim of financial forecasting is to make a punctual predic-
tion, that is to look for the next day’s closing value. For this purpose, the proposed
methods can achieve good results in terms, for example, of Mean Squared Error
(MSE), Normalized Mean Squared Error (NMSE), Noise-to-Signal Ratio (NSR),
Mean Absolute Percentage Error (MAPE) [12–14], but they have a problem: the
correspondence on the price movement up or down of the predicted time series with
respect to the actual one is not assured.

Instead, in a lot of real applications it is more important to know the trend of
stock prices rather than the punctual value. This approach can be formulated as
a classification problem [15]. Some introductory papers in this regard have been
presented many years ago, with no effective results. In [16], four features of the
NASDAQ-100 Technology Sector Index are considered (i.e., stock price volatility,
stock momentum, index volatility and index momentum), in order to predict a label
that represents if the stock’s price increases or decreases. The SVM technique is used
for classification with the best accuracy of 61% approximately. In [17], the Dow
Jones Industrial Average Index is predicted and it is found out that some periods
are more predictable than others. In particular, the Hurst exponent is used to select
the most predictability period. ANNs, K-Nearest Neighbor (KNN), decision trees,
and ensemble methods are used to solve the classification problem. The best result
achieves 65% in terms of accuracy. In [18], twelve technical indicators are used
to predict the label of Korea composite stock price index (KOSPI) with a binary
classification for next day’s direction. An SVM classifier is adopted with an accuracy
in classification of 57%.

In this paper, amore general classification approach is proposed byusing enhanced
models for time series forecasting based on embedding theory. The aim is to predict
if the stock’s price increases, decreases or remains stationary in a certain threshold
for the next trading day. The proposed approach is applied to a case study pertaining
to the WTI crude oil energy commodity. In fact, energy is the main factor for every
economic market [19]. Energy price dynamics is affected by complex risk factors,
such as political events, extreme weather conditions, and financial market behavior.
Crude oil is the key component for the economic development aswell as the growth of
industrialized and developing countries. In this market, predictions are fundamental
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for covering commodity’s risk because the commodity price impacts on company
and country profits.

This contribution is organized as follows. In Sect. 9.2, the methodology of the
proposed predictive classification is introduced, while in Sect. 9.3 the experiments
and the empirical results are summarized and discussed together with a sensitivity
analysis on the algorithm parameters. Finally, our conclusions are drawn in Sect. 9.4.

9.2 Proposed Methodology

The main goal of forecasting financial time series is to estimate the closing price of
the next trading day. In this work, we will focus on a trend classification rather than
on a punctual, numerical prediction; thus, we will consider only if the stock price
increases, decreases or it holds. A preliminary step, which is mandatory to follow
the said approach, is to build a dataset suited to a classification problem and hence,
to associate past observations of a time series with a symbolic label describing the
next trend to be predicted.

Let Ck , k ≥ 1, be the sample of a time series representing the closing price of
the k-th day. The trend of each day is associated with a symbolic label in the set
L = {up, hold, down}, which is determined by comparing the current closing
price to the one of the previous day. The class Lk of the k-th day is obtained by the
following comparisons:

• Class up:
Ck − Ck−1

|Ck−1| > ε (9.1)

• Class hold:

− ε ≤ Ck − Ck−1

|Ck−1| ≤ ε (9.2)

• Class down:
Ck − Ck−1

|Ck−1| < −ε (9.3)

The trend’s prediction of the k-th day can be based on past observations of the
closing prices. Usually, this is obtained by the so-called ‘embedding technique’ by
which the vector Ck of past samples is defined as:

Ck = [
Ck−(D−1)T Ck−(D−2)T . . . Ck−T Ck

]
, (9.4)

where D is the embedding dimension and T is the time lag between samples [20]. In
the following, D and T will be chosen by a rule-of-thumb as successively specified.

Given the embedded vector of past samples, to complete the predictive model
of the trend behavior it is mandatory to determine a classifier f (·) that represents
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the link between the embedded vector at day k and the successive trend label at
day k + 1, that is Lk+1 = f (Ck). As financial time series usually have a complex
behavior, which is often noisy and even chaotic, the classifiermodelmust be based on
machine learning techniques by which the non-linear and/or non-stationary nature of
time series is captured by learning themodel parameters using data driven techniques.
To this end, a training setD based on available observations is arranged. Let K be the
last available day for which the closing price is available before starting the training
procedure, then we have:

D =

⎛

⎜⎜⎜⎜⎜
⎝

CK−n−(D−1)T . . . CK−n−T CK−n LK−n+1

CK−n+1−(D−1)T . . . CK−n+1−T CK−n+1 LK−n+2
...

...
...

...

CK−2−(D−1)T . . . CK−2−T CK−2 LK−1

CK−1−(D−1)T . . . CK−1−T CK−1 LK

⎞

⎟⎟⎟⎟⎟
⎠

(9.5)

Such a training set is made of n observations arranged by rows. In order to determine
how many rows are available (or may be used) at day K , we need to satisfy the
following boundary condition:

K − n − (D − 1)T ≥ 1 ⇒ n ≤ K − 1 − (D − 1)T . (9.6)

An illustrative example regarding the embedding procedure and label association
is shown in Fig. 9.1, by using D = 3, T = 1, and ε = 0.01. Considering at day 6 the
embedded vector:

C6 = [77.23 76.98 73.14] ,

the relative variation from day 6 to day 7 is:

71.19 − 73.14

73.14
= −0.0267 < −ε ,

and so the trend label of day 7 is L7 = down.

9.3 Experimental Results

In this paper, we consider data of the WTI time series relevant to the year 2010 and
available at www.investing.com. A visual representation of the behavior is shown
in Fig. 9.2, where 254 trading days are considered. In particular, closing prices are
used as inputs to predict the label for the next day.

The numerical simulations are implemented using MATLAB R2015b on a Mac-
book Pro 2.7 GHz, Intel core i5 and 8 GB of RAM. Data are preprocessed on
the basis of the embedding parameters and tests are done with different values of

www.investing.com
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Fig. 9.1 An example of
label definition

Fig. 9.2 WTI prices for year
2010

Fig. 9.3 A generic data set
row by using the adopted
embedding parameters

D = {3, 5, 10}, while keeping fixed T = 1 as a rule-of-thumb. The chosen values
of D represent three days, one week and two weeks as input, respectively. An idea of
how input data are organized to predict the label for the next day is shown in Fig. 9.3.

As previously explained, our aim is to predict the trend of the time series and this
is formulated as a classification problem. Six classification models are adopted in
this regard: Linear Discriminant Analysis (LDA); Quadratic Discriminant Analysis
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Table 9.1 Classification accuracy (%) for LDA, QDA, KNN

ε (%) LDA QDA KNN

D = 3 D = 5 D = 10 D = 3 D = 5 D = 10 D = 3 D = 5 D = 10

0.5 37.40 35.04 41.73 37.01 34.65 34.65 35.43 35.43 40.16

0.8 37.01 35.04 37.40 38.58 34.25 35.83 31.50 35.43 35.43

1.0 37.40 36.61 35.83 35.83 34.25 37.80 44.09 39.76 39.76

1.2 41.54 39.76 38.98 38.98 36.61 39.37 51.18 50.39 43.31

1.5 44.88 42.13 42.91 42.13 40.55 47.24 50.79 55.51 51.97

2.0 48.43 49.61 48.03 50.39 48.03 57.87 72.05 68.50 70.87

2.5 49.61 51.97 53.54 53.94 56.69 67.72 83.07 82.68 85.43

Table 9.2 Classification accuracy (%) for Naive Bayes, SVM, CART

ε (%) Naive Bayes SVM CART

D = 3 D = 5 D = 10 D = 3 D = 5 D = 10 D = 3 D = 5 D = 10

0.5 40.55 37.80 36.22 39.37 34.25 36.61 38.98 36.22 41.74

0.8 36.22 35.43 37.40 36.61 32.28 34.25 34.25 34.65 29.13

1.0 42.52 31.89 36.61 36.61 33.46 37.40 38.58 36.22 37.01

1.2 51.18 44.88 39.19 41.74 39.76 35.83 45.67 41.73 38.58

1.5 57.48 56.69 48.82 40.16 38.58 42.91 46.85 45.67 48.43

2.0 74.41 69.69 62.20 44.09 46.85 54.33 63.78 64.17 59.84

2.5 84.25 71.65 62.20 48.43 49.61 61.02 81.89 74.02 79.53

(QDA); KNN; Naive Bayes; SVM; Classification and Regression Tree (CART). The
results are evaluated through a confusion matrix and the classification accuracy. The
confusion matrix is a matrix where rows represent the real labels while columns the
predicted ones; the correct predictions are on themain diagonal.Numerical results are
evaluated also in terms of classification accuracy (A) that, in respect to the elements
ai j of the confusion matrix, is given by the percentage ratio between the number of
correct predictions and the total observations:

A = a11 + a22 + a33
3∑

i=1

3∑

j=1
ai j

× 100 . (9.7)

The numerical results are summarized in Tables 9.1 and 9.2 and a sensitivity anal-
ysis has been realized in order to ascertain how the value of ε influences the accuracy
of prediction. It is evident that all of the classifiers obtain better performances as
ε increases. A visual representation of this concept is given in Fig. 9.4, where we
report the results for D = 3 only, as a similar behavior is obtained for other values of
the embedding parameters. As it can be seen, all of the classifiers report an upward
trend with ε increasing, with a knee above ε = 1.5%.
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Fig. 9.4 Trend accuracy versus ε using D = 3

Fig. 9.5 Best confusion matrix obtained at different values of ε

The best prediction accuracy of 85.43% is obtained by the KNN classifier with
D = 10 and ε = 2.5%, the related confusion matrix is shown in Fig. 9.5a: the class
predicted more accurately is hold, with 216 predicted labels on 217 real hold labels.
However, this performance is obtained on an unbalanced dataset, mostly containing
the class hold because of the relatively high range associated with the largest value of
ε in (9.2). As previously discussed, the performances are adequate also for ε = 2.0%,
for which the best classifier is Naive Bayes with D = 3 and an accuracy of 74.41%.
In such a case, considering the confusion matrix shown in Fig. 9.5b, the dataset is
much more balanced with respect to the previous one and still achieving a good
accuracy. The performances get worse rapidly for smaller values of the considered
threshold; at ε = 1.5%, the best classifier is still Naive Bayes, with D = 3 but scor-
ing a classification accuracy of 57.48%. The related confusion matrix, reported in
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Fig. 9.6 Box plot sensitivity
analysis

(a) D=3

(b) D=5

(c) D=10
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Table 9.3 WTI classification with ε = 2.5%

D LSE (%) LDA (%) QDA (%) KNN (%) N-B (%) SVM (%) CART (%)

3 85.43 49.61 53.94 83.07 84.25 48.43 81.89

5 85.43 51.97 56.69 82.68 71.65 49.61 74.02

10 85.43 53.54 67.72 85.43 62.20 61.02 79.53

Fig. 9.5c, evidences an even more spread dataset. Nonetheless, the number of ‘false
positives’ (i.e., the worst situation where a real down is predicted as up) remains
limited in all almost all of the considered situations.

Finally, the results are summarized in terms of box plots using different values
of D. As shown in Fig. 9.6, in all cases the classifier with the best accuracy is the
KNN one. It achieves the highest box plot, but also the more spread due to the
influence of ε. In order to compare these results with a reference baseline, a linear
predictor whose parameters are determined by standard Least Squares Estimation
(LSE) is considered. The threshold ε is set to 2.5% and the results are summarized
in Table 9.3. Overall, LSE has a better performance for a reduced information taken
into account within the embedded dataset, that is for D = 3 and D = 5, while for
D = 10 the KNN classifier is worthy of being considered.

9.4 Conclusion

In this paper, a novel approach has been proposed to modeling the behavior of
financial time series, with the aim to predict a label for the next trading day. It is
formulated as a classification problem,where classupoccurswhen the price increases
over a threshold, down when the price decreases under the same threshold and hold
when the price remains stationary.

The results show that there are not significant differences among different choices
of the embedding parameters, but the sensitivity analysis shows that the threshold’s
value influences the prediction accuracy. All of the classifiers perform better with a
high value of the threshold. An accuracy of 74.41% on a balanced dataset is achieved
at ε = 2.0% by using the Naive Bayes classifier with D = 3 and T = 1.

The use of complex classification models based on machine learning techniques,
and taking into account the distributed nature of financial data sources across the
markets worldwide [21, 22], should be further investigated in future research works.
It is possible to improve thedesiredperformance alsobyusingmore suited embedding
techniques. Actually, the performances are similar to the ones obtained by a linear
classification model, although they are fully adequate in respect to the goal of the
approach proposed in this paper.
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Chapter 10
A Low-Complexity
Linear-in-the-Parameters Nonlinear
Filter for Distorted Speech Signals

Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Raffaele Parisi
and Aurelio Uncini

Abstract In this paper, the problem of the online modeling of nonlinear speech
signals is addressed. In particular, the goal of thiswork is to provide a nonlinearmodel
yielding the best tradeoff between performance results and required computational
resources. Functional link adaptivefilterswere proved to be an effectivemodel for this
problem, providing the best performance when trigonometric expansion is used as a
nonlinear transformation. Here, a different functional expansion is adopted based on
the Chebyshev polynomials in order to reduce the overall computational complexity
of the model, while achieving good results in terms of perceived quality of processed
speech. The proposed model is assessed in the presence of nonlinearities for both
simulated and real speech signals.

Keywords Nonlinear modeling · Functional links · Chebyshev polynomials
Loudspeaker distortions · Nonlinear system identification

10.1 Introduction

In the recent years, a widespread availability of commercial hands-free speech com-
munication systems has occurred, also due to the development of immersive speech
communication techniques [4, 7]. However, such devices often mount low-cost com-
ponents, which may affect the quality of the perceived speech. In particular, poor-
quality loudspeakers, vibrations of plastic shells, D/A converters and power ampli-
fiers may introduce a significant amount of nonlinearity in speech signals, especially
during large signal peaks.

In online learning applications related to hands-free speech communications, such
as nonlinear acoustic echo cancellation (NAEC) and active noise control (ANC),
linear-in-the-parameters (LIP) nonlinear filters represent an effective and flexible
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solution [6, 8–10, 12, 18]. However, the modeling and compensations by LIP non-
linear filters may require a large number of nonlinear elements, which involve a
high computational load that may represent a problem of real-time applications like
NAEC.

In order to address this problem, in this paper,we propose aLIP nonlinear filter that
provides the best tradeoff between performance results and required computational
resources. In particular, we take into account the nonlinear functional link adaptive
filters (FLAFs) [6], which is based on a nonlinear expansion of the input signal by the
so-called functional links [11, 13, 16], and an adaptive filtering of the transformed
signal in cascade.

One of the most important advantages of the FLAF is its flexibility, since it is
possible to set the different parameters of the FLAF individually in order to fit the
model at best for a specific application. In the design of an FLAF, an important choice
is the number of functional links to be adopted in the model. This choice is strictly
related to the nonlinearity degree introduced by the unknown system and with the
chosen type of functional expansion. Therefore, in order to reduce the computational
complexity we directly aim at designing a suitable and efficient functional expansion
block to be used for the modeling of nonlinear speech signals.

In particular, Chebyshev functional links are assessed within NAEC problems
and compared with other classic functional expansions. Performance is evaluated in
terms of both error-based criteria and speech quality measures, while considering
the minimum possible computational load. Results are achieved over both simulated
and real data and show the effectiveness of Chebyshev functional links to be used
for a low-complexity FLAF model.

The paper is organized as follows: the FLAF-based model for the modeling of
speech signals is introduced in Sect. 10.2, while Chebyshev functional links and their
properties are described in Sect. 10.3. Results are discussed in Sect. 10.4 and, finally,
in Sect. 10.5 our conclusions are drawn.

10.2 A Functional Link-Based Nonlinear Model for NAEC

The FLAFmodel is purely nonlinear, since the adaptive filter receives as input a trans-
formed nonlinear signal. However, very often in acoustic speech signal processing,
there is also a linear component to be modeled, as in the case of the presence of an
acoustic impulse response in NAEC. To this end, we adopt a filtering scheme based
on the FLAF that includes both linear and nonlinear filtering, called split functional
link adaptive filter (SFLAF) [6].

The SFLAF architecture, depicted in Fig. 10.1, involves a linear branch and a
nonlinear branch in parallel. The former is nothing but a linear adaptive filter totally
aiming at modeling the linear components of the system to be identified. On the other
hand, the nonlinear branch is a nonlinear FLAF. The output signal of the SFLAF is
obtained from the sum of the outputs of the two parallel branches:
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Fig. 10.1 The split
functional link adaptive filter

y [n] = yL [n] + yFL [n] = xTn wL,n−1 + gTn wFL,n−1. (10.1)

The error signal is then obtained as:

e [n] = d [n] − y [n] (10.2)

where d [n] is the desired signal that may includes any background noise. The
error signal (10.2) is used to adapt both the adaptive filters. In (10.1), xn ∈ R

M =[
x [n] x [n − 1] . . . x [n − M + 1]

]T
is the input to the filter on the linear branch,

with M being the length of the input vector. Also, in (10.1), the vector gn ∈ R
Me =[

g0 [n] g1 [n] . . . gMe−1 [n]
]T

is the expanded buffer, i.e., the output of the functional
expansion block (FEB) whose length is Me ≥ Mi.

Both the adaptive filters wL,n and wFL,n in (10.1) can be updated by using any
linear adaptive algorithm. Here, we use a normalized least-mean square (NLMS)
algorithm [17], so that:

wL,n = wL,n−1 + μL
xne [n]
xTn xn + δ

(10.3)

wFL,n = wFL,n−1 + μFL
gne [n]
gTn gn + δ

(10.4)

where μL and μFL are the step-size parameters and δ is a regularization factor.
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10.3 Chebyshev Functional Link Expansion

10.3.1 Functional Expansion Block

One of the most important part in the FLAF-based model is the FEB, which
contains a series of functions satisfying universal approximation properties. Such
functions, called “functional links”, are collected in a chosen set � = {ϕ0 (·) ,

ϕ1 (·) , . . . , ϕQ−1 (·)
}
, with Q being the number of functional links. The FEB receives

the first Mi ≤ M samples of xn , which are transformed and expanded in a higher-
dimensional space by the chosen set of functional links, thus yielding the nonlinear
expanded buffer gn:

g [n] = ϕ0 (x [n])

...

g [n − Q + 1] = ϕQ−1 (x [n])

...

g [n − Me + 1] = ϕQ−1 (x [n − Mi + 1])

where P is the order of the functional link.

10.3.2 Chebyshev Polynomial Expansion

The chosen set of functional links must satisfy the universal approximation proper-
ties, and it can be a subset of orthogonal polynomials, such as Chebyshev, Legen-
dre, Laguerre and trigonometric polynomials [2, 5, 13, 19] or just approximating
functions, such as sigmoid functions [11, 15]. Among such functional expansions,
trigonometric polynomials represent one of the most popular expansions, especially
for applications involving audio and speech input signals [6, 16], since at best of their
capabilities they provide the best performance results [5]. However, in this paper we
focus on Chebyshev polynomial expansion to reduce the computational load.

Chebyshev polynomials are widely used in different fields of application due to
their powerful nonlinear approximation capabilities. These properties were proved
in [13, 19] within an artificial neural network (ANN), which also shows faster con-
vergence than a multi-layer perceptron (MLP) network. Chebyshev polynomials
involve functions of previously computed functions, thus increasing their effective-
ness in dynamic problems. Moreover, being derived from a power series expansion,
Chebyshev functional links may approximate a nonlinear function with a very small
error near the point of expansion. On the other hand, the drawback is that, far from
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the point of expansion, the error often increases rapidly. Compared with other power
series, Chebyshev polynomials show lower computational complexity and higher
efficiency, when the polynomial order is rather low.

Considering the i-th input x [n − i] of the nonlinear buffer, with i = 0, . . . , Mi,
the Chebyshev polynomial expansion can be expressed as:

ϕ j (x [n − i]) = 2x [n − i]ϕ j−1 (x [n − i]) − ϕ j−2 (x [n − i]) (10.5)

for j = 0, . . . , P − 1. It can be noted from (10.5) that the number of Chebyshev
functional links is equal to the expansion order, i.e., Q = P . Initial values in (10.5)
(i.e., for j = 0) are:

ϕ−1 (x [n − i]) = x [n − i]

ϕ−2 (x [n − i]) = 1.
(10.6)

10.3.3 Properties of Chebyshev Polynomials

Chebyshev polynomials are endowed with some interesting properties [3]. They are
orthogonal in R1 with respect to the a weighting function 1/π

√
1 − x2 [n − i]:

∫ 1

−1
ϕ j (x [n − i]) ϕk (x [n − i])

1

π
√
1 − x2 [n − i]

dx =
⎧
⎨

⎩

0, j �= k
1, j = k = 0
1/2, j = k �= 0

.

(10.7)
For any x [n − i] ∈ R1, also ϕ j (x [n − i]) ∈ R1, with values comprises in the range
[−1, 1]. Therefore, ϕ j (x [n − i]) are equiripple functions in R1.

Moreover, any polynomial with order P , p (x [n − i]), can be derived as a linear
combination of Chebyshev polynomials [3]:

p (x [n − i]) =
P−1∑

j=0

c jϕ j (x [n − i]). (10.8)

The last property is important since a linear combination of Chebyshev polynomials
can arbitrarily well approximate any real continuous function f (x [n − i]). This can
be proved via the Stone-Weierstrass theorem [14], as shown in [3].

Moreover, the approximation of a continuous function f (x [n − i]) with a linear
combination of Chebyshev polynomials, p (x [n − i]), up to a degree P is very close
to a min-max approximation [3]. Indeed, the approximation error is:

ε [n − i] = f (x [n − i]) − p (x [n − i]) =
+ inf∑

j=P

c jϕ j (x [n − i]). (10.9)



112 D. Comminiello et al.

Table 10.1 Computational cost comparison of different functional link expansions in terms of
multiplications

Expansion type No. multiplications

Chebyshev Polynomial Expansion 2Me

Legendre Polynomial Expansion 4Me

Trigonometric Series Expansion Me/2 + P

For a continuous and differentiable function, the coefficients c j converge to 0 rapidly,
and therefore, ε [n − i] ≈ cPϕP (x [n − i]), which corresponds to an equiripple func-
tion.

Some of the above properties are proved in [3] for Chebyshev polynomials.

10.3.4 Analysis of the Computational Complexity

We briefly report the computational complexity of the Chebyshev functional link
expansions with respect to other standard expansions, like trigonometric and Legen-
dre series expansions. In order to provide a fair view of the computational resources
required by the expansions,we do not consider additional cost of the SFLAF structure
but we focus only on the operations made by the FEB.

The Chebyshev functional link expansion in (10.5) involves for each iteration
2PMi multiplications and PMi additions. Similarly, the complexity of Legendre and
trigonometric functional link expansions is derived in [5]. In terms of the expanded
buffer length, we can consider that Me = PMi for Chebyshev and Legendre func-
tional link expansions and Me = 2PMi for trigonometric expansion. A comparison
of the computational complexity, in terms of multiplications only, is summarized in
Table10.1. If we fix the expanded buffer length Me and we consider that P << Me,
then it is easy to note that the trigonometric expansion involves the smallest number of
multiplications. Therefore, in order to achieve the best tradeoff between performance
and complexity using Chebyshev functional link, we necessary need to obtain supe-
rior performance than trigonometric functional links. As an alternative, we should try
to obtain the same performance of trigonometric functional links but with a smaller
number of nonlinear elements.

10.4 Experimental Results

We assess the proposed Chebyshev SFLAF within NAEC scenarios, comparing
results with those obtained by trigonometric and Legendre series expansions. For
each experiment we show the best possible SFLAF configuration, in terms of the
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chosen parameters, yielding the optimal tradeoff between performance and compu-
tational complexity.

We evaluate the performance results in terms of the echo return loss enhancement
(ERLE), which describes the amount of echo canceled by the microphone signal,
and it is defined as:

ERLE [n] = 10 log10

(
E

{
d2 [n]

}

E
{
e2 [n]

}

)

(10.10)

The ERLE denotes how much echo signal is canceled, but this does not always
correspond to a real signal enhancement in terms of perceived quality. Therefore,
besides using the ERLE, we also consider another quality measure suitably designed
for speech signals that may denote how “well” an SFLAF model produces a reliable
estimate of the echo signal. In particular, we consider one of the most used objective
measures for the speech quality evaluation that is the perceptual evaluation of speech
quality (PESQ) [1], which estimates the overall loudness difference between the
original signal and its estimation. Such signals are equalized to a reference listening
level and then processed by a filter having a similar response to a standard telephone
handset. An auditory transform is then applied to obtain the loudness spectra. The
loudness difference between the two signals is averaged over time and frequency in
order to achieve a prediction of subjective quality rating [5]. The PESQ score may
be comprise in the range [1.0, 4.5], where 4.5 indicates the best possible quality.

10.4.1 Simulated NAEC Scenario

The first experiment is conducted in a simulated teleconferencing environment with
reverberation time of T60 ≈ 150 ms, in which the acoustic impulse response between
the loudspeaker and the microphone is measured at 8 kHz sampling rate. A desktop
computer equipped with an i3 CPU at 3.07 GHz is used for simulations. Female
speech signal is used as input. Additive Gaussian noise is considered at the micro-
phone signal, with 20 dB of signal-to-noise ratio (SNR). The simulated distortion
applied to the female speech is a symmetrical soft-clipping nonlinearity, aiming at
simulating a classic loudspeaker saturation effect, described by [5]:

x [n] =
⎧
⎨

⎩

2
3ζ x [n] for 0 ≤ |x [n]| ≤ ζ

sign (x [n]) 3−(2−|x[n]|/ζ )2

3 for ζ ≤ |x [n]| ≤ 2ζ
sign (x [n]) for 2ζ ≤ |x [n]| ≤ 1

(10.11)

where the clipping threshold 0 < ζ ≤ 0.5 determines the nonlinearity level. Here,
we consider a strong distortion, provided by using ζ = 0.1 in (10.11).

We set the step sizes at μL = μFL = 0.5, and Mri = M for all the SFLAF
but we use the minimum possible expansion order for Chebyshev, trigonometric
and Legendre series such that results can be comparable in terms of the ERLE.
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Fig. 10.2 Performance
comparison in terms of
ERLE between SFLAFs with
different expansions for
speech input affected by a
soft-clipping nonlinearity
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Table 10.2 Performance comparison in terms of PESQ and processing time between SFLAFs with
different expansions for speech input affected by a soft-clipping nonlinearity

SFLAF type Me PESQ Sec.

Chebyshev SFLAF PMi = 600 3.765 5.339

Legendre SFLAF PMi = 1200 2.868 7.876

Trigonometric SFLAF PMi = 1200 3.582 5.672

In particular, we have chosen P = 2 for both Chebyshev and trigonometric SFLAF
and P = 4 for Legendre SFLAF. Such results are shown in Fig. 10.2 where it is
possible to see that Chebyshev SFLAF provides the best performance keeping the
complexity contained. For better readability of the figures, we show a window of 3
out of 10 s of the ERLE behavior. This result is more evident by evaluating the quality
measures in terms of the PESQ, which are reported in Table10.2, where it can be
also seen that Chebyshev SFLAF achieves the best PESQ score, while adapting the
lowest number of nonlinear elements and, thus, involving the lowest computational
time.

10.4.2 Real NAEC Scenario

In a second experiment, we evaluate the performance of the proposed method on
real data from a classic scenario of acoustic echo cancellation, i.e. a hands-free
desktop teleconference. For this experiment we consider a typical office room with a
relatively low level of background noise, which guarantees sufficiently high signal-
to-noise ratio (SNR). In thisway it is possible to evaluate the proposed canceller fairly,
thus avoiding external interferences that could require further processing modules
(e.g., double-talk detectors). For the same reason, we used a high-qualitymicrophone
(AKG C562 CM), so that the most significant nonlinearities in the system are those
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Fig. 10.3 Performance
comparison in terms of
ERLE between SFLAFs with
different expansions for
speech input in a real NAEC
scenario

Time [sec.]
1 2 3 4

E
R

LE
 [d

B
]

0

5

10

15

20

25

30
Tri-SFLAF
Cheb-SFLAF
Leg-SFLAF

male speech input

Table 10.3 Performance comparison in terms of PESQ and processing time between SFLAFs with
different expansions for speech input in a real NAEC scenario

SFLAF type Me PESQ Sec.

Chebyshev SFLAF PMi = 100 3.857 2.132

Legendre SFLAF PMi = 200 2.742 3.626

Trigonometric SFLAF PMi = 200 3.124 2.951

produced by the loudspeaker. To this end, 40 cm far from the microphone, we placed
a low-cost commercial loudspeaker, capable of introducing significant distortions.
The input signal is male speech recorded at 16 kHz sampling frequency. The length
of the experiments is 20 s. We consider a typical volume level of a quiet speech
conversation, when usually loudspeaker distortions are mild and they cannot be
perceived by the user. However, they do affect the echo cancellation, thus degrading
the performance in the absence of a nonlinear modeling.

For this experiment, we use the same setting of the previous one, but with different
filter lengths. In particular, we useM = 200 for the filter on the linear path, andMi =
50 for the functional expansion. Therefore, the number of parameters for the filter
on the nonlinear path is Me = PMi = 100 for the Chebyshev SFAF, and Me = 200
for both the trigonometric and Legendre SFLAFs. Results in terms of the ERLE are
shown in Fig. 10.3, showing a window of 3 out of 20 s, in which Chebyshev SFLAF
clearly shows the best performance with respect to the other methods. This result is
confirmed by the PESQ scores in Table10.3, where Chebyshev SFLAF outperforms
the other methods, while showing the lowest computational complexity.
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10.5 Conclusion

In this paper, a Chebyshev functional link adaptive filter has been introduced as a low
complexity model for the modeling of distorted speech signals. The proposed model
exploits the properties of Chebyshev polynomial expansions and takes advantage of
the fact that it achieves acceptable performance even with low expansion order, thus
resulting the best possible functional link-based model when a low computational
complexity is required by a specific problem, like NAEC. Performance are evaluated
in terms of an error-based measure, i.e., the ERLE, but also in terms of a speech
quality measure, i.e., the PESQ. Overall results proved that Chebyshev SFLAF is the
best performing method when the minimum possible computational resources are
available for the nonlinear modeling.
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Chapter 11
Hierarchical Temporal Representation
in Linear Reservoir Computing

Claudio Gallicchio, Alessio Micheli and Luca Pedrelli

Abstract Recently, studies on deep Reservoir Computing (RC) highlighted the role
of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear
recurrent units allows us to bringmore evidence on the intrinsic hierarchical temporal
representation in deep RNNs through frequency analysis applied to the state signals.
The potentiality of our approach is assessed on the class of Multiple Superimposed
Oscillator tasks. Furthermore, our investigation provides useful insights to open a
discussion on the main aspects that characterize the deep learning framework in the
temporal domain.

Keywords Reservoir computing · Deep learning · Deep echo state network
Multiple time-scales processing

11.1 Introduction

In the last years, the extension of deep neural network architectures towards recurrent
processing of temporal data has opened the way to novel approaches to effectively
learn hierarchical representations of time-series featured by multiple time-scales
dynamics [1, 9, 10, 18, 19]. Recently, within the umbrella of randomized neural
network approaches [4], Reservoir Computing (RC) [15, 21] has proved to be a useful
tool for analyzing the intrinsic properties of stacked architectures in recurrent neural
networks (RNNs), allowing at the same time to exploit the extreme efficiency of RC
training algorithms in the design of novel deep RNN models. Stemming from the
Echo State Network (ESN) approach [12] the study of the dynamics of multi-layered

C. Gallicchio (B) · A. Micheli · L. Pedrelli
Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa, Italy
e-mail: gallicch@di.unipi.it

A. Micheli
e-mail: micheli@di.unipi.it

L. Pedrelli
e-mail: luca.pedrelli@di.unipi.it

© Springer International Publishing AG, part of Springer Nature 2019
A. Esposito et al. (eds.), Neural Advances in Processing Nonlinear
Dynamic Signals, Smart Innovation, Systems and Technologies 102,
https://doi.org/10.1007/978-3-319-95098-3_11

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95098-3_11&domain=pdf


120 C. Gallicchio et al.

recurrent reservoir architectures has been introduced with the deepESN model in
[5, 7]. In particular, the outcomes of the experimental analysis in [5, 7] as well
as theoretical results in the field of dynamical systems [6, 8], highlighted the role
of layering in the inherent development of progressively more abstract temporal
representations in the higher layers of deep recurrent models.

In this paper, we take a step forward in the study of the structure of the temporal
features naturally emerging in layered RNNs. To this aim, we resort to classical tools
in the area of signal processing to analyze the differentiation among the state repre-
sentations developed by the different levels of a deepESN in a task involving signals
in a controlled scenario. In particular, we simplify the deepESN design by imple-
menting recurrent units with linear activation function, i.e. we adopt linear deepESN
(L-deepESN). In the analysis of the frequency spectrum of network’s states, this
approach brings the major advantage of avoiding the effects of harmonic distortion
due to non-linear activation functions. To provide a quantitative support to our anal-
ysis, we experimentally assess the L-deepESN model on a variety of progressively
more involving versions of the Multiple Superimposed Oscillator (MSO) task [22,
23]. Note that the class of MSO tasks is of particular interest for the aims of this
paper, especially in light of previous literature results that pointed out the relevant
need for multiple time-scales processing ability [13, 20, 23] as well as the potential-
ity of linear models in achieving excellent predictive results in base settings of the
problem [2]. Another example of application of linear RNNs is in [17].

As a further contribution, our investigation would offer interesting insights on the
nature of compositionality in deep learning architectures. Typically, deep neural net-
works consist in a hierarchy ofmany non-linear hidden layers that enable a distributed
information representation (through learning) where higher layers specialize to pro-
gressively more abstract concepts. Removing the characteristic of non-linearity, and
focusing on the ability to develop a hierarchical diversification of temporal features
(prior to learning), our analysis sheds new light into the true essence of layering in
deep RNN even with linear recurrent units.

The rest of this paper is organized as follows. In Sect. 11.2 we introduce the
L-deepESN model. In Sect. 11.3 we analyze the hierarchical nature of temporal
representations in L-deepESN, presenting the experimental results on theMSO tasks
and the outcomes of the signal processing analysis of the developed systemdynamics.
Finally, in Sect. 11.4 we draw the conclusions.

11.2 Linear Deep Echo State Networks

A deepESN architecture [7] is composed by a stack of NL recurrent reservoir layers,
where at each time step t the first layer receives the external input u(t) ∈ R

NU , while
successive layers are fed by the output of the previous layer in the hierarchy. We
denote the state of layer i at time t by x(i)(t) ∈ R

NR , where we assume the same state
dimension NR for every layer for the sake of simplicity. A schematic representation
of the reservoir architecture in a deepESN is provided in Fig. 11.1.
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input  layer  1st  layer  2nd  layer  -th  layer  

Fig. 11.1 Layered reservoir architecture in a deepESN

By referring to the case of leaky integrator reservoir units [13], and omitting the
bias terms for the ease of notation, the state transition function of the first layer is
given by the following equation:

x(1)(t) = (1 − a(1))x(1)(t − 1) + a(1)f(Winu(t) + Ŵ(1)x(1)(t − 1)), (11.1)

whereas the state transition of layer i > 1 is ruled by the equation:

x(i)(t) = (1 − a(i))x(i)(t − 1) + a(i)f(W(i)x(i−1)(t) + Ŵ(i)x(i)(t − 1)), (11.2)

where a(i) ∈ [0, 1] is the leaking rate parameter at layer i,Win ∈ R
NR×NU is the input

weight matrix, W(i) ∈ R
NR×NR is the weight matrix of the inter-layer connections

from layer i − 1 to layer i, Ŵ(i) ∈ R
NR×NR is the matrix of recurrent weights of

layer i, and f denotes the element-wise application of the activation function of the
recurrent units. A null initial state is considered for the reservoirs in all the layers,
i.e. x(i)(0) = 0 for all i = 1, . . . ,NL.

The case of L-deepESN is obtained from Eqs. 11.1 and 11.2 when a linear acti-
vation function is used for each recurrent unit, i.e. f = id. As in standard RC, all
the reservoirs parameters, i.e. all the weight matrices in Eqs.11.1 and 11.2, are
left untrained after initialization subject to stability constraints. According to the
necessary condition for the Echo State Property of deep RC networks [6], stabil-
ity can be accomplished by constraining the maximum among the spectral radii

of matrices
(
(1 − a(i))I + a(i)Ŵ(i)

)
, individually denoted by ρ(i), to be not above

unity. Thereby, a simple initialization condition for L-deepESNs consists in randomly
selecting the weight values in matrices Win and {W(i)}NL

i=2 from a uniform distribu-
tion in [−scalein, scalein], whereas the weights in recurrent matrices {Ŵ(i)}NL

i=1 are
initialized in a similar way and are then re-scaled to meet the condition on max ρ(i).

In this context it also interesting to observe that the use of linearities allows
us to express the evolution of the whole system by means of an algebraic expres-
sion that describes the dynamics of an equivalent single-layer recurrent system
with the same total number of recurrent units. Specifically, denoting by x(t) =
(x(1)(t), x(2)(t), . . . , x(NL)(t)) ∈ R

NLNR the global state of the network, the depen-
dence of x(t) from x(t − 1) can be expressed as x(t) = Vx(t − 1) + Vinu(t), where
both V ∈ R

NLNR×NLNR and Vin ∈ R
NLNR×NU can be viewed as block matrices, with

block elements denoted respectively by Vi,j ∈ R
NR×NR and Vin,i ∈ R

NR×NU , i.e.:
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x(t) =
⎡
⎢⎣
V1,1 . . . V1,NL

...
. . .

...

VNL,1 . . . VNL,NL

⎤
⎥⎦ x(t − 1) +

⎡
⎢⎣
Vin,1
...

Vin,NL

⎤
⎥⎦ u(t). (11.3)

Noticeably, the layered organization imposes a lower triangular block matrix struc-
ture to V such that in the linear case its blocks can be computed as:

Vi,j =
⎧⎨
⎩
0 if i < j
(1 − a(i))I + a(i)Ŵ(i) if i = j
(
∏i

k=j+1 a
(k)W(k))

(
(1 − a(j))I + a(j)Ŵ(j)

)
if i > j.

(11.4)

Moreover, as concerns the input matrix, we have:

Vin,i =
{
a(1)Win if i = 1
(
∏i

k=2 a
(k)W(k))a(1)Win if i > 1.

(11.5)

The mathematical description provided here for the L-deepESN case is partic-
ularly helpful in order to highlight the characterization resulting from the layered
composition of recurrent units. Indeed, from an architectural perspective, a deep
RNN can be seen as obtained by imposing a set of constraints to the architecture of
a single-layer fully connected RNN with the same total number of recurrent units.
Specifically, a deep RNN can be obtained from the architecture of a fully connected
(shallow) RNN by removing the recurrent connections corresponding in the deep
version to the connections from higher layers to lower layers and from each layer to
higher layers different from the successive one, removing as well the input connec-
tions to the levels higher than 1. In this respect, the use of linear activation functions
has the effect of enhancing the emergence of such constrained characterization and
making it visible through the peculiar algebraic organization of the state update as
described by Eqs. 11.3, 11.4 and 11.5. Indeed, the constrained structure given by the
layering factor is reflected in the (lower triangular block) structure of the matrix V
that rules the recurrence of the whole network dynamics in Eq.11.3. In particular, the
last line of Eq.11.4 highlights the progressive filtering effect on the state information
propagated towards the higher levels in the network, modulated by the leaking rates
and through the magnitude of the inter-layer weights values. Similarly, the last line
of Eq.11.5 shows the analogous progressive filtering effect operated on the external
input information for increasing level’s depth.

Thereby, although from the system dynamics viewpoint it is possible to find a
shallow recurrent network that is equivalent to an L-deepESN, the resulting form of
thematrices that rules the state evolution, i.e.V andVin, has a distinct characterization
that is due to the layered construction.Moreover, note that the probability of obtaining
such matrices V and Vin by means of standard random reservoir initialization is
negligible. Noteworthy, the aforementioned architectural constraints imposed by the
hierarchical construction are reflected also in the ordered structure of the temporal
features represented in higher levels of the recurrent architecture, as investigated for
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linear reservoirs in Sect. 11.3, and as observed, under a different perspective and
using different mathematical tools, in the non-linear case in [7].

As regards network training, as in standard RC, the only learned parameters of
the L-deepESN are those pertaining to the readout layer. This is used for output
computation by means of a linear combination of the reservoir units activations in
all the levels, allowing the linear learner to weight differently the contributions of
the multiple dynamics developed in the network state. In formulas, at each time step
t the output y(t) ∈ R

NY is computed as y(t) = Woutx(t), where Wout ∈ R
NY ×NLNR is

the output weight matrix whose values are learned from a training set. Typically, as
in the standard RC framework, the values inWout are found in closed form by using
direct methods such as pseudo-inversion or ridge regression [15].

11.3 Experimental Assessment

In this section we present the results of the experimental assessment of L-deepESN
on the class of MSO tasks.

An MSO task consists in a next-step prediction on a 1-dimensional time-series,
i.e. for each time step t the target output is given by ytarget(t) = u(t + 1), where
NU = NY = 1. The considered time-series is given by a sum of sinusoidal functions:

u(t) =
n∑

i=1

sin(ϕit) (11.6)

where n denotes the number of sinusoidal functions, ϕi determines the frequency
of the i-th sinusoidal function and t is the index of the time step. In the fol-
lowing, we use the notation MSOn to specify the number n of sinusoidal func-
tions that are accounted in the task definition. The ϕi coefficients in Eq.11.6 are
set as in [14, 16], i.e. ϕ1 = 0.2, ϕ2 = 0.331, ϕ3 = 0.42, ϕ4 = 0.51, ϕ5 = 0.63, ϕ6 =
0.74, ϕ7 = 0.85, ϕ8 = 0.97, ϕ9 = 1.08, ϕ10 = 1.19, ϕ11 = 1.27, ϕ12 = 1.32. In par-
ticular, in our experiments we focus on versions of the MSO task with a number of
sine waves n ranging from 5 to 12. This allows us to exercise the ability of the RC
models to develop a hierarchy of temporal representations in challenging caseswhere
the input signal is enriched by the presence of many different time-scales dynamics.
Besides, note that summing an increasing number of sine waves with frequencies
that are not integer multiples of each other makes the prediction task harder due to
the increasing signal period. An example of the input signal for the MSO12 task is
given in Fig. 11.2. For all the considered settings of the MSO task, the first 400 steps
are used for training (with a washout of length 100), time steps from 401 to 700 are
used for validation and the remaining steps from 701 to 1000 are used for test.

In our experiments, we used L-deepESN with NL levels, each consisting in a fully
connected reservoir withNR units. We assumed thatWin and {W(i)}NL

i=2 are initialized
with the same scaling parameter scalein, and we used the same value of the spectral
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Fig. 11.2 A 400 time step
long excerpt of the input
sequence for the MSO12 task

radius and of the leaking rate in every level, i.e. ρ(i) = ρ and a(i) = a for every i.
For readout training we used ridge regression. Table11.1 reports the range of values
considered for every hyper-parameter considered in our experiments.

In order to evaluate the predictive performance on the MSO tasks, we used the
normalized root mean square error (NRMSE), calculated as follows:

NRMSE =
√√√√(

T∑
t=1

(ytarget(t) − y(t))2)/(Tσ 2
ytarget(t)

), (11.7)

where T denotes the sequence length, ytarget(t) and y(t) are the target and the net-
work’s output at time t, and σ 2

ytarget(t)
is the variance of ytarget . For each reservoir

hyper-parametrization, we independently generated 10 reservoir guesses, the predic-
tive performance in the different cases has been averaged over such guesses and then
the model’s hyper-parameterization has been selected on the validation set.

In the following Sects. 11.3.1 and 11.3.2 we respectively evaluate our approach
from a quantitative point of view, comparing the predictive performance of L-
deepESN with related literature models, and from a qualitative perspective, by ana-
lyzing the frequencies of the state activations developed in the different reservoir
levels.

Table 11.1 Hyper-parameters values considered for model selection on the MSO tasks

Hyper-parameter Values considered for model selection

Number of levels NL 10

Reservoir size NR 100

Input scaling scalein 0.01, 0.1, 1

Leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Spectral radius ρ 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Ridge regression regularization λr 10−11, 10−10, ..., 100
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11.3.1 Predictive Performance

In this section we compare the quantitative results of the proposed approach with
the performance reported in literature on recent (more complex and richer) variants
of the MSO task, with a number of sine waves n varying from 5 to 12. Table11.2
provides a comparison among the NRMSE achieved on the test set by L-deepESN
and the available results in literature obtained by neuro-evolution [16], balanced
ESN [14], ESN with infinite impulse response units (IIR ESN) [11] and Evolino
[20] on the considered MSO tasks. Furthermore, in the same table, we report the
performance achieved by linear ESN built with a single fully connected reservoir (L-
ESN), considering the same range of hyper-parameters and total number of recurrent
units as in the L-deepESN case.

Noteworthy, the proposed L-deepESN model outperformed the best literature
results of about 3 or 4 orders of magnitude on all theMSO settings. Furthermore, test
errors obtained byL-ESNare alwayswithin one order ofmagnitude of differencewith
respect to the best state-of-the-art results. These aspects confirms the effectiveness of
the linear activation function on this task, as also testified by our preliminary results
that showed poorer performance for RC networks with tanh units, unless forcing
the operation of the activation function in the linear region. Moreover, L-deepESN
always performed better then L-ESN. On the basis of the known characterization of
theMSO task, our results confirm the quality of the hierarchical structure of recurrent
reservoirs in representing multiple time-scales dynamics with respect to its shallow
counterpart.

The literature approaches in Table11.2 have different architectures with different
configurations used in their model selections (for simplicity, we avoid listing them,
see relative papers for details). For the sake of completeness, we performed further
comparisons (out of table) considering L-deepESNs with the same total number of
recurrent units used inmodel selections of ESN-based approaches, i.e. balanced ESN
and IIR ESN, respectively described in [11, 14]. In particular, balanced ESN used

Table 11.2 Test NRMSE obtained by L-deepESN, L-ESN, neuro-evolution (n.-evolution), bal-
anced ESN, IIR ESN and Evolino on the MSO5-12 tasks

Task L-deepESN L-ESN n.-evolution
[16]

balanced
ESN [14]

IIR ESN [11] Evolino [20]

MSO5 6.75 × 10−13 7.14 × 10−10 4.16 × 10−10 1.06 × 10−6 8 × 10−5 1.66 × 10−1

MSO6 1.68 × 10−12 5.40 × 10−9 9.12 × 10−9 8.43 × 10−5 – –

MSO7 5.90 × 10−12 5.60 × 10−8 2.39 × 10−8 1.01 × 10−4 – –

MSO8 1.07 × 10−11 2.08 × 10−7 6.14 × 10−8 2.73 × 10−4 – –

MSO9 5.34 × 10−11 4.00 × 10−7 1.11 × 10−7 – – –

MSO10 8.22 × 10−11 8.21 × 10−7 1.12 × 10−7 – – –

MSO11 4.45 × 10−10 1.55 × 10−6 1.22 × 10−7 – – –

MSO12 5.40 × 10−10 1.70 × 10−6 1.73 × 10−7 – – –
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a maximum number of 250 units on the MSO5, MSO6, MSO7 and MSO8 tasks,
while IIR ESN implemented 100 units on the MSO5 task. L-deepESN with NL = 10
and NR = 25 (i.e. a total of 250 recurrent units) performed better than balanced
ESN, obtaining a test NRMSE of 1.20 × 10−11, 8.73 × 10−11, 2.42 × 10−10 and
9.06 × 10−10, on theMSO5,MSO6,MSO7 andMSO8 tasks, respectively.Moreover,
even L-deepESN with NL = 10 and NR = 10 (i.e. a total of 100 recurrent units)
obtained a better performance than IIR ESN, achieving a test error of 7.41 × 10−11

on the MSO5 task.

11.3.2 Hierarchical Temporal Representation Analysis

In this section we investigate the temporal representation developed by the reser-
voirs levels in an L-deepESN, using as input signal the sequence considered for the
MSO12 task, featured by rich dynamics with known multiple time-scales character-
ization (see Eq.11.6). We used the same reservoir hyper-parameterization selected
for the predictive experiments on the MSO12 task in Sect. 11.3.1, namely NR = 100,
NL = 10, scalein = 1, a = 0.9 and ρ = 0.7, averaging the results over 100 reservoir
guesses. In our analysis, we first computed the states obtained by running the L-
deepESN on the input sequence. Then, we performed the Fast Fourier Transform
(FFT) [3] algorithm on the states of all the recurrent units over the time, normalizing
the obtained values in order to enable a qualitative comparison. Finally, we averaged
the FFT values on a layer-by-layer basis.

The FFT values obtained for progressively higher levels of L-deepESN are shown
in Figs. 11.3a–d, which respectively focus on levels 1, 4, 7 and 10. These figures
represent the state signal in the frequency domain, where it is possible to see 12
spikes corresponding to the 12 sine waves components of the input. Looking at
the magnitude of the FFT components, i.e. at the height of the spikes in plots, we
can have an indication of how the signals are elaborated by the individual recurrent
levels. We can see that the state of the reservoir at level 1 shows FFT components
all with approximately the same magnitude. The FFT components of reservoir states
at levels 4, 7 and 10, instead, show diversified magnitudes. Specifically, we can see
that in higher levels of the network higher frequency components are progressively
filtered, and lower frequency components tend to have relative higher magnitudes.
This confirms the insights on the progressive filtering effect discussed in Sect. 11.2
in terms of mathematical characterization of the system.

Results in Fig. 11.3 show that the hierarchical construction of recurrent models
leads, even in the linear case, to a representation of the temporal signal that is sparsely
distributed across the network,where different levels tend to focus on a different range
of frequencies. Moreover, the higher is the level, the stronger is the focus on lower
frequencies, hence the state signals emerging in deeper levels are naturally featured
by coarser time-scales and slower dynamics. Thereby, the layered organization of the
recurrent units determines a temporal representation that has an intrinsic hierarchical
structure. According to this, the multiple time-scales in the network dynamics are
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Fig. 11.3 FFT components of reservoir states in progressively higher levels of L-deepESN, a level
1, b level 4, c level 7, d level 10

ordered depending to the depth of reservoirs’ levels. Such inherent characterization
of the hierarchical distributed temporal representation can be exploitedwhen training
the readout, as testified by the excellent predictive performance of L-deepESN on
the MSO tasks reported in Sect. 11.3.1.

11.4 Conclusions

In this paper, we have studied the inherent properties of hierarchical linear RNNs
by analyzing the frequency of the states signals emerging in the different levels of
the recurrent architecture. The FFT analysis revealed that the stacked composition
of reservoirs in a L-deepESN tends to develop a structured representation of the tem-
poral information. Exploiting an incremental filtering effect, states in higher levels
of the hierarchy are biased towards slower components of the frequency spectrum,
resulting in progressively slower temporal dynamics. In this sense, the emerging
structure of L-deepESN states can be seen as an echo of the multiple time-scales
present in the input signal, distributed across the layers of the network. The hier-
archical representation of temporal features in L-deepESN has been exploited to
address recent challenging versions of the MSO task. Experimental results showed
that the proposed approach dramatically outperforms the state-of-the-art on theMSO
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tasks, emphasizing the relevance of the hierarchical temporal representation and also
confirming the effectiveness of linear signal processing on the MSO problem.

Overall, we showed a concrete evidence that layering is an aspect of the net-
work construction that is intrinsically able to provide a distributed and hierarchical
feature representation of temporal data. Our analysis pointed out that this is possi-
ble even without (or prior to) learning of the recurrent connections, and releasing
the requirement for non-linearity of the activation functions. We hope that the con-
siderations delineated in this paper could contribute to open an intriguing research
question regarding the merit of shifting the focus, from the concepts of learning and
non-linearities, to the concepts of hierarchical organization and distribution of rep-
resentation to define the salient aspects of the deep learning framework for recurrent
architectures.
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Chapter 12
On 4-Dimensional Hypercomplex
Algebras in Adaptive Signal Processing

Francesca Ortolani, Danilo Comminiello, Michele Scarpiniti
and Aurelio Uncini

Abstract The degree of diffusion of hypercomplex algebras in adaptive and non-
adaptive filtering research topics is growing faster and faster. The debate today con-
cerns the usefulness and the benefits of representing multidimensional systems by
means of these complicated mathematical structures and the criterions of choice
between one algebra or another. This paper proposes a simple comparison between
two isodimensional algebras (quaternions and tessarines) and shows by simulations
how different choices may determine the system performance. Some general infor-
mation about both algebras is also supplied.

Keywords Adaptive filters · Quaternions · Tessarines · Hypercomplex
Widely linear · Least mean square

12.1 Introduction

One of the trends in the last two decades in digital signal processing has been the
exploration of hypercomplex algebras for multidimensional signal processing with
particular regard to adaptive filtering and intelligent systems. Since complex numbers
were widely experimented and studied in both linear and nonlinear environments [9],
the immediate step forward in hypercomplex algebras has considered quaternions
[19] and octonions [6]. Scientists paid special attention to quaternion adaptive filter-
ing [4, 5, 7, 17, 19] and the authors of this paper themselves investigated quaternion
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algebra with an interest in frequency-domain adaptive filters [11]. Besides the tradi-
tional usage of quaternions in 3D graphics and navigation (it is known that quaternion
rotations are not subject to deadlocks from space degeneration from 3D to 2D) [18],
the new revival of hypercomplex processing consists in the experimentation of the
peculiar algebraic properties in engineering multidimensional problems. Multidi-
mensionality is somehow intrinsic to the nature of the data: it arises from the need
for processing correlated data (not necessarily homogeneous, as in [19]).

The investigation topic in this paper considers two hypercomplex algebras having
the same dimensions: quaternions and tessarines (the latter also known as bicomplex
numbers). Both of them are a 4-dimensional algebra. So, which are the reasons why
we should choose one algebra or another? This paper presents a couple of examples
where different results are obtained from different mathematical representations of
the systems. A line of reasoning is also suggested.With regard to adaptive signal pro-
cessing, the first adaptive algorithm implemented in a hypercomplex algebra has been
the Quaternion Least Mean Square (QLMS) algorithm [19]. Because of its straight
comprehensibility and ease of implementation, this algorithm offered an instrument
on hand for studying quaternion algebra combined with adaptive filtering. In this
work, we adopted this algorithm to make a comparison of the two 4-dimensional
algebras above mentioned. On this occasion, we derived and implemented a tes-
sarine version of the LMS algorithm, namely TLMS. In a second step, we searched
for a modification of both the QLMS and TLMS algorithms into awidely linear form
(including full second order statistics) [8, 20, 21] and their behaviour was tested with
proper and improper input signals. The highlight in this paper is the evidence that the
choice of a specific algebra may condition a filter behaviour. We analysed this fact by
introducing Ambisonic 3D audio signals into a 4-dimensional system. Ambisonics
is a 3D audio recording and rendering technique developed in the ’70s [2, 3, 16] and,
in recent research, it was experimented that its so-called B-Format can be condensed
and processed in a quaternion formalism [12, 13]. The main goal of the current work
is to examine whether the good results obtained with quaternion algebra persist in
other 4-dimensional algebras.

This paper is organized as follows: Sect. 12.2 introduces both quaternion and
tessarine algebras underlining the fundamental differences between them; Sect. 12.3
presents a short summary of the 4-dimensional least mean square algorithms (QLMS
and TLMS) and their widely linear modifications. Finally, Sect. 12.4 reports some
interesting results from simulations with both widely linear and non-widely linear
algorithms.

12.2 Introduction to 4-Dimensional Hypercomplex
Algebras

As just introduced, both quaternions and tessarines are 4-dimensional algebras. Even
though a quaternion q and a tessarine t look just alike (q = q0 + q1i + q2j + q3k
with q ∈ H and t = t0 + t1i + t2j + t3k with t ∈ T), their algebras have very little
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in common. The imaginary axes (i, j, k) form a basis on which the two algebras
are built. However, in the two cases, different fundamental algebraic properties are
defined:
In quaternion algebra,

ij = k, jk = i, ki = j, (12.1)

i2 = j2 = k2 = −1. (12.2)

In tessarine algebra,

ij = k, jk = i, ki = −j, (12.3)

i2 = k2 = −1, j2 = +1. (12.4)

Equations (12.1)–(12.4) embody the foremost difference between quaternion and
tessarine algebras: the former is non-commutative, the latter is commutative. As a
consequence of this, quaternion product and tessarine product are defined in different
ways.

For quaternions q1, q2 ∈ H, their product is calculated as

q1q2 = (a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)

= (a0b0 − a1b1 − a2b2 − a3b3)

+ (a0b1 + a1b0 + a2b3 − a3b2) i

+ (a0b2 − a1b3 + a2b0 + a3b1) j

+ (a0b3 + a1b2 − a2b1 + a3b0)k.

(12.5)

For tessarines t1, t2 ∈ T, their product is calculated as

t1t2 = (a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)

= (a0b0 − a1b1 + a2b2 − a3b3)

+ (a0b1 + a1b0 + a2b3 + a3b2) i

+ (a0b2 − a1b3 + a2b0 − a3b1) j

+ (a0b3 + a1b2 + a2b1 + a3b0)k.

(12.6)

Moreover, (12.1) can be expressed by the cross products i × j = k, j × k = i,
k × i = j. In fact, the cross product is non-commutative (anti-commutative).
Regarding the sum, it is computed the samewaywith either quaternions or tessarines:

q ± p = (q0 + q1i + q2j + q3k) ± (p0 + p1i + p2j + p3k)

= (q0 ± p0) + (q1 ± p1) i + (q2 ± p2) j + (q3 ± p3) k.
(12.7)

The poly-conjugation, with respect to the specific algebraic rules, conveniently
defines both the conjugates of a quaternion and a tessarine:
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p∗ = p0 +
3∑

ν=1

pνe3ν (12.8)

and typified in the two algebras becomes q∗ = q0 − q1i − q2j − q3k ∈ H and t∗ =
t0 − t1i + t2j − t3k ∈ T.

12.3 4D Least Mean Square Algorithms

In the 4-dimensional algebra of quaternions, the least mean square algorithm was
formerly presented in [19] with a minor modification in [1]. Following an approach
similar to [19], the TLMS algorithm has been derived by the authors of this paper.
This section compares and comments QLMS and TLMS.

12.3.1 Algorithm Overview

The least mean square algorithm is an online error-correction-based adaptive algo-
rithm: the cost function to be minimized during the adaptation is defined as the mean
square error (MSE) Jn(wn) = E {e[n]e∗[n]}. The error e[n] is the difference between
a desired signal and the filter output (e[n] = d[n] − y[n]). The adaptive filter output
can be defined by the scalar product y[n] = wT

n−1xn , thus resulting in

y [n] = wT
n−1xn =

⎡

⎢⎢⎣

wT
a xa − wT

b xb − wT
c xc − wT

d xd
wT

a xb + wT
b xa + wT

c xd − wT
d xc

wT
a xc + wT

c xa + wT
d xb − wT

b xd
wT

a xd + wT
d xa + wT

b xc − wT
c xb

⎤

⎥⎥⎦ ∈ H (12.9)

for quaternions, and

y [n] = wT
n−1xn =

⎡

⎢⎢⎣

wT
a xa − wT

b xb + wT
c xc − wT

d xd
wT

a xb + wT
b xa + wT

c xd + wT
d xc

wT
a xc + wT

c xa − wT
d xb − wT

b xd
wT

a xd + wT
d xa + wT

b xc + wT
c xb

⎤

⎥⎥⎦ ∈ T (12.10)

for tessarines, where xn is the filter input vector at iteration n and wn−1 are
the filter weights at iteration n − 1: xn = [x [n] x [n − 1] · · · x [n − M]]T , wn =
[w0 [n] w1 [n] · · · wM [n]]T , with M the filter length.

The computation of the gradient of the cost function Jn(wn) (required for finding
its minimum) leads to an adaptation equation which is the same for both QLMS and
TLMS for outputs defined as in (12.9) and (12.10):
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wn = wn−1 + μe [n] x∗
n. (12.11)

where μ is the step size along the direction of the gradient.

12.3.2 Widely Linear Modification

Recent works about both complex and hypercomplex filtering showed a particular
interest in widely linear algorithms [8, 10, 21, 22]. It has been observed that most
real world signals are improper (or noncircular) in nature [14] and, in this case, a
filter performance can be improved significantly if the full second order statistics
of the signals is taken into account and included into the algorithm. If a random
variable has a rotation-invariant probability distribution (with respect to all six pairs
of rotation axes (1, i),(1, j),(1,k), (i, j), (k, j), (k, i)), it must be considered proper,
or second-order circular. Signal properness inH can be checked by considering that
for a proper quaternion random variable q = qa + qbi + qcj + qdk the following
properties hold [21]:

1. E
{
q2m

} = σ 2, ∀m = a, b, c, d (all four components of q have equal power).
2. E {qmqn} = 0, ∀m, n = a, b, c, d and m �= n (all four components of q are uncorrelated).
3. E {qq} = −2E

{
q2m

} = −2σ 2, ∀m = a, b, c, d (the pseudocovariance matrix does not van-
ish).

4. E
{|q|2} = 4E

{
q2m

} = 4σ 2, ∀m = a, b, c, d (the covariance of a quaternion variable is the
sum of the covariances of all components).

Since for a quaternion proper signal the complementary covariance matrices, defined
as Ci

q = E
{
qqiH

}
, Cj

q = E
{
qqjH

}
, Ck

q = E
{
qqkH

}
, vanish, widely linear algo-

rithms incorporate and exploit this second order information on purpose. We need
to define the quaternion involutions here:

q i = −iqi = qa + iqb − jqc − kqd

q j = −jqj = qa − iqb + jqc − kqd

qk = −kqk = qa − iqb − jqc + kqd .

(12.12)

Involutions are functions f (.) chosen in a way that, given q, p ∈ H, we have the
conditions: 1) f ( f (q)) = q, 2) f (q + p) = f (q) + f (p) and f (λq) = λ f (q), 3)
f (qp) = f (q) f (p).
The WL-QLMS algorithm updates four sets of filter weights: w, h, u, v ∈ H

M×1,
whereM is the filter length. Accordingly, the filter output is computed by convoluting
each weight vector with its corresponding input involution:

yw [n] = wT
n−1xn, yh [n] = hTn−1x

i
n, yu [n] = uTn−1x

j
n, yv [n] = vTn−1x

k
n (12.13)

and summing all four contributions:

y [n] = yw [n] + yh [n] + yu [n] + yv [n] . (12.14)



136 F. Ortolani et al.

In conclusion, we have four adaptation equations:

wn = wn−1 + μe [n] x∗
n, hn = hn−1 + μe [n] xi∗n

un = un−1 + μe [n] xj∗n , vn = vn−1 + μe [n] xk∗
n .

(12.15)

Is it possible to obtain a similar algorithm with tessarines? Well, if we apply the
three conditions above in order to find tessarine involutions we obtain the following
results (t ∈ T):

t i = −it i = ta + itb + jtc + ktd = t

t j = +jtj = ta + itb + jtc + ktd = t

tk = −ktk = ta + itb + jtc + ktd = t.

(12.16)

From (12.16), we see that tessarines are auto-involutive, so a widely linear model is
possible to the extent that it is defined the same way as for complex numbers [15].

12.3.3 Computational Cost

Since both quaternions and tessarines are 4-dimensional algebras, the computational
cost of QLMS and TLMS is the same. In fact, the computation of the filter output
requires 4 · 4 · M multiplications per sample. The same effort is required in the
weight update equation. Overall, the computational cost of QLMS and TLMS is
32 · M · nsamples multiplications. The situation changes when working with widely
linear filters. In tessarine algebra, only the vector xn and its conjugate are necessary
in the algorithm definition, so whereas the WL-QLMS requires 4 · 32 · M · nsamples

multiplications, the computational cost in the WL-TLMS is reduced to 2 · 32 · M ·
nsamples .

12.4 Simulations

In this section, we propose two examples in order to make a performance compar-
ison between quaternion and tessarine filtering according to the input signals. The
simulation layout is represented in Fig. 12.1. In both simulations we have a system
w0 to be identified, which is defined in the time domain by a set of random weights,
uniformly distributed in the range [−1, 1].



12 On 4-Dimensional Hypercomplex Algebras in Adaptive Signal Processing 137

+

+

w0

Adaptive
Filterx[n]

e[n]

d[n]

v[n]

y[n]

-

Fig. 12.1 Simulation layout

12.4.1 Generic Circular Input Signals

In this first example, we apply QLMS and TLMS in a context where the input
signal x[n] is considered as either a quaternion-valued or tessarine-valued colored
noise with unit variance and it was obtained by filtering the white Gaussian noise
η[n] as x[n] = bx[n − 1] +

√
1−b2√
4

η[n], where b is a filtering parameter (here it was
chosen as b = 0.7). The additive signal v[n] is defined the same way as x[n], but the
parameter b is set to zero.

Signal x[n] is circular, all its components are uncorrelated to each other, so, at
first glance, it seems to be equivalent to consider it as a quaternion or a tessarine. In
effect, our results are concordant with the expectations (Fig. 12.2): given the same
filter parameters (M = 12,μ = 0.008), theQLMSandTLMSexhibit the sameMSE.
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Fig. 12.2 MSE: QLMS versus TLMS with proper input signal
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In this simulation, after 5000 samples, theweightsw0 change abruptly. The twofilters
run after the variation with the same rate.

12.4.2 Ambisonic Improper Audio Input Signals

The second examplewe propose in this papermakes use of awell-structured 3Daudio
input signal. This signal has 4 components which were recorded by 4 microphones
in accordance with the 3D audio technique called Ambisonics (B-Format). The first
order Ambisonic B-Format technique mounts 4 coincident microphones, orthogo-
nal to one another: one omnidirectional microphone (W ) and three figure-of-eight
microphones (X, Y, Z). Each microphone signal can be assigned to a 4-dimensional
algebra component as

x[n] = xW [n] + xX [n]i + xY [n]j + xZ [n]k. (12.17)

However,wewant to prove that this assignment is notmerely amatter of convenience.
In fact, Fig. 12.3 shows how the choice of a different algebra, defining themathemati-
cal space, determines the filter performance. Giving an interpretation of Fig. 12.3, we
understand that a B-Format signal is rather inclined to be represented by quaternion
algebra than by tessarines (the QLMS converges faster than TLMS on equal terms).
In truth, in previous works [12, 13], the authors of this paper found a relation between
the sound field as decomposed by Ambisonics and a quaternion-valued representa-
tion. Ambisonics decomposes the sound pressure field into a linear combination of
spherical harmonics and the subgroup SO(3) of 3D Euclidean rotations does have a
representation on the (2m + 1)-dimensional Hilbert space with spherical harmonics
(span

{
Y σ
mn(θ, φ), 0 ≤ n ≤ m, σ = ±1

}
, where Y σ

mn(θ, φ) are the spherical harmon-
ics). It is known that the subspace of pure quaternions (those quaternions with null
real component) is isomorphic to rotations. That said, the quaternion representation
of Ambisonics does not simply consist in a compact formalism, but it has a physical
and geometrical meaning.

In our simulation, the source is a monodimensional unit-variance white Gaussian
noise in a computer-generated anechoic room. The source was placed at a distance
of 20cm from the B-Format array, 45◦ off-axis with the X microphone. Additive
unit-variance white Gaussian noise ν[n] ∈ H, with n = 0, 2..., P − 1, was summed
to the output signal of the system to be identified (d[n] = wT

0 x + ν[n]). The filter
parameters were chosen as M = 12, μ = 0.3.

In addition, in Sect. 12.3.2, we emphasized the possibility to build a widely linear
algorithm (WL-QLMS,WL-TLMS). Since the Ambisonic B-Format is improper, we
expect theWL-QLMSandWL-TLMS tooutperformQLMSandTLMS, respectively.
The results from our simulation meet the expectations.
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Fig. 12.3 MSE: (WL-)QLMS versus (WL-)TLMS with Ambisonic improper input signal. NON-
WL model in the legend box refers to a system to be identified which only has w0 weights

12.5 Conclusion

Hypercomplex algebras are decisively making their own way in adaptive filtering
applications. The question today is whether we really need such hypercomplex mod-
els to represent our systems. Besides that, what determines the rejection of one
algebra in favor of another? In this paper, we proposed a simple comparison between
two 4-dimensional hypercomplex algebras: quaternions and tessarines. We learned
from simulations that some systems can be considered either quaternion-valued or
tessarine-valued. In other cases, the choice of the algebraic representation determines
the performance of the whole system. For instance, we introduced the Ambisonic
B-Format signals into a 4-dimensional system and we saw that a quaternion adap-
tive algorithm converges much faster than its tessarine counterpart. We have found a
relation between spherical harmonics/rotations and quaternions. The group of rota-
tions and quaternions are both non-commutative. There is no equivalent in tessarine
algebra, which is in fact commutative. However, further investigation may discover
environments where tessarine processing is the most appropriate. In a next work,
we are going to publish results from simulations in Ambisonic and Uniform Linear
Array contexts, where in both cases the signals at the sensors are correlated. We
saw that there are geometries in which a faster convergence is reached by means of
tessarine algorithms.
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Chapter 13
Separation of Drum and Bass from
Monaural Tracks

Michele Scarpiniti, Simone Scardapane, Danilo Comminiello,
Raffaele Parisi and Aurelio Uncini

Abstract In this paper, we propose a deep recurrent neural network (DRNN), based
on the Long Short-Term Memory (LSTM) unit, for the separation of drum and
bass sources from a monaural audio track. In particular, a single DRNN with a
total of six hidden layers (three feedforward and three recurrent) is used for each
original source to be separated. In this work, we limit our attention to the case
of only two, challenging sources: drum and bass. Some experimental results show
the effectiveness of the proposed approach with respect to another state-of-the-art
method. Results are expressed in terms of well-known metrics in the field of source
separation.

Keywords Deep recurrent neural networks · Long short-term memory ·Monaural
audio source separation · Non-negative matrix factorization

13.1 Introduction

The separation of multiple sound sources from a single recording, or Single Channel
Source Separation (SCSS), is a challenging problem that is receiving a great attention
from researchers in the last decade [14]. However, while the standard Blind Source
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Separation (BSS) is a well-known and well-studied field in the adaptive signal pro-
cessing and machine learning communities [4, 5], the problem of recovering original
sources from only one recorded signal provides no very good solution yet.

SCSS is a challenging problem because, without any additional constraints, an
infinite number of solutions can be found since the problem is generally ill-posed
[10, 14, 16, 18]. In order to solve this ill-posed problem, several approaches have
been derived in literature [14].

Specifically, [6] proposed the use of Empirical Mode Decomposition (EMD),
[13] tries an approach based on subspaces in an Hilbert space, while [12] operates
in the Wavelet domain by using a Bark scale. Moreover, the work [1] is based on
a sparsification transformation in order to enhance the source separation. However,
results obtained with such approaches are not satisfactory.

A class of approaches that has raised a great attention in literature is composed
by a maximum likelihood method in a Gaussian framework [2, 10], in which some
basis functions are learned and then used to reconstruct the single sources. Another
powerful method for SCSS is the non-negativematrix factorization (NMF) [16], used
to learn the non-negative reconstruction bases and weights of different sources and
use them to factorize time-frequency spectral representations, followed by amasking
operation [15]. This latter approach provides good results [20].

However, since audio and music are sequential by nature, recurrent neural net-
works (RNNs) respecting temporal dynamics have emerged as a powerful tool for this
class of signals. In particular, RNNs have been used for automatic speech recognition
(ASR) and speech enhancement [21].

Due to the difficulty of the proposed task, some authors have recently introduced
deep neural networks (DNNs) for the SCSS [7], obtaining very interesting results.
DNNs are neural networks with many (two or more) hidden layers. To this purpose,
[9] has approached SCSS by a deep recurrent neural network (DRNN). However,
the main issue in using RNNs is that their learning could be very difficult due to
the vanishing or exploding gradient problem. In order to overcome these issues,
Hochreiter and Schmidhuber have introduced in [8] some RNNs that use a new
block called Long-Short TermMemory (LSTM) unit instead of the classical neuron.

In this paper, we propose a DRNN based on the LSTM unit to separate two audio
sources from a single channel recording. In particular, we focus our attention on
the separation of drum and bass sources. The choice of these two kinds of musical
instruments is due to the fact that the bass and drum are the backbone of any music
track, since they form the rhythm section. Moreover, the separation of these sources
is very challenging because they are strongly correlated at both the spectral and the
temporal level, and, in addition, the drum is also made up of different synchronous
components (bass drum, snare, toms, hi-hat, cymbals, etc.).

The rest of the paper is organized as follows. In Sect. 13.2 we briefly introduce the
model of SCSS, while Sect. 13.3 describes the LSTM unit. The proposed approach
is provided in Sect. 13.4. Finally, we validate our approach in Sect. 13.5 and we
conclude with some final remarks in Sect. 13.6.
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Fig. 13.1 Data organization
in a tensor form
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13.2 The Model of Single Channel Source Separation

Let us consider a set of P unknown and statistically independent sources denoted as
sn = [s1[n], . . . , sP [n]]T, such that the components si [n] are zero-mean andmutually
independent [10]. The recorded signal xn can be seen as

xn = λ1s1[n] + λ2s2[n] + . . . + λPsP [n] = λT sn, (13.1)

where λ = [λ1, λ2, . . . , λP ]T collects the gain λi of the i-th source, which is constant
over time.

The mixture signal xn is divided in frames x[n] by a window function w[n] of
length N and then a Short-Time Fourier Transform (STFT) is evaluated

Xn (ω) =
∞∑

l=−∞
x[l]w[l − nN ]e− jωl . (13.2)

In this work we used a Hanning window, an overlap of 50% and N = 8192 samples.
Moreover, in order to provide a compact and powerful data representation, we orga-
nize data in a tensor form, arranging them by frames, frequency bins and (eventually)
different mixtures, as shown in Fig. 13.1.
One of the first attempt to recover original sources si [n] from the single channel
mixture xn in (13.1) is based on the modeling of sources si [n] with suitable basis
function that are learned by an ICA algorithm based on the maximum likelihood
approach [10].

In order to overcome the poor solution obtained by [10], the author in [20] pro-
posed an approach based on the NMF. The idea is to apply the NMF to factorize
the magnitude spectra obtained by (13.2) to obtain spectra of original sources and a
matrix of the related mixing weights.
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13.3 The Long Short-Term Memory Cells

Recurrent neural networks (RNNs) are particular neural networks with feedback
loops,meaning that outputs of a hidden layer are fed again to its inputs. The learningof
such a network is generally performed by time unfolding of the whole layers and then
updating the weight vector by an extension of the backpropagation algorithm, called
backpropagation through time (BPTT). The main issue in this approach, particularly
emphasized in deepRNNs (DRNNs), is the vanishing gradient problem that obstacles
the network performance. In order to solve this issue, a variation of RNNs with the
so-called Long Short-TermMemory (LSTMs) units, was proposed byHochreiter and
Schmidhuber [8]. LSTMs are gated cells and they preserve the error by maintaining
it quite constant over many time steps.

The LSTM units are capable of learning long-term dependencies reducing the
problems on the gradient. An LSTM introduces a new structure called memory cell,
that is composed of four main elements: an input gate, a neuron with a self-recurrent
connection (a connection to itself), a forget gate and an output gate, as shown in
Fig. 13.2 (compared with a standard recurrent neuron). The basic idea is to adopt
three gates that can avoid the gradient to diverge. Let us denote with xn and hn the
input to the LSTM unit and the hidden state at time-step n. Then, denoting withWi ,
W f ,Wc,Wo, Ui , U f , Uc, Uo and Vo some weight matrices and with bi , b f , bc and
bo suitable bias vectors, we first compute the values for in , the input gate, and zn , the
candidate value for the states of the memory cells at time n:

(a)

(b)

Fig. 13.2 Details of a simple recurrent neuron (RN) (a) and a LSTM unit (b), used in hidden layers
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in = σ (Wixn + Uihn−1 + bi ) , (13.3)

zn = tanh (Wcxn + Uchn−1 + bc) , (13.4)

where σ(·) represents the sigmoid function. Second, we compute the value for fn ,
the activation of the memory cells’ forget gates at time n:

fn = σ
(
W f xn + U f hn−1 + b f

)
, (13.5)

Then, given the values of the input gate activation in , the forget gate activation fn
and the candidate state value zn , we can compute Cn , the memory cells’ new state at
time n:

Cn = inzn + fnCn−1, (13.6)

Finally, with the new state of the memory cellsCn , we can compute the value of their
output gates on and, subsequently, their outputs hn:

on = σ (Woxn + Uohn−1 + VoCn + bo) , (13.7)

hn = on tanh (Cn) . (13.8)

13.4 Proposed Approach

The proposed network for the solution of the SCSS problem is a DRNN containing
six hidden layers: the first three layers are feed-forward layers, here called dense
layers, while the latter ones are recurrent layers with LSTM units, as schematically
shown in Fig. 13.3 (for simplicity only two layers of each type are shown).
The whole architecture is trained by the RMSprop algorithm. RMSprop is an unpub-
lished and adaptive learning rate method proposed by Geoff Hinton in [17]. The idea
of RMSprop is that the learning rate of a gradient adaptation is recursively rescaled
as a decaying average of all past squared gradients. Let us denote with θn and gn
the parameters vector and gradient vector at time n, respectively. Then the RMSprop
algorithm assumes the following formulation

θn+1 = θn − η√
E

{
g2n

} + ε

gn, (13.9)

√
E

{
g2n

} = γ

√
E

{
g2n−1

} + (1 − γ ) g2n, (13.10)

where γ is a forgetting factor similar to theMomentum term and ε is a regularization
parameter. Hinton suggests to set γ = 0.9 and the learning rate to η = 0.001.

The proposed network works in the frequency domain by considering the magni-
tude spectra of source signals. In our case, with reference to the work in [9], the cost
function JMSE to be optimized is the squared error
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Fig. 13.3 Scheme of the DRNN used for SCSS. The hidden layers are obtained by stacking dense
layers and recurrent layers

JMSE = 1

2

L∑

n=1

(‖y1n − s1n‖22 + ‖y2n − s2n‖22
)
, (13.11)

where y1n and y2n are the estimates of the original sources s1n and s2n , respectively,
and n = 1, 2, . . . , L with L being the length of the input sequence.

In the following we restrict our analysis to the case of a mixture composed by only
two sources. However, a generalization to a greater number of sources is straightfor-
ward.
The training phase is shown in Fig. 13.4 and consist in the evaluation of themagnitude
of the STFT after the division of the input signal in overlapped frames and a scaling
procedure to ensure that every sample is inside the interval [−1, 1] in order to avoid
numeric problems during the learning procedure. The overall frames are arranged in
the tensor representation shown in Fig. 13.1. Hence, the obtained signal is used to
train two separate DRNNs, one for each original source.

In the testing phase, the two learned DRNNs are used to separate the two original
sources from an unknown mixture and to verify the effectiveness of the proposed
network. The scheme for the testing phase is shown in Fig. 13.5.

From the unknown mixture, the system evaluates the magnitude spectrum after
the division in frames. The phase of the spectrum is extracted and then utilized in the
reconstruction procedure. After the usual scaling and tensor data organization, the
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Fig. 13.4 Scheme of the training phase

Fig. 13.5 Scheme of the testing phase

two DRNNs provide an estimate of magnitude spectra of the original sources. These
estimates, along with the mixture phase, are sent to a reconstruction block, shown in
Fig. 13.6 for a single source.

The reconstruction of the estimated sources is done by unscaling the network
output and by a post-processing consisting in a time-frequency maskmkn applied to
the k-th solution. This mask is defined as

mkn = |Z1n(ω)|
|Z1n(ω)| + |Z2n(ω)| (13.12)

where the Zkn(ω) = bi jYkn(ω) is the unscaled version of the network output. This
mask is then used to filter the magnitude spectrum of the mixture, obtaining the
reconstructed signal after the addition of the mixture phase. The final signal zk[n]
in the time domain is obtained by applying the inverse STFT. An eventual block to
evaluated the effectiveness of the obtained solution can also be used.
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Fig. 13.6 Scheme for the reconstruction of the separated sources

Fig. 13.7 Training and test errors for: bass (a) and drum (b) sources

13.5 Experimental Results

Results of the proposed approach are evaluated in terms of three metrics: Source
to Interference Ratio (SIR), Source to Artifacts Ratio (SAR), and Source to Distor-
tion Ratio (SDR). The definition of these metrics is available in [19] and evaluated
according to the related BSS-EVAL toolbox. These metrics are evaluated by splitting
the estimated source as in

z[n] = s[n] + einterf[n] + enoise[n] + eartif[n], (13.13)

where einterf[n], enoise[n] and eartif[n] are terms that quantify the interference, additive
noise and artifacts over the target signal s[n]. Comparisons are performedwith respect
the separation method using the NMF approach in [11, 16].

The training has been performed on the MedleyDB dataset,1 a 40GB dataset of
annotated, royalty-free multitrack recordings for academic research and collected
from the New York University (NYU) [3]. From this dataset, we collected all tracks
of drum and bass, and then separately mixed them according to (13.1) in order
to construct the polyphonic track to train and test our architecture. A total of 100
different tracks are used for the training and 20 tracks for testing. Each hidden layer
of the DRNN used for bass (resp. drum) separation has 100 (resp. 200) neurons. The
training and test errors for the proposed network are shown in Fig. 13.7.

1Available at: http://medleydb.weebly.com/.

http://medleydb.weebly.com/
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Table 13.1 Results in terms of SIR, SAR and SDR of some test tracks for the proposed DRNN

Bass Drum

SIR SAR SDR SIR SAR SDR

Track 1 29.87 19.38 17.13 16.27 13.28 10.68

Track 2 17.56 17.14 14.21 14.82 15.92 11.74

Track 3 23.76 22.32 18.89 16.77 15.22 12.16

Track 4 22.44 20.87 18.43 17.03 16.51 13.32

Table 13.2 Results in terms of SIR, SAR and SDR of some test tracks for the NMF approach

Bass Drum

SIR SAR SDR SIR SAR SDR

Track 1 25.31 18.72 16.85 15.86 11.74 9.28

Track 2 13.74 9.76 9.26 10.69 15.45 7.05

Track 3 20.75 19.71 17.65 15.05 12.03 11.47

Track 4 20.51 19.63 16.83 16.07 14.01 11.29

Results in terms of the metrics SIR, SAR and SDR for four different test tracks,
randomly selected from the dataset, are summarized in Table13.1, while the related
comparisons of NMF approach are shown in Table13.2. From these tables we can

time [s]
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-1
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Fig. 13.8 Waveform of the mixture track (first row), estimated bass source (second row) and
estimated drum source (third row)
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see that the proposed approach outperforms the NMF one in each metric. This fact is
also validated by listening to the separated sources and by the inspection of Fig. 13.8
that show the mixture of a random track in the first row and the estimated bass and
drum sources in the second and third row respectively.

13.6 Conclusions

In this paper, we have proposed a deep recurrent neural network (DRNN) that uses
the LSTM units for solving the challenging problem of the source separation from a
single channel audiomixture. In particular, we focus our attention on the separation of
bass and drum instruments frommonophonicmusic.However, the approach is simply
extendible to a greater number of sources. Some experimental results, implemented
by using aDRNNwith six hidden layers (three feed-forward and three fully recurrent)
and evaluated in terms of the well known metrics SIR, SAR and SDR, have shown
the effectiveness of the proposed approach.
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Chapter 14
Intelligent Quality Assessment
of Geometrical Features for 3D Face
Recognition

G. Cirrincione, F. Marcolin, S. Spada and E. Vezzetti

Abstract This paper proposes a methodology to assess the discriminative capabili-
ties of geometrical descriptors referring to the public Bosphorus 3D facial database
as testing dataset. The investigated descriptors include histogram versions of Shape
Index and Curvedness, Euclidean and geodesic distances between facial soft-tissue
landmarks. The discriminability of these features is evaluated through the analysis
of single block of features and their meanings with different techniques. Multilayer
perceptron neural network methodology is adopted to evaluate the relevance of the
features, examined in different test combinations. Principle Component Analysis
(PCA) is applied for dimensionality reduction.

Keywords 3D face recognition · Geometrical descriptors
Dimensionality reduction · Principal component analysis · Neural network

14.1 Introduction

3D face recognition has been deeply investigated in the last decades due to the
large number of applications in both security and safety domains, even in real-time
scenarios. The third dimension improves accuracy and avoids problems like lighting
and make-up variations. In addition, it allows the adoption of geometrical features
to study and describe the facial surface.

In this work, the second principal curvature, indicated by k2, the shape index
(S) and the curvedness (C) are used. We rely on the formulations given by Do
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Carmo [1] for the principal curvatures and by Koenderink and van Doorn for the
shape index and curvedness [2]. The shape index describes the shape of the sur-
face. Koenderink and van Doorn proposed a partition of the range [−1, 1] in 9
categories, which correspond to 9 different surfaces, ranging from cup to dome/cap,
but other representations exist [3, 4]. The partition taken into consideration in this
work relies on 7 categories, ranging from cup (S ∈ [−1; −0.625 [) to dome
(S ∈ ] 0.625; 1]); values of S approximately equal to 0 (S ∈ [−0.125; + 0.125])
correspond to saddle-type surfaces. The curvedness is a measure of how highly or
gently curved a point is and is defined as the distance from the origin in the (k1, k2)-
plane. Point-by-point maps of these descriptors of faces we refer to previous work of
Vezzetti and Marcolin [4, 5].

The shape index was recently adopted by Quan et al. [6] to build a 3D shape
representation scheme for FR relying on the combination of statistical shape mod-
elling and non-rigid deformation matching. The method was tested and compared
on the BU-3DFE and GavabDB databases and obtained competitive results even in
presence of various expressions. The same descriptor was introduced byMing [7] for
searching nose borders as saddle rut-like shapes in a 3D facial regional segmentation
preceding FR relying on a regional and global regression mapping (RGRM) tech-
nique. Experiments run on FRGC v2, CASIA, and BU-3DFE databases involving
variously “emotioned” faces proved the satisfactory accuracy of the methodology.
Ganguly et al. proposed a Range Face image Recognition System (RaFaReS) where
the principal curvatures and the curvedness are used as descriptors of the facial sur-
face. The usability of the system was validated on the Frav3D database and results
ranged from 89.21 to 94.09% RR depending on the features selected and on the
classifier (k-NN and three-layer MLP backpropagation neural network) [8].

In the present work, 7-bins histogram versions of the descriptors are adopted. The
choice of 7 bins is given by the definition of the shape index give above. For manage-
ability reasons, the samenumber of bins is kept for the other descriptors.Besides these
descriptors, other features are taken into consideration: the nose volume, Euclidean
distances and geodesic distances between typical facial fiducial points, which lie on
the skin, called landmarks. The landmarks used here to evaluate these distances are:
OE-outer eyebrow, IE-inner eyebrow, EX-exocanthion, EN-endocanthion, N-nasion,
AL-alare, PRN-pronasal, SN-subnasal. Except for the eyebrow points, which are not
considered real soft-tissue landmarks, their morphometric definitions are provided
by Swennen et al. [9].

This paper proposes a methodology to analyze the geometric descriptors and
assess their discriminative capabilities. These descriptors are divided in four classes:
Euclidean, curvature, shape index and geodesic. Section 14.2 classifies the whole
database by using all the descriptors. Section 14.3 introduces the methodology and
analyzes the descriptors.
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Fig. 14.1 The confusion
matrix from MLP as a
colored heat map

14.2 The 3D Face Database and Its Classification

The dataset is composed of 211 geometrical descriptors (grouped in 4 classes) of
741 faces from 105 subjects. The associated matrix is 741×211. It is statistically
normalized by columns (z-score) for having the same range for each descriptor.

The 3D face recognition (classification) is performed by using a Multilayer Per-
ceptron (MLP) [10]. It has a unique hyperbolic tangent hidden layer and a softmax
output activation function. The error cost is given by the cross-entropy error. Conse-
quently, the networks outputs the conditional probabilities of class membership.

Training is performed by SCG, whichmakes use of the error derivatives estimated
by the backpropagation algorithm. The network is validated by dividing the dataset
in 636 samples for the training set and the remaining ones (one face per person) for
validation. All descriptors are taken in account. Hence MLP has 191 inputs. The
number of hidden neurons for the best bias variance trade-off is 300 for the 90.04%
classification rate in validation. Figure 14.1 represents the confusion matrix as a heat
map, just showing that is very sparse. However, the small size of the training set may
imply the hidden neurons work as templates for the faces. Therefore, this result is
not enough satisfactory.

The fact of using all features, with the goal of exploiting their redundancy, yields
a maximum achievable accuracy for the classification. The analysis which follows
does not try to improve on it. Instead, by deleting groups of descriptors, uses the
classification rate of success in order to detect their relative importance. In this
sense, the neural approach is here considered as a probe of the sensitivity of the
classification to the choice of features.
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14.3 Analysis of Geometrical Descriptors

The methodology for the analysis of the geometric descriptors has a two-fold aspect.
It does not only consider the advantages and limits for each descriptor in itself and
with regard to the other ones, but also makes use of statistical and neural techniques
in an unconventional way, i.e. as probes driven by data, for assessing the conclusions.

The statistical tool used here are the following:

• The Principal Component Analysis (PCA), here estimated by solving the SVD
problem. Basically, the first principal component (PC) describes the average fea-
tures of a face, while the subsequent PCs are related to the variance, and so are
more important for face recognition.

• The k-means algorithm [11] for clustering.
• The biplots [12] for high dimensional data visualization. They are a generalization
of scatter plots. A biplot allows information on both samples and variables of a
data matrix to be displayed graphically. Samples are displayed as points while
variables are displayed as vectors.

The neural techniques are given by:

• The curvilinear component analysis (CCA [13]). It is a self-organizing neural net-
work for dimensionality reduction whose neurons are equipped with two weights,
the first for the input vector quantization and the second for the projection, which
is performed by preserving as many distances as possible in the input space (only
distances below a certain threshold have to be invariant in the projection). In par-
ticular, the associated dy-dx diagram is important for the following study. This
plot represents distances between pairs of points in the input space (the dx value)
and in the reduced (latent) space (the dy value) as a pair (dy, dx). If a distance is
preserved in the projection, the corresponding pair is on the bisector. If the pair
is under the bisector, it represents the projection as an unfolding of the input data
manifold. If the manifold is linear, all points tend to lie on or around (because of
noise) of the bisector.

• The MLP, configured as seen before, for outputting the conditional probabilities
of class membership [10].

More in detail, the steps followed in this work are:

• Analysis of the data (face) manifold: by means of CCA and PCA, the intrinsic
dimensionality and the nonlinearity are evaluated, with the aim of defining the
smallest set of independent descriptors, in the sense of minimum valuable infor-
mation.

• Estimation of the descriptor class importance for classification: MLP is used in
order to evaluate the quality of one class in classification, both in using only the
class of descriptors (single case) and in using the whole matrix except that one
(subtractive case); the results are only qualitative and cannot be exactly comple-
mentary.
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Fig. 14.2 Explained variance by PCA (left) and dy-dx plot by CCA (right)

• Assessment of the ability both in discriminating subjects and in clustering the
faces as belonging to the same person: it is achieved by the k-means algorithm
and checked in a supervised way by counting the number of correct (recognized)
labels for each cluster, under the assumption all faces of the same subject (same
labels) belong to the same cluster. However, this is a weak hypothesis, because of
the possibly different scenarios (e.g. illumination), noise in data and so on. Indeed,
using all the descriptors yields a success rate of only 58.44%. Considering that a
good clustering cannot be appreciated only in the single case, only the subtractive
case is taken in account.

• Study of the statistical properties (covariance) of the descriptor classes and mutual
interaction between faces and descriptors; classes are analyzed by using the whole
database and in relation to the face information in a double PCA analysis: one in
the face space, the other in the descriptor space by interpreting the corresponding
biplot.

14.3.1 Geodesic Distances

These distances are more accurate than the Euclidean distances Indeed, in 3D, the
geodesic distance between two points on a surface is computed as the length of the
shortest path connecting the two points. As a consequence, true distances between
facial soft-tissue landmarks are estimated. Instead, the Euclidean distances do not
capture this information because they do not follow the shape of the face.

By using PCA on this group of 22 descriptors, it follows that the percentage of
explained variance of the first 10 PCs is 91.16% (see Fig. 14.2 left). This fact suggests
an intrinsic dimension of 10. At this purpose, CCA is performed for a dimensionality
reduction from 22 to 10 (λ � 20, 80 epochs). The corresponding dy-dx diagram
is plotted in Fig. 14.2 right. It shows that the manifold is linear and confirms the
validity of the intrinsic dimensionality estimation.
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Fig. 14.3 3D biplot: faces
(red points), blue vectors
(geodesic class), green
vectors (all the other classes)

It can be deduced that all faces represented by these descriptors lie on a 10-
dimensional hyperplane. This results in a redundancy of the descriptors. Only 10
geodesic distances (or linear combinations of these ones) are needed. Also, faces
outside this hyperplane cannot be well represented.

The analysis by MLP yields the following results:

1. Single case: test rate of about 27% with 150 hidden neurons.
2. Subtractive case: test rate of about 89% with 300 hidden neurons.

Considering that the subtractive result is similar to the complete one in Sect. 14.2,
it follows that these descriptors are not important in itself, but only in conjunction
with other geometric descriptors.

The k-means approach yields a success rate of 56.01% for the subtractive case.
This is only slightly lower than in the global case. It means that this class is not
necessary for the clustering ability (in the sense that all other descriptors are enough
for achieving nearly the same accuracy).

The statistical analysis uses the 3D biplot (see Fig. 14.3). The blue vectors, which
represent the geodesic distances, are nearly orthogonal to the plane PC1-PC2, which
means they are insensitive to the average values of the faces, but depend on their
variance. However, they are clustered, which implies the intrinsic dimension is low.
The fact their moduli are large implies their variance is high (they well represent a
portion of the descriptor space). With regard to the position of faces (red points),
the orthogonality implies the PCA scores are very low, thus confirming the little
importance of this class in the classification.
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Fig. 14.4 Explained variance by PCA (left) and dy-dx plot by CCA (right)

14.3.2 Shape Index

The class of shape indices contains 42 descriptors. By using PCA on this group, it
follows that the percentage of explained variance of the first 30 PCs is 96.74%. (see
Fig. 14.4 left). This fact suggests the importance of most of these features. CCA is
per-formed for a dimensionality reduction from 42 to 30 (λ � 50, 120 epochs).
The corresponding dy-dx diagram is plotted in Fig. 14.4 right. It shows that the man-
ifold is linear and suggests the idea of a 30-dimensional set of hyperplanes. Indeed,
the clusters in the CCA diagram show large distances: they represent intercluster
distances, which can be justified either as distant clusters or, more probably, as (face)
outliers.

The analysis by MLP yields the following results:

1. Single case: best test rate of about 78.09% with 200 hidden neurons.
2. Subtractive case: best test rate of about 58.02% with 150 hidden neurons.

It can be deduced these indices have a strong impact in face recognition.
The k-means approach yields a success rate of 51.69% for the subtractive case.

This is lower than for the geodetic subtractive case and is a confirmation of the better
validity of the shape index class.

The statistical analysis uses the 3D biplot (see Fig. 14.5). The blue vectors, which
represent the shape indices, are nearly orthogonal to the planePC1-PC2,whichmeans
they are insensitive to the average values of the faces as for the geodetic distances.
On the contrary, they spread the PC2-PC3 plane, which implies a good detection of
variance of data and confirms the high intrinsic dimensionality. The length of the
vectors suggests a high variance for each descriptor (better description of the face).
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Fig. 14.5 3D biplot: faces (red points), blue vectors (geodesic class), green vectors (all the other
classes)

Fig. 14.6 Explained variance by PCA (left) and dy-dx plot by CCA (right)

14.3.3 Indices of Curvature

The curvature class is composed of 84 indices from histograms of the coefficient (42)
and the Curvedness (42). The percentage of explained variance (see Fig. 14.6 left) of
the first 30 PC components is 98.44% (the first PC is about 50%). It means that a lot
of indices are meaningful. This intrinsic dimension is confirmed by CCA performed
for a dimensionality reduction from 84 to 50 (λ � 50, 120 epochs), whose dy-dx
diagram in Fig. 14.6 right shows that the manifold is linear and suggests the idea of
a 50-dimensional f hyperplane with some outliers.

MLP yields the following results:

1. Single case: best test rate of about 56.19% with 100 hidden neurons.
2. Subtractive case: best test rate of about 60% with 170 hidden neurons.
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Fig. 14.7 3D biplot: faces
(red points), blue vectors
(curvature class), green
vectors (all the other classes)

Fig. 14.8 Right facial points
used to compute distances.
The same are obtained in the
left part of the face

It can be deduced these indices have a strong impact as for the shape index, but
are slightly less important.

The k-means approach yields a success rate of 58.84% for the subtractive case.
This is of the same order of the geodesic subtractive case and proves worse discrim-
ination w.r.t. the shape index.

The statistical analysis by the 3D biplot (see Fig. 14.7) shows the curvature vectors
partially spread the PC2-PC3 plane, in a negative correlated way, which implies a
good detection of variance, also because of the high score of their projection on data.
The length of the vectors also suggests a high variance for each descriptor (better
description of the face). However, some average statistics of faces is captured.

14.3.4 Euclidean Distances

The Euclidean class is composed of 62 distances derived from facial soft-tissue
landmarks located around the nose and the eyes (see Fig. 14.8).

The percentage of explained variance (see Fig. 14.9 left) of the first 10 PC compo-
nents is 93.7%%. The intrinsic dimensionality is very low. This is confirmed by CCA



162 G. Cirrincione et al.

Fig. 14.9 Explained variance by PCA (left) and dy-dx plot by CCA (right)

for a dimensionality reduction from 62 to 8 (λ�70, 120 epochs), whose dy-dx dia-
gram in Fig. 14.9 right. It proves the Euclidean manifold is at least an 8-dimensional
hyperplane.

However, after a correlation analysis which has selected 8 independent features, it
has been proved that 5 of them have a bimodal statistics and are not able to discrimi-
nate 100 faces (they always yield the same value). These distances are Pronasal (PN)
with right Outer eyebrow (OEdx), right Ala of nose (ALA) with right Outer eyebrow,
right Exocantion with right Outer eyebrow, left Exocantion with left Outer eyebrow
and right Outer eyebrow with left Outer eyebrow. This observation is probably jus-
tified by the fact that these facial soft-tissue landmarks are located in positions in
which the face movement is difficult. It follows that these distances do not vary for
people with different facial expressions. After a detailed examination of these points,
the conclusion is that the point ‘right Outer eyebrow’ (also, the same point in the left
position) is a couple of coordinates repeated in all the five distances. This means that:
OEdx tracks the change of movement of points PN or ALA when a person modifies
his expression. The point Exocantion is located in the inner corner of the eye where
there is no possibility of movement. The last distance is between right Outer eyebrow
and the analogous in the left position. This distance does not vary for the reason that
it is parallel to the frontal anatomical plane and the maximum movement permitted
for these points is to shift among the same plane. Resuming, 5 features are certainly
unable to classify. There remain only 3 features. MLP confirms the uselessness of
this class:

1. Single case: best test rate of about 45.4% with 200 hidden neurons.
2. Subtractive case: best test rate of about 80.95% with 200 hidden neurons.

The k-means algorithm yields a success rate of 70.05% for the subtractive case.
It means that the discrimination is better without the Euclidean distances than with
the whole database. They worsen the classification.

The 3D biplot (see Fig. 14.10) shows that: the Euclidean distances are clustered
around the first component, which represents the average behavior of the faces.
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Fig. 14.10 3D biplot: faces
(red points), blue vectors
(Euclidean class), green
vectors (all the other classes)

Hence, they are not able to well distinguish the images. This clustering also proves
the fact they do not discriminate well.

14.4 Conclusion

This work analyzes four classes of geometric descriptors for 3D face recognition, by
using the public Bosphorus 3D facial database as dataset. At this aim, statistical and
neural techniques are employed in an original way. Classes can be ranked according
to their behavior in classification. Certainly, the worst features are the Euclidean
distances. They do not represent at all the variance in faces. They worsen the face
recognition. They are easy to estimate, but not meaningful with regard to the true
distances in the face, unlike the geodesics, which require a higher computational cost.
However, only 10 geodesics are needed. Both curvatures and geodesic descriptors
work far better, but they are not enough for capturing the peculiarity of the face.

Fig. 14.11 Two views of the scatter plot of the first 3 PCs for all descriptors
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At least 50 curvature descriptors are needed for a good discrimination. The best
descriptors belong to the shape index class, which requires 30 descriptors. However
all these classes but the Euclidean distances have to work in a coordinated way
for achieving the best possible result. Figure 14.11 shows the different regions of
competence with regard to the first 3 PCs. However, consider that this is only a
reduced representation of the feature space (except for the Euclidean class).

Future work will deal with the use of the parallel coordinate plots and other neural
networks.
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Chapter 15
Convolutional Neural Networks
for the Identification of Filaments
from Fast Visual Imaging Cameras
in Tokamak Reactors

Barbara Cannas, Sara Carcangiu, Alessandra Fanni, Ivan Lupelli, Fulvio
Militello, Augusto Montisci, Fabio Pisano, Giuliana Sias and Nick Walkden

Abstract The paper proposes a region-based deep learning convolutional neural
network to detect objects within images able to identify the filamentary plasma struc-
tures that arise in the boundary region of the plasma in toroidal nuclear fusion reac-
tors. The images required to train and test the neural model have been synthetically
generated from statistical distributions, which reproduce the statistical properties in
terms of position and intensity of experimental filaments. The recently proposed
Faster Region-based Convolutional Network algorithm has been customized to the
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problem of identifying the filaments both in location and size with the associated
score. The results demonstrate the suitability of the deep learning approach for the
filaments detection.

Keywords Deep learning · Convolutional neural network · Object detector
Nuclear fusion reactors

15.1 Introduction

One of the main issues in the operation of a nuclear fusion tokamak reactor [1] is to
understand the dynamics and phenomenology of the plasma edge, in order to avoid
the erosion of the reactor walls and the energy loss, due to the occurrence of plasma
turbulence. In fact, it has been recognized that some turbulent intermittent events are
the cause of plasma transport at edge in a radial direction beyond the last closed flux
surface (LCFS), with various degrees of penetration into the scrap-off layer (SOL).
These events directly influence the location and strength of the heat and particle
flux to plasma facing components [2]. Hence, a main topic is the study of particular
turbulences, called blobs or filaments, which is crucial for the design of the SOL
profiles.

Various filaments detection methods have been proposed in literature. In [3], the
plasma blobs are determined by statistically setting some thresholds on the local
plasma density signal. This method requires the threshold optimization in every
experiment, due to the intrinsic variability and complexity of the filamentary struc-
tures. In [4–6], different blob identification algorithms have been presented based on
the gas puff imaging (GPI) diagnostic. These methods are not suitable for real-time
application. The aim of this paper is automatically identifying the filamentary plasma
structures, that arise in the boundary region of the plasma in the Mega-Amp Spheri-
cal Tokamak (MAST) located at the Culham Science Center of Abingdon (UK). The
identification of the filaments has to be done starting from the 2D images, acquired
with a fast camera installed in MAST. The camera records the light emission asso-
ciated with the filaments during a plasma discharge, at time scale relevant for their
dynamics.

The imaging data, obtained by the fast camera, has to be analyzed in order to
extract filaments information, such as their position, size, shape, intensity value and
the dynamics withwhich it moves along themagnetic field lines. Hence an algorithm,
able to identify the filaments and to evaluate their properties, has been developed. For
our investigation only the mid plane images have been used, and the aim is to provide
a fair filaments 3D reconstruction from 2D images, so that all the filaments features
could be known and the control of plasma edge could be better developed. Knowing
that filaments are generally aligned to magnetic field lines [7], the reconstruction of
the field lines at the equilibrium can be used as an artifact to describe the filaments
position and size inside images. In particular, in [8] an image processing tool (Elzar
code) has been presented in which the light emission is integrated along the field
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lines associated with the position of the filaments. The images resulting from this
process are mapped into a specific plane whose coordinates are the major radius and
the toroidal angle in the MAST cylindrical coordinates. In fact, each field line can
be uniquely defined at any 3D spatial point and it is identified by its position at the
mid-plane of the tokamak (Z = 0 in the MAST cylindrical coordinate system). These
2-D maps have been used in this paper to extract information on the location and
dimension of the filaments.

To this purpose, Convolutional Neural Networks (CNNs) [9] have been used.
CNNs are a family of multi-layer neural networks particularly designed for use on
two-dimensional data, such as images and videos. In this paper, the potentiality
of CNN has been investigated in order to implement the filaments identification
system. In particular, a recently proposed neural deep learning algorithm, called
Faster Region-based Convolutional Neural Network (Faster-RCNN) [10] has been
used to detect the filaments from the 2D-maps, allowing to extract the information
on their position and size in the original images.

15.2 Filaments Simulations

In principle, the emission of a filament can be described in a 2D plane as a shape
parameterized by the major radius R and the toroidal angle ϕ. Figure15.1 shows on
the left the image taken from the mid-plane fast visible camera, and on the right its
projection in the R, ϕ plane done by using the Elzar code [8], a tool written in Python
which integrates the light emission of each filament along the associated magnetic
field lines and plots the image processing result into the 2D grid. The bright light
emissions of the filaments visible in the camera image can be identified as elliptical
objects in the R, ϕ plane.

In the simplest assumption, each filament can be modelled as a two-dimensional
Gaussian function of R and ϕ:

f (R, ϕ) = A · exp
[

− (R − R0)
2

σ 2
R

− (ϕ − ϕ0)
2

σ 2
ϕ

]
(15.1)

where A is the filament amplitude, R0, ϕ0 is the position of the its center, σR, σϕ are
the R and ϕ spreads of the blob. Figure15.2 shows an example of synthetic Gaussian
filament in the R, ϕ plane, in which some noise has been added to the amplitude in
order to simulate experimental conditions.

The values of A, R0, ϕ0, σR, σϕ are generated randomly from statistical distribu-
tions, in order to reproduce the statistical properties of experimental filaments. As it
happens experimentally, not all the entire set of generated filaments is visible by the
camera, whose field of view doesn’t cover all the volume of the tokamak. Thus, only
a subset of generated filaments is visible in the R, ϕ plane.

The synthetic image I is thus created as a summation of several Gaussian func-
tions, each of which represents one filament:
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Fig. 15.1 Image taken from the mid-plane fast visible camera (left) and projection of experimental
filaments with Elzar code (right)

Fig. 15.2 View of a generated synthetic filament

I (R, ϕ) =
∑
i

fi (R, ϕ) =
∑
i

Ai · exp
[

− (R − Ri,0)
2

σ 2
R,i

− (ϕ − ϕi,0)
2

σ 2
ϕ,i

]
(15.2)

and then normalized in amplitude. The synthetic dataset consists of 10 000 images of
size 227 × 227,with radial and angular intervals 1.3m ≤ R ≤ 1.46m and2.53 rad ≤
ϕ ≤ 3.85 rad respectively.

These synthetic images have been used to build the filaments detection deep
learning model (training images) and to test its performance (testing images).
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15.3 Convolutional Neural Networks (CNNs)

AConvolutionalNeuralNetwork is a deep learning neural network particularly suited
to image processing [9, 11]. The architecture of a CNN is inspired by the structure of
the animals’ visual system, and it consists of several blocks of different layers each
one performing a prescribed task:

• the convolutional layers perform a convolution filtering of the previous layer. Small
regions of input neurons, called Local Receptive Fields (LRF), are connected to
neurons in the first convolutional hidden layer. These input networks correspond to
pixels nearby the image. Sliding the LFR across the input image without changing
the weights, which act as a filter, a feature map is created from the input layer to
the hidden layer neurons. This task is efficiently performed by convolution. Being
the weights the same for all the hidden neurons, all the hidden neurons detect the
same feature from the different regions of the original image;

• in order to increase the non-linear capability of the decision functions, an activation
layer is used, named ReLU (Rectified Linear Unit) layer. It applies a transforma-
tion to the output of the convolution layer by means of an elementwise activation
function without changing the dimension of the output. Different activation func-
tions can be used [12]; among them, one of the most common is the non-saturating
activation function f (x) = max(0, x);

• the pooling layers subsample small rectangular blocks taken from the convolutional
layer to produce a single output from that block.

This cascade of Convolution-ReLU-Pooling blocks extracts the more significant
features from the original image, which constitute the input of the final layer. Just
as in the conventional neural networks, this is a fully connected layer that performs
the association among these features and the desired output labels corresponding
to the classification of the objects into the image. Figure15.3 reports a schematic
representation of a CNN.

The network weights have to be optimized by means of a training process, which
can be performed from scratch or using CNN trained to learn similar problems.
The CNN can be used just to extract the relevant features from the image. These
features are used as input to a machine-learning model, which performs the desired
classification. This last approach is less accurate but requires a limited amount of
data and computation resources.

Fig. 15.3 Schema of a convolutional neural network
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Recently, several CNNalgorithms have been proposed to accurately detect objects
within images, such as the Region-based Convolutional Networks (RCNN) [13], and
their extensions, Fast RCNN [14] and Faster RCNN [10], which differ in the way
they select the regions of the image (or proposals) to be selected and how to select
them. In particular, an RCNN is an object detection algorithm that combines region
proposals with features computed by a convolutional neural network. However, for
each object proposal, it performs a training step, without sharing computation. The
Fast RCNN algorithm performs a single-stage training that jointly learns to classify
object proposals and refine their spatial locations [14]. Even if Fast RCNNovercomes
RCNN in terms of required computation resources, the time spent to compute the
object proposals is still a limit, at least implementing it on a CPU. The Faster RCNN
[10] computes proposals with a deep convolutional neural network realizing a system
entirely based on the paradigm of the deep-learning and with reduced calculation
times. To this purpose, a Region Proposal Network (RPN) is used, which shares
convolutional layers with the detection network. An RPN has as input an image
and produced as outputs a set of rectangular object proposals, each associated to its
classification score referred to a set of object classes versus the background.

The global deep neural network is trained by alternating a fine tuning of the
RPN module with a fine tuning of the object detection Fast RCNN, while keeping
the proposals fixed. This scheme demonstrated to fast converge to a unified system
where the convolutional features are shared between the region proposal and the
object detection tasks.

15.4 Faster-RCNN for Filaments Detection

Based on the Faster RCNN described in [10] a filament detector has been developed.
The input data set is composed of 10 000 images. Each image contains several
instances of filaments (from 1 to 19) with their associated bounding boxes specifying
the object locations within the image. Each bounding box is defined by a four tuple
(x, y, h, w) that specifies its top-left corner (x, y) and its height and width (h, w).
The data set is split into a training set (6 000 images) for training the detector, and a
test set (4 000 images) for evaluating the detector.

In order to construct the detector, firstly, a CNN is built. Because of the detector
needs to analyze smaller sections of the image, the input size of the CNN must be
similar in size to the smallest object in the data set. In this data set all the objects are
larger than [3 × 3], so an input size of [9 × 9] has been selected. The middle layers
of the CNN are then defined. The middle layers are made up of repeated blocks of
convolutional, ReLU, and pooling layers.

As previously mentioned, the Faster RCNN consists of two networks that share
several convolutional layers; these layers produce convolutional feature maps. The
first network is the RPN that, from the convolutional feature maps, generates region
proposals which are used by the second network, the Fast RCNN, for the detection
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Fig. 15.4 Schema of the faster RCNN

(Fig. 15.4). Hence, starting from the basic structure of the previously defined CNN,
its different layers are assigned to the RPN and to the Fast RCNN.

As shown in Fig. 15.4, in order to obtain region proposals, a sliding window is
run spatially on the feature maps and, for each sliding window, a set of k anchors
(i.e. reference boxes) are generated all having the same center of the sliding window
but different aspect ratios and scales. Furthermore, for each of these anchors, using
the Intersection-over-Union (IoU) metric, defined as the ratio between the area of
overlap and the area of union, a value p∗ is computed which indicates how much
the anchors overlap with the ground-truth bounding boxes. The value p∗ has been
computed considering the following rules:

p∗ =

⎧⎪⎨
⎪⎩
1 if I oU > 0.3

−1 if I oU < 0.3

0 otherwise

If p∗ = 1, the anchor is labeled positive, if p∗ = −1 it is labeled non-positive
whereas, if p∗ = 0, the anchor does not contribute to the training objective.

Theoutput of each convoluted slidingwindow is thenmapped to a lowdimensional
feature vector, followed by a ReLU nonlinearity. Finally, these low-dimensional
features are fed into two fully connected layers that identify the proposals: a bounding
box regression layer with 4k outputs encoding the 4 coordinates of k reference
boxes and a box-classication layer with 2k outputs (2 scores for each of the k boxes
indicating how likely each of the k regions contains an object or the background).
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For each image, the top-ranked 2000 proposals generated by the RPN have been
selected to construct the training set for the Fast RCNN. For each proposal, a region
of interest (RoI) pooling layer extracts a fixed length feature vector from the feature
maps.

Each feature vector is then fed into a sequence of fully connected (FC) layers that
finally branch into two sibling output layers: one that produces softmax probability
estimates over filament class, plus a catch-all “background” class and another layer
that outputs 4 real-valued numbers that encode refined bounding-box positions for
each filament.

In order to optimize the detector performance, theweights of the network obtained
by the previous steps are used to retrain the RPN. In particular, the weights of con-
volutional layers shared with the Fast RCNN are kept fixed, whereas the other layers
of the RPN are fine-tuned. Finally, the process is iterated by fine tuning the layers of
the Fast RCNN while keeping fixed the convolutional layers shared with the RPN.

Both RPN and Fast RCNN are trained using Stochastic Gradient Descent with
Momentum, for 10 epochs with initial learning rate of 10−6.

15.5 Results

Figure15.5 shows some examples of results for the filaments detection on the test
set. For each example, the target boxes are plotted with dashed gray lines, whereas
the boxes provided by the detector are reported as black lines. Figure15.5a refers
to a test example where five filaments were present. As can be seen, the filament
detector has worked very well, detecting all the filament structures, which are per-
fectly framed by the black rectangles. In Fig. 15.5b the filament detector produced a
false alarm, detecting more filaments than those actually existing; in particular, two
very close filaments (see bottom of Fig. 15.5b) have been identified by the detector
as three different structures. Both in Fig. 15.5c and d, even if the large majority of
filamentary structures have been precisely detected, the filament detector produced
missed alarms, missing some filaments than those actually existing; in particular, the
lowest filament magnitude in Fig. 15.5c and the boundary filament in the top-right
of Fig. 15.5d have not been detected.

A statistical analysis on the entire test set showed that the leading causes of
missed alarms have been given by filaments having low magnitude and/or lying in
the boundary region of the image.

In order to evaluate the performance of the filament detector, the following criteria
have been used:

• a filament is considered as correctly detected if its center lies inside some of the
boxes created by the filament detector. In this case the filament detector produces
a True Positive (TP) response;

• a filament is considered missed if its center lies outside any of the boxes created
by the filament detector, and a False Negative (FN) response is produced;
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Fig. 15.5 Detection examples on the test set with indication of target boxes (dashed gray lines)
and boxes provided by the detector (black lines)

Table 15.1 Detection performance in terms of true positive (TP), false negative (FN), and false
positive (FP)

� Actual filaments TP FN FP

Training set 50085 33808 16277 866

Test set 33962 22911 11051 556

• if a box created by the filament detector does not contain the center of any actual
filament, it is considered as a False Positive (FP).

Table15.1 summarizes the obtained results, in terms of the number of actual
filaments detected (TP) or not detected (FN), and the number of detected filaments
that were not existent (FP).
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Table 15.2 Detection performance in terms of precision and recall

Pr Rc

Training set 0.976 0.675

Test set 0.975 0.675

In order to evaluate the performance of the filament detector, some global indices
have been considered:

• Precision (Pr), also called as positive predictive value, defined as the ratio between
the number of true positives (TP) and the sum of the true positives and false
positives (FP):

Pr = T P

T P + FP

• Recall (Rc), also known as sensitivity, defined as the ratio between the number of
true positives and the sum of the true positives and false negatives (FN):

Rc = T P

T P + FN

Table15.2 report these indices for both the training and the test set.
As it can be noticed, the results in terms of performances on the training and test

set are quite equivalent, showing that the network has been able to learn the training
set properties without overfitting problems. The high level of precision tells us that
the most of detected objects are actually filaments. On the other side, a recall of 0.675
gives evidence that there is a good part of filaments which the network is still not
able to detect.

15.6 Conclusions

This paper proposed an object detector, which is able to identify particular kind
of structures, called filaments, appearing in the plasma edge, and recorded with
a fast camera installed on MAST. To this purpose a deep learning convolutional
neural network has been trained with synthetic filaments images which reproduce
the statistical properties of experimental filaments in terms of position and intensity.
This choice allowed assessing the algorithm performances through the evaluation of
commonly used indices. In particular, the precision of the method was very high,
overcoming 97.5% both in the training and test sets. But, the values of the recall
index was considerably lower, achieving 67.5% in both the sets. This is due to the
difficulty of the detector to identify filaments with low pixels intensity or located
on the edges of the frames. Further investigations will be performed in the future to
decrease these missed detections.
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The long-term goal is to get good performance of the algorithm even on experi-
mental data, so that to enable an objective automation of the identification process
in the view of analyzing the filaments dynamics. The obtained results indicate that
Faster-RCNNcan be a powerful tool for image analysis in the nuclear fusion research.
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Chapter 16
Applying Network Analysis
for Extracting Knowledge
About Environment Changes
from Heterogeneous Sensor
Data Streams

Francesco Cauteruccio, Paolo Lo Giudice, Giorgio Terracina
and Domenico Ursino

Abstract Sensor network analysis has become a challenging task. The detection
of sensor anomalies is one of the most prominent topics in this research area. In
the past, researchers mainly focused on the detection and analysis of single-sensor
anomalies. In this paper, we shift the focus from a local approach, aimed to detect
anomalies on single sensors, to a global one, aiming at detecting and investigating
the consequences, on the whole sensor network and/or its subnetworks, of anomalies
present in one or more (heterogeneous) sensors.
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16.1 Introduction

In the last few years, research onWireless Sensor Networks (WSNs) has been ignited
by important advances in various technological areas, such as wireless communica-
tions, digital electronics andmicro-electro-mechanical systems.These improvements
allowed for an easy development of low-power and low-cost multi-functional sensors
and networks thereof. Sensor networks usually include a large number of nodes, each
ofwhichmay sense severalmeasures. Cooperation among nodes is usually sought for
in such networks. Sensor nodes are usually positioned either inside or very close to
observed events, and the main objective is to provide users with a better understand-
ing of the environment in which sensors are deployed, thus giving the opportunity
to acquire new information and intelligence. While the management of sensor net-
works and the development of robust data acquisition layers received much attention
in the literature, one big open challenge in this research area is anomaly detection
[1, 2]. Anomalies can be generated by either malfunctioning sensors or changes in
the monitored environment. In most cases, being able to distinguish between the two
scenarios is a challenging task. Most of the past approaches for anomaly detection
focused on the analysis of data produced by each single device [3]. The most notable
approaches in this setting can be grouped in four categories, namely: (i) rule-based
detection [4], (ii) statistical techniques [5], (iii) graph-based techniques [6], and (iv)
data mining and computational intelligence-based techniques [7]. Instead, network-
based approaches for anomaly detection in WSNs received less attention [8–11].
In fact, in spite of a strict complementarity and correlation between network anal-
ysis and WSNs, only in the latest years, researchers have begun to apply network
analysis-based techniques to WSNs. However, they have only proposed the appli-
cation of classical network analysis parameters to this context. Indeed, most of the
proposed approaches employ centrality measures [12], which allow the detection of
anomalies of only one node at a time.

In this paper, we aim at introducing new solutions for the analysis of heteroge-
neous sensors organized as a network. In particular, our techniques will be based on
the evaluation of the connectivity of the whole WSN and its subnetworks (instead
of on node centrality), and are mainly focused on potential anomalies involving
more sensors located therein. They adopt a metric capable of uniformly handling
measures provided by heterogeneous sensors, as well as a dashboard of network
analysis parameters. This way, they allow the detection of anomalies involving more
(heterogeneous) sensors, and the evaluation of the impact of these anomalies on the
whole sensor network and its subnetworks. The plan of this paper is as follows. In
Sect. 16.2, we introduce our model used to represent WSNs and our anomaly detec-
tion approach. In Sect. 16.3, we present some preliminary results on tests carried out
on a sensor network, along with some discussions. Conclusions and future work are
illustrated in Sect. 16.4.
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16.2 Methods

16.2.1 Network Construction

LetW be a WSN. Without loss of generality, assume that the corresponding sensors
can be partitioned along two orthogonal dimensions.1 In the scenario considered
here, these dimensions are location and physical quantities to evaluate (in particular,
we consider p = 3 physical quantities, i.e., temperature, lightness and humidity).
Assume that the WSN covers l locations (in particular, we consider l = 3 locations,
named A, B and C in the following) and that one location contains n devices, each
measuring p physical quantities. As a consequence, the overall number of sensors is
s = pln.

A networkN = 〈V, E〉 can be associated withW . Here, V is the set of the nodes
of N . Each node vi ∈ V corresponds to a sensor and has associated a label 〈li , pi 〉,
where li represents its location and pi denotes the physical quantity it measures. E
is the set of the edges of N . Each edge ei j connects the nodes vi and v j . It can be
represented as ei j = (vi , v j , wi j ). Here, wi j is a measure of “distance” between vi
and v j . It is an indicator of the non-correlation level of the sensors associated with
vi and v j . Actually, each parameter representing this feature could be adopted in our
model. In the experiments presented in this paper we adopted Multi-Parameterized
Edit Distance (MPED) [13] for its capability of measuring the non-correlation level
of sensors regarding heterogeneous physical quantities, characterized by different
units of measure and possible data shifts.

N can be partitioned along one or both dimensions. We indicate by Np =
〈Vp, Ep〉 the subnets obtained by taking only the nodes that correspond to the sensors
measuring the physical quantity p. Here, p ∈ {l, t, h} can denote lightness, temper-
ature and humidity, respectively. Analogously, we indicate by Nq = 〈Vq , Eq〉 the
subnets obtained by taking only the nodes that correspond to the sensors operating
at the location q. Here, q ∈ {A, B,C}. Finally, we denote byNpq = 〈Vpq , Epq〉 the
subnet obtained by considering only the nodes corresponding to the sensors that
measure the physical quantity p and operate in the location q, along with the edges
linking them.

16.2.2 Network Parameters

As pointed out in the Introduction, we use several parameters to construct our dash-
board supporting the extraction of knowledge about environment changes. The first
four parameters are derived from classical network theory; the fifth is derived from
a particular centrality measure proposed in [14]; the last is introduced by us. In

1Actually, the number of dimensions could be greater than two, without requiring any change of
the approach.
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this section, we present an overview of these parameters. In the following, we
define all of them on a reference network N = 〈V, E〉. The first parameter is the
Characteristic Path Length, also known as the Average Shortest Path Length. It
is defined as the average length of the shortest paths connecting all possible pairs
of network nodes. More formally, let l(vi , v j ) be the length of the shortest path
between vi and v j . The Characteristic Path Length LN of N is defined as: LN =

1
|V |(|V |−1)

∑
vi∈V

∑
v j∈V,v j �=vi

l(vi , v j ). The second parameter is the Average Node
Connectivity. Given two nodes vi and v j , their connectivity c(vi , v j ) represents the
minimum number of edges that need to be removed to disconnect them. The Average
Node Connectivity CN is defined as: CN = 1

|V |(|V |−1)

∑
vi∈V

∑
v j∈V,v j �=vi

c(vi , v j ).
The third parameter is the Average Number of Simple Paths. Given two nodes vi and
v j , we indicate by p(vi , v j ) the number of simple paths (i.e., paths with no repeated
nodes) between them. Then, we define the Average Number of Simple Paths PN
as: PN = 1

|V |(|V |−1)

∑
vi∈V

∑
v j∈V,v j �=vi

p(vi , v j ). The fourth parameter is the Aver-
age Clustering Coefficient. In order to define it, we must preliminarily introduce
the neighborhood nbh(vi ) of a node vi as follows: nbh(vi ) = {v j |ei j ∈ E}. Then,
we define the Clustering Coefficient of a node vi as: s(vi ) = 2·|{e jk |v j ,vk∈nbh(vi ),e jk∈E}|

|nbh(vi )|·(|nbh(vi )|−1) .

Finally, we define the Average Clustering Coefficient as: SN = 1
|V |

∑
vi∈V s(vi ). The

fifth parameter is the Average Closeness Vitality. Given a node vi , the closeness vital-
ity t (vi ) represents the increase in the sum of distances between all the pairs of nodes
ofN , when vi is excluded fromN [14]. TheAverageClosenessVitalityTN is defined
as: TN = 1

|V |
∑

vi∈V t (vi ). The sixth parameter (i.e., the one introduced by us) is the
Connection Coefficient. It starts from the observation that, in network analysis, one
of the most powerful tools for investigating the connection level of a network is the
concept of clique. As a consequence, it is reasonable to adopt this concept to evaluate
the cohesion of a network. This coefficient takes the following considerations into
account: (i) both the dimension and the number of cliques are important as con-
nectivity indicators; (ii) the concept of clique is intrinsically exponential; in other
words, a clique of dimension n + 1 is exponentially more complex than a clique of
dimension n.

In order to define the Connection Coefficient it is necessary to introduce a support
networkN π = 〈V, Eπ 〉, obtainedby removing fromN the edgeswith an “excessive”
weight; observe that the nodes of N π are the same as the nodes of N . To formally
define Eπ , we employ the distribution of the weights of the edges ofN . Specifically,
letmaxE (resp.,minE ) be the maximum (resp., minimum) weight of an edge of E . It
is possible to define a parameter stepE = maxE−minE

10 , which represents the length of
a “step” of the interval between minE and maxE . We can define dk(E), 0 ≤ k ≤ 9,
as the number of the edges of E whose weights belong to the interval between
minE + k · stepE and minE + (k + 1) · stepE . All these intervals are closed on the
left and open on the right, except for the last one that is closed both on the left and
on the right. Eπ can be defined as: Eπ = {ei j ∈ E |ei j ∈ ⋃

k≤thmax
dk(E)}. We have

experimentally set thmax = 6. We are now able to define the Connection Coefficient
QN of N . In particular, let C be the set of the cliques of N π ; let Ck be the set of
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cliques of dimension k ofN π ; finally, let |Ck | be the cardinality (i.e., the number of
cliques) of Ck . Then, QN is defined as: QN = ∑|V |

k=1 |Ck | · 2k .

16.2.3 Approach to Knowledge Extraction

The idea underlying our approach is that, if some changes occur on sensor data
streams, then some variations can be observed in some or all the dashboard param-
eters, when measured on the whole network, and/or on some of its subnetworks,
depending on the number, the kind and the location of involved sensors. Our approach
consists of a training phase and a testing phase. To carry out them,we employed avail-
able data (see Sect. 16.3.1) and, according to the holdout technique, we partitioned
these data in such a way as to use 2/3 of them for the training phase and 1/3 of
them for the testing phase. As for the training phase, we considered the following
situations: (1) all sensors behaved correctly; (2) two sensors in location A and two
sensors in location B were perturbed, in such a way as to decrease humidity; (3) two
sensors in location B and two sensors in location C were perturbed, in such a way
as to decrease lightness; (4) two sensors in location A and two sensors in location C
were perturbed, in such a way as to increase lightness. Obtained results, along with
the corresponding discussion, are presented in Sect. 16.3. After the training phase,
we started the testing phase. In this case, we considered the following situations:
(1) all sensors behaved correctly; (2) two sensors in location B and two sensors in
location C were perturbed, in such a way as to decrease humidity; (3) two sensors in
location A and two sensors in locationC were perturbed, in such a way as to decrease
lightness; (4) two sensors in location A and two sensors in location B were perturbed,
in such a way as to increase lightness. Obtained results, along with the corresponding
discussion, are presented in Sect. 16.3. Here, we simply point out that our approach
behaved very well and was capable of correctly identifying all perturbations.

Finally, we applied our approach to the following situations: (1) one sensor in
the location A and one sensor in the location B were perturbed, in such a way as to
decrease humidity; (2) one sensor in the locations A and C was perturbed, in such a
way as to increase lightness, and one sensor in the locations B and C was perturbed,
in such a way as to decrease the same physical quantity; (3) three sensors in the
location A and one sensor in the location B were perturbed, in such a way as to
decrease humidity; (4) one sensor in the location A was perturbed, in such a way as
to increase humidity; (5) one sensor in the location B was perturbed, in such a way as
to increase lightness. Obtained results, along with the corresponding discussion, are
presented in Sect. 16.3. Here, we anticipate that our approach showed its suitability
to detect almost all perturbations.
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16.3 Results

16.3.1 Testbed

To collect data for the experiments introduced in Sect. 16.2.3, we built a WSN by
following specific guidelines. In particular, we organized devices in a multi-hop
Wireless Sensor Area Network (WSAN) and managed them through the Building
Management Framework (BMF) [15]. This is a framework for domain-specific net-
works, which offers an efficient and flexible management of WSANs deployed in
indoor areas by allowing users to take advantage of sensing/actuation intelligent
techniques and fast prototyping of WSAN applications. BMF enabled the use of
heterogeneous WSANs through a base station, which acted both as data collector
and network configurator. Communication between base station and devices was
carried out by means of the BMF Communication Protocol, an application level
protocol built on top of multi-hop network protocols [16, 17]. We composed the
WSAN using MICAz sensor devices, providing 128 kB for program storage, 512
kB for data storage, and 4 kB of RAM. Devices were powered mainly by means of
external power. They were configured to communicate with the base station, sending
data every minute. To test our approach, we synthetically injected several anoma-
lies at pre-determined time slots. In particular, to increase lightness, we employed
artificial sources of lightness with controlled intensity, whereas to reduce lightness,
we applied artificial lightness filters. Finally, humidity was controlled by chemicals.
Our network consisted of 9 devices labeled by increasing numbers. Each device
included 3 sensors, which retrieved values for humidity, lightness and temperature.
Devices 1, 2 and 3 have been positioned in location A, devices 4, 5 and 6 operated
in location B, devices 7, 8 and 9 were situated in location C . A, B and C were three
different rooms on the same floor of a building. Finally, we collected data for 24days
without perturbations and other 36days with several perturbations, as described in
Sect. 16.2.3.

16.3.2 Obtained Results and Discussion

In this section, we report the results obtained by performing all the experiments
mentioned in Sect. 16.2.3. Preliminarily, we observe that the definition of the six
coefficients forming our dashboard suggests that a decrease of the connection level
of a network or a subnetwork leads to: (i) an increase of LN and TN ; (ii) a decrease
of CN , PN , SN and QN . The purpose of the training phase was to find the optimal
values of some thresholds underlying our approach (for instance, the value of thmax

in the definition of Connection Coefficient - see Sect. 16.2.2) and to have a first idea
of its behavior. In Table16.1, we report all the results regarding the training phase
after the optimal values of thresholds were set. In particular, this table consists of four
sub-tables, each corresponding to one of the four situationsmentioned in Sect. 16.2.3.
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Table 16.1 Results obtained by our approach during the training phase

Network LN CN PN TN QN SN
Overall 1.1054 22.4387 6508290 64.2548 1163264 0.8944

Nt 1.0322 7.1056 14232 15.1429 592 0.8413

Nl 1.0451 7.1111 13200 16.6667 592 0.8595

Nh 1.0278 7.5833 16758 16.9143 512 0.9722

NA 1.1944 5.6944 8012 23.7241 224 0.8339

NB 1.1667 5.9444 9274 22.4000 256 0.8582

NC 1.1944 6.0556 7896 23.7241 288 0.7794

Overall 1.1795 20.0684 4652472 74.7500 227328 0.8239

Nt 1.1189 6.4444 10376 21.1613 384 0.8212

Nl 1.1011 6.5833 11816 20.0000 320 0.7905

Nh 1.4167 3.9444 2268 38.0952 96 0.5270

NA 1.3611 4.5000 3208 34.0870 120 0.5582

NB 1.3456 4.7778 4572 32.0800 144 0.5858

NC 1.1833 6.0444 7828 26.9091 248 0.7832

Overall 1.2194 19.1937 3790486 81.2263 99840 0.7796

Nt 1.2556 5.8778 9924 20.8824 412 0.7392

Nl 1.5000 4.1111 6102 26.3704 192 0.6000

Nh 1.0556 7.2778 14924 17.8824 512 0.9392

NA 1.2111 5.4000 7990 23.0000 200 0.8571

NB 1.3222 4.5278 5990 29.1429 108 0.5630

NC 1.3333 4.7778 3824 32.0000 120 0.5407

Overall 1.2394 18.1937 3480632 80.2263 97650 0.7823

Nt 1.2356 5.6648 9633 21.2435 408 0.7491

Nl 1.5200 3.9345 6260 27.3221 192 0.5800

Nh 1.0776 6.9318 13924 17.7623 512 0.9154

NA 1.3782 4.4987 5843 28.2322 108 0.661

NB 1.1911 5.1000 7232 23.0000 206 0.8200

NC 1.3433 4.6578 3126 31.6850 120 0.5207

For each situation, we report the values of the six parameters of the dashboard for the
overall network and the subnetworksNt ,Nl ,Nh ,NA,NB andNC (see Sect. 16.2.1).
In this table, Situation 1 represents the correct one. In Situation 2, we observe: (i) a
very high increase of LN and TN , along with a very high decrease of CN , PN , SN
and QN for the network Nh ; (ii) a high increase of LN and TN , along with a high
decrease of CN , PN , SN and QN for the networks NA and NB ; (iii) a moderate
increase of LN and TN , along with a moderate decrease of CN , PN , SN and QN
for the overall network. In Situation 3 (resp., 4), we observe: (i) a very high increase
of LN and TN , along with a very high decrease of CN , PN , SN and QN for the
network Nl ; (ii) a high increase of LN and TN , along with a high decrease of CN ,
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PN , SN andQN for the networksNB andNC (resp.,NA andNC ); (iii) a moderate
increase of LN and TN , along with a moderate decrease of CN , PN , SN and QN
for the overall network. These results confirm that our approach is really capable of
capturing the perturbations in wireless sensor networks or subnetworks caused by
sensor anomalies (and, indirectly, it is able to evaluate the network and subnetwork
resilience to sensor anomalies). The only weakness revealed by this first test is that,
in its current version, our approach is not able to tell us if these perturbations are
caused by an increase or a decrease of the corresponding physical quantity.

The purpose of the testing phase was to verify both the setting of the threshold
values and the corresponding results detected during the training phase. In Table16.2,
we report all the results regarding this phase. Observe that the situations considered
during this phase are the same as the ones examined during the training phase; how-
ever, wemodified the subnetworks (among A, B andC) involved in each perturbation
in such a way as to prevent overfitting. Obtained results confirm that the selection
of the threshold values performed during the training phase was correct. They also
confirm all the observations about the features of our approach, which we drew at
the end of the training phase.

After the testing phase confirmed the suitability of our approach, we applied
it to new situations not considered during the previous phases. These situations
are described in detail in Sect. 16.2.3. In Table16.3, we report the corresponding
results. From their analysis we can draw very interesting observations. In particular,
in Situation 1, we obtain the same trend as the one seen in Situation 2 of the training
phase. However, the perturbation degree is more reduced. This is correct because, for
locations A and B,weperturbedone sensor, insteadof two. InSituation 2,weobserve:
(i) a very high increase of LN and TN , along with a very high decrease of CN , PN ,
SN andQN for the networkNl ; these increases and decreases are comparable with
the ones observed in Situation 3 of the training phase; (ii) a moderate (resp., high,
very high) increase of LN and TN , along with a moderate (resp., high) decrease of
CN , PN , SN andQN , for the networksNA andNB (resp.,NC ,Nl); (iii) a moderate
increase ofLN and TN , along with a moderate decrease of CN ,PN , SN andQN , for
the overall network. Observe that, since our approach considers perturbations, but it
currently does not distinguishbetween increases anddecreases, even if, in thenetwork
Nl , there are opposite perturbations in two lightness sensors, their consequences are
not nullified by our approach, but, on the contrary, are “combined” by it. In our
opinion, this is a correct behavior of our approach.

In Situation 3, we observe: (i) an increase (resp., decrease) of LN and TN (resp.,
CN , PN , SN andQN ), comparable with the one of Situation 2 of the training phase
for both the overall network and the network Nh ; (ii) a significant (resp., moderate)
increase of LN and TN , along with a significant (resp., moderate) decrease of CN ,
PN , SN and QN for the network NA (resp., NB). In Situation 4 (resp., 5), we
observe: (i) a very moderate increase of LN and TN , along with a very moderate
decrease of CN , PN , SN and QN for the overall network and for the networks Nh

andNA (resp.,Nl andNB). This reveals a second weakness of our approach, which
shows a difficulty to find a single anomaly. Indeed, in this case, it found a slight
change in the dashboard parameters for both the whole network and the involved
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Table 16.2 Results obtained by our approach during the testing phase

Network LN CN PN TN QN SN
Overall 1.1135 20.4387 7120293 65.3746 1163264 0.9144

Nt 1.0411 6.5306 13939 15.1529 592 0.8712

Nl 1.0361 6.2480 13737 17.1227 592 0.8891

Nh 1.0235 7.3311 16123 16.8242 512 0.8920

NA 1.1826 5.4129 7910 22.7241 228 0.8451

NB 1.1700 5.8331 8992 21.4000 256 0.8112

NC 1.1929 6.2410 7786 23.7241 288 0.8042

Overall 1.1896 20.1224 4993459 72.63 294629 0.8484

Nt 1.1289 6.2468 11001 22.1982 320 0.8391

Nl 1.2133 6.6631 10829 21.0782 384 0.8081

Nh 1.5177 3.8104 3124 37.1719 112 0.5328

NA 1.1922 6.2324 7128 27.8801 208 0.7312

NB 1.3232 4.9188 4492 31.9500 128 0.5558

NC 1.3511 4.4780 3198 33.0870 118 0.5182

Overall 1.2766 20.2308 4290486 81.3094 97744 0.7824

Nt 1.3111 5.5833 9850 20.0000 258 0.7825

Nl 1.4389 4.0833 3438 25.9750 96 0.6412

Nh 1.0242 7.3611 13978 18.4421 384 0.9825

NA 1.3056 4.5278 4762 30.1515 108 0.5713

NB 1.1896 5.5278 7288 22.1429 216 0.8462

NC 1.2825 4.9444 3594 32.9143 96 0.5356

Overall 1.2251 17.9876 3990563 82.2263 97650 0.7769

Nt 1.2944 5.8326 9112 22.7241 408 0.7839

Nl 1.4678 4.6161 6383 26.3352 112 0.5455

Nh 1.1111 6.5833 13816 17.6686 384 0.9005

NA 1.4001 4.7144 6152 27.8652 96 0.6148

NB 1.3675 4.3056 3886 30.9850 88 0.5198

NC 1.1887 6.2421 7341 22.7692 256 0.8825

subnetworks. This is mainly due to the purpose of our approach, which does not aim
at performing anomaly detection in one sensor (actually, a long list of approaches
carrying out this task—e.g., [4–7]—already exists) but, instead, it aims at detecting
the consequences, on the whole network and its subnetworks, of anomalies involving
more (heterogeneous) sensors installed in different locations. In fact, in this case, the
interaction of these anomalies in the network could be extremely variegate and could
depend on the number, the kind and the location of perturbed sensors, so that their
detection, along with the detection of their effects, becomes extremely difficult and
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Table 16.3 Results obtained by our approach during the examination of some situations of interest

Network LN CN PN TN QN SN
Overall 1.1435 21.5534 5580928 70.0000 114264 0.8534

Nt 1.0712 6.3159 11432 18.2221 384 0.8613

Nl 1.0572 6.4354 11202 18.6667 384 0.8564

Nh 1.2578 4.5673 4564 22.2124 144 0.8123

NA 1.2235 5.1843 6006 28.3673 200 0.7034

NB 1.2351 5.4992 8842 27.4332 224 0.6982

NC 1.1833 5.3556 7828 24.7347 248 0.7792

Overall 1.2199 19.3747 3948573 80.3252 97650 0.7856

Nt 1.2456 5.6658 8562 21.9383 388 0.7467

Nl 1.6100 3.5039 5987 28.2392 192 0.5971

Nh 1.0877 6.4837 12527 17.3877 512 0.8672

NA 1.2292 4.5948 7873 27.223 228 0.6823

NB 1.2334 5.1229 7367 26.2391 228 0.6891

NC 1.2921 4.6578 3834 32.2320 120 0.5012

Overall 1.1235 21.9987 3977283 74.5673 231872 0.8223

Nt 1.1312 6.2989 12345 21.3939 512 0.8323

Nl 1.1433 6.5643 12234 20.3332 512 0.8340

Nh 1.4872 3.9440 3542 38.9412 120 0.7795

NA 1.8342 2.2338 1987 35.1843 96 0.4032

NB 1.2151 4.4738 6932 25.6230 224 0.5820

NC 1.1933 6.0872 8239 23.3235 284 0.7780

Overall 1.1228 21.3789 6184736 67.3233 131872 0.8534

Nt 1.0613 6.4599 12341 17.3939 592 0.8613

Nl 1.0732 6.8865 12854 16.3452 592 0.8564

Nh 1.1640 5.6534 9532 20.9482 288 0.8123

NA 1.2132 5.1928 6987 26.1212 288 0.7034

NB 1.1951 5.4738 9928 24.7210 320 0.6982

NC 1.19445 5.5872 8239 23.3235 320 0.7792

Overall 1.1289 21.8729 6857326 67.3252 131662 0.8556

Nt 1.0782 6.7654 12662 17.2352 592 0.8467

Nl 1.1728 5.9987 5987 20.4568 288 0.8023

Nh 1.0654 6.2356 12277 16.4555 592 0.8553

NA 1.1892 5.6457 9854 25.3356 320 0.7061

NB 1.2234 5.0101 5346 26.4564 288 0.7072

NC 1.1921 5.5482 8899 23.2845 284 0.7843

justifies the employment of quite time-expensive approaches like ours. As for this
issue, the results described in this section allow us to conclude that our approach
reaches the objectives for which it was designed.
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16.4 Conclusion

In this paper, we have presented a new approach to analyzing WSNs, which consid-
ers network organization as a whole; this shifts the focus of the analysis from single
sensors to the whole network and its subnetworks. Our approach is based on network
connectivity measures that, overall, contribute to a rich dashboard, which allows the
effective detection of perturbations in WSNs. Our model also allows the network to
be sliced in different subnetworks, supporting the investigation of this phenomenon
under different perspectives, as well as a better characterization of perceived pertur-
bations. Our experimental campaign confirms the effectiveness of our approach. In
the future, we plan to remove the current weaknesses of our approach, as evidenced
by our experiments. First, we aim at allowing our approach to distinguish pertur-
bations caused by an increase or a decrease of a physical quantity. Then, we plan
to integrate our approach with the ones detecting anomalies in single sensors. The
ultimate goal is to construct an effective framework, which can detect anomalies on
single sensors and can investigate their consequences on the whole network and its
subnetworks, along with their resilience to sensor malfunctions.
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Chapter 17
Advanced Computational Intelligence
Techniques to Detect and Reconstruct
Damages in Reinforced Concrete
for Industrial Applications

Salvatore Calcagno and Fabio La Foresta

Abstract In reinforced concrete, as known, the steel bar, damping totally the trac-
tion stress, they are mainly subject to breakage. Then, as required by current legisla-
tion, it is necessary a check protocol of the specimens characterizing any defects
since the typology of defect, often, determines its intended use. From this, the
choice to use non-invasive technique such as Non-Destructive Testing and Evalu-
ation (NDT/NDE) based on Eddy Currents is necessary. Starting from a campaign
of Eddy Currents measurements potentially affected by uncertainty and/or impreci-
sion, in this work we propose a new fuzzy approach based on Computing withWords
techniques where a word is considered a label of a fuzzy set of points shared by sim-
ilarities coming to an adaptive bank of fuzzy rules structured by classes possibly
updated by the Expert’s knowledge. The numerical results obtained by means of the
proposed approach are comparable with the results carried out by Fuzzy Similarities
techniques already established in the literature.

17.1 Introduction to the Problem

The assessment of the integrity of a reinforced concrete specimen, both in a civil
and industrial context, is imperative in evaluating the amount of risk of collapse of
the structure [1]. Then, as in reinforced concrete structure the traction stresses are
completely damped by the steel bars, and given that the concrete can only damp
compression stresses, both detection and characterization of defectiveness in the
steel bars is an indispensable task to assess the above risk without compromising the
functionality of the structure. Under elastic-plastic conditions, (see [2]), the steel of
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Fig. 17.1 Reinforced
concrete specimen with a
steel bar exploited fro the
campaign of experimental
measurements

the bars has limits about its load capacity which, if passed, greatly adversely affect
the specimen’s state of health as obvious fracture phenomena can propagate along
the bars. Moreover, the adherence between steel and concrete would be irrepara-
bly compromised. The Scientific Community is working hard to solve the problem
by developing reliable theoretical models for analyzing phenomena related to the
origin and diffusion of cracks in slim structural elements particularly sensitive to
these issues (see, e.g., [2–4]). On the other hand, although the load to which the
specimen is subjected is not sufficient to create cracks, however, yielding phenom-
ena may arise in the bars creating dangerous mapping of the mechanical tension
maps, compromising seriously the quality of the specimen. But the theoretical mod-
els developed to achievemechanical tensionmaps are extremely complex and require
high computational effort that are poorly combined with the objective requirement
of having low-cost computational investigation techniques particularly useful for
real-time analysis. So, the idea of using Non Destructive Testing and Evaluation
(NDT/NDE) based on Eddy Currents (ECs) [5] is matured because ECs build
maps of electrical voltages equivalent to the mechanical ones [6–8] but with an
acceptable computational load. In such a context, taking into account that measure-
ments may be affected by uncertainties and/or inaccuracies, we propose a new fuzzy
approach to detecting defects based on the concept of Computing withWords (CWs)
in which word is the label of a fuzzy set of elements shared by similarity (the so-
called “granule”) writing a bank of adaptive fuzzy rules potentially upgradeable and
improved by the expert’s knowledge. In the following, the details of the approach
will be proposed, tested and validated through an experimental database achieved
at NDT/NDE Lab in “Mediterranea” University of Reggio Calabria. Numerical
results obtained were also compared to those obtained using Fuzzy Similarity (FS)
technique already established in the literature.
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17.2 The Proposed Approach

17.2.1 ECs NDT & CWs: A Quick Look

Traditionally, computing means manipulating numbers and symbols. This contrasts
with the way of thinking of a man who uses words to reason and calculate: any
reasoning starts from a premise expressed in a natural language to reach conclusions
also expressed in a natural language. CWs, born in 1996 with pioneering works [9–
11, 13], imposes a fusion between natural language and computation with fuzzy
variables. The starting point is the concept of granule, g, that is, a set of elements
similar to each other. So, a word w is an instance of a granule g, as well as g,
representing a fuzzy constraint on a variable, is the denotation of w. Often a word w
can be simple or composed; for example, the extension of a defect in bar is an atomic
word; instead very extensive is considered a composite word. The transition among
granules is gradual and represents a fuzzy constraint on a given variable. In fact, in the
proposition the defect is extended, extended is the label of the granule and the fuzzy
set extended is the fuzzy constraint on the extension of the defect. Conceptually,CWs
is the confluence of two streams: fuzzy logic and test-score semantics whose contact
points are the collection of canonical forms obtained from the premises (expressed
in a natural language) that explain the constraints. Starting from canonical forms,
the propagation of constraints leads us to conclusions described with other fuzzy
constraints. Finally, the induced constraints are translated into natural language using
appropriate linguistic approximation. Formally, to construct a CW s-based system,
you must start from a set of propositions expressed in a natural language, the Initial
Data Set (I DS), from which you want to deduce a response to get to the Terminal
Data Set (T DS) also expressed in a natural language. The transition from I DS to
T DS occurs by explicit propagation of fuzzy constraints (and any changes) bymeans
of a rule bank: the inference transforms the previous antecedents that are drawn in
natural language by appropriate approximators (Fig. 17.2).

Fig. 17.2 An example of structure based on CWs: starting from the I DS we obtain the T DS by
means of both propagation and manipulation of the bank of fuzzy constraints
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Canonic Formulations: Fuzzy Constraints and Constraining Relations
Fuzzy Constraints formalization involves the writing of canonical forms such as
“Z is Relation” (also called canonical function) where Z is a fuzzy variable and
“Relation” is a fuzzy constraining relation. Usually, a canonical function can be dis-
junctivewhen all the terms are linked by the connective OR; it is conjunctivewhen all
the terms are linked by AND and Relation puts out the fuzzy constraint contained in
a proposi tion by writing proposi tion → Z is Relation in which an Explanatory
Database (ED) explain the proposi tion by means of a set of relations that returns
the constrained variable Z acting on ED for extracting the constraining Relation.
In addition, if Relation is modified by anymanipulators such as not , very, then it
is permissible to write Z is manipulator(R) → Z is f unction(Relation) where
f unction(Relation) is themodification of Relation due to themanipulator applica-
tion. For example, ifmanipulator = not , f unction(Relation) = not − Relation
and its membership function µ takes the form µnot (s) = 1 − µ(s) in which s is an
element of Relation.

An Example of ED for ECs NDT Problems
If the proposition is é “The Def ect is not very extensive” we extract the ED as
follows:

ED = PopulationDef ects{T ype of De f ect; Extension} + Extensive{Extension; µ()}
(17.1)

where Populationde f ects is the relation whose topics are the T ype of De f ect and
Extension while Extensive is the characterization of Extension and+ indicates
the conjunction. Then, Z é expressible as follows:

Z = Extension(Def ect) =Extension Population{T ype of De f ect = Def ect}
(17.2)

providing the action acting on ED returning Z : Type of Defect is associated to
Defect whose results is projected on Extension producing the extension of the
defect. In addition, the constraining relation not so extensive is expressible as
Relation = Extensive{Extension;µ2()} while the negation is expressible by
means of Relation = Extensive{Extension; 1 − µ()}.
I DS Construction and Propagation of the Fuzzy Constraints
Starting from the simple structure Z is Relation, and keeping in mind that the goal is
to write a bank of fuzzy rules, it is advisable to rewrite the constructs in the form Z
is variable copula Relation in order to highlight how Z i constrained by the relation
assigning a value to the discrete variable variable copula. For example, variable
copula= disjunctive, dis for short, means that the constraint is equivalent to writing
Z is Relation thus expressing the proposition of the I DS terms of canonical forms.
For details of the value interpretations for the variables copula, see [9, 12]. After
having structure the I DS, it is necessary to propose an efficient procedure for the
propagation of the fuzzy constraints. In particular, if Relation1 and Relation2 are
two relations, it is easy to obtain rules of disjunction, projection and surjection as
show in Table17.1.
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Table 17.1 Examples of propagation of fuzzy constraints

Kind of rule Structure

Disjunction IF Z is Relation1 OR Z is Relation2 THEN Z is
(Relation1 ∪ Relation2)

Conjunction IF Z is Relation1 AND Z is Relation2 THEN Z is
(Relation1 ∩ Relation2)

Projection IF (Z1, Z2) is Relation THEN Z2 is sup(Relation)

Surjection IF Z is Relation THEN (Z1, Z2) is (Relation ×M)

Terminal Data Set
Generally, the construction of T DS starts from the generalized extension principle
IF f (Z1, . . . , Zn) is RelationTHEN is query(Z1, . . . , Zn) query( f −1(Relation))
where Z1, . . . , Zn are fuzzy variables while f (Z1, . . . , Zn) is Relation and
query(Z1, . . . , Zn) are the constraint extracted by I DS and query constraining T DS
respectively. It is known in the literature that starting from the principle of extension
is possible, considering constraint = q(s1, s2, . . . , sn), to formulate the T DS in
terms of maximization problem as follows:

µquery(Z1, . . . , Zn)(constraint) = sups1,s2,...,sn (µRelation( f (s1, s2, . . . , sn)))
(17.3)

so themean value of the extension of the defect, indicating by hpd j , j = 1, . . . , n the
entire population of defect extensions with membership functions µextended(hpd j )

is obtainable by:

µconstraint = suphpd1,...,hpdn (µmedium(
1

n

∑

j

µextended(hpd j ))) (17.4)

17.3 Numerical Results

17.3.1 The Experimental Database

At theLaboratory of Electrotechnics andNon-DestructiveTesting,DICEAMDepart-
ment Mediterranea University of Reggio Calabria, a concrete block reinforced by
a steel bar longitudinally located with an artificial cut has been investigated under
gradually increasing axial loads (Fig. 17.1). Concerning the training step, the block
has been subjected to loads more andmore increasing starting from 180 kN up to 210
kN by increments of 10 kN.Microscopically, the structure of thematerial, under each
load, changes locally so that the magnetic properties change together its degradation.
The analysis has been carried out by means of magnetic changes induced in the bar
after each deformation. The block, after each load application, has been subjected
to exciting currents inducing an EC that, by means a FLUXSET probe [14] spaced
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Table 17.2 Structure of the
database in terms of the
number of signals related to
both training and testing
sections

TRAINING DATABASE Number of signals

No defects 60

CL1180 kN 60

CL2190 kN 60

CL3200 N 50

CL4210 kN 50

TESTING DATABASE Number of signals

50

10cm from the specimen, a set of signals of the variation of the overall magnetic
field, which takes into account the presence of the defect, have been carried out.
Such magnetic variation is converted into an equivalent electric variation provid-
ing the pick-up voltage [mV] whose phase demodulation gives us a measurement
proportional to the magnetic field parallel to the plane of the specimen. To take into
account the skin effect, the analysis was performedwith a sinusoidal signal of 10Vpp
with 1.022Hz moving the sensor by a step-by-step scanning system over a square
portion at the middle of the block containing the cut on the bar. And again, both an
AC sinusoidal exciting field (1 kHz) and an electric current (120 mA RMS) have
been applied while, concerning the driving signal, a triangular shape at the frequency
of 100 kHz with 2 Vpp amplitude has been considered. After each load application,
and concerning each point of the scanned area, four signals have been obtained: real
and imaginary parts, module and phase of the pick-up voltage. Because mechanical
loads produce almost overlapping deformations (and therefore magnetic behaviors
close each other), the block has been subjected to increasing load sets by creating
load classes with overlappingmechanical andmagnetic properties. In particular, four
load classes were created: CL1180 kN, CL2190 kN, CL3200N and CL4210 kN;
remembering that in each class the signals produced by the nominal load (labeling
the class) and the loads that are close to the latter are concerned. Furthermore, a cam-
paign of measurements to extract a set of signals in the absence of mechanical loads
was carried out on a block containing a faultless bar, thus a further class of signals in
the absence of defects was built. Concerning the testing step, a high number of signals
was produced under the action of different mechanical loads which, for our purposes,
are supposedly unknown. As shown in in Table17.2, the experimental database has
been divided into two main sections (training and testing ones) where, for each class,
the number of signals analyzed is highlighted. They were considered, as input data,
the normalized impedance Żnorm , the mean Stat12× 12

1norm , the variance Stat12× 12
2norm , the

skewness Stat12× 12
3norm and the Kurtosis Stat12× 12

4norm of a portion 12 × 12 mm centered
on the i h pixel as specified in Table17.3. Concerning the output of the procedure,
they were considered the classes CLi , i = 1, 2, 3, 4 and the class of signals in the
absence of loads.
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17.3.2 The Extracted Bank of Fuzzy Rules

The granulation procedure begins by dividing the signals between inputs and outputs
as reported in Table17.3 adding two additional outputs, Near and Far (coded with
1 and 2 respectively) indicating whether the defect is facing the probe or otherwise.
Together the codification, Table17.3 also shows the ranges of the possible values. In
addition, we consider just two gaussianmembership functions for Żnorm , (Żnorm)MF1
and (Żnorm)MF2 , because distributed around 0.1 and 0.4. Six other membership func-
tions are sufficient for other inputs (Extra Small (ES), Very Small (V S), Small (S),
Medium (M), Large (L), Very Large (V L)) to cover the distribution of the values
appropriately. In order to achieve the bank of fuzzy rules, we construct a table where,
for each training dataset signal, we associate the membership class carrying out a
number of rules equal to the number of signals contained in the training dataset. For
example, for the first signal, we perform the rule

Table 17.3 Inputs/outputs codification and ranges of possible values

Inputs Details Ranges

Żnorm = Ż j

Ż j0
Ż j impedance of the i th point of the block with the
defective bar; Ż j impedance of the i th point of the
block with bar without defects;

0.07–0.46

Stat12× 12
1norm

= Stat12× 12
1 j

Stat12× 12
1o

Stat12× 12
1 j mean of the portion 12 × 12 centered on

the j th pixel of the block with the defective bar;
Stat12× 12

1o mean of the portion 12 × 12 centered on
the j th pixel of the block with bar without defects;

0.24–0.73

Stat12× 12
2norm

= Stat12× 12
2 j

Stat12× 12
2o

Stat12× 12
2 j Stat12× 12

1 j variance of the portion
12 × 12 centered on the j th pixel of the block with
the defective bar; Stat12× 12

2o variance of the portion
12 × 12 centered on the j th pixel of the block with
bar without defects;

0.38–0.91

Stat12× 12
3norm

= Stat12× 12
3 j

Stat12× 12
3o

Stat12× 12
3 j Stat12× 12

3 j skewness of the
portion12 × 12 centered on the j th pixel of the
block with the defective bar; Stat12× 12

3o skewness of
the portion 12 × 12 centered on the j th pixel of the
block with bar without defects;

0.29–0.77

Stat12× 12
4norm

= Stat12× 12
4 j

Stat12× 12
4o

Stat12× 12
4 j Stat12× 12

4 j kurtosis of the portion
12 × 12 centered on the j th pixel of the block with
the defective bar; Stat12× 12

4o kurtosis of the portion
12 × 12 centered on the j th pixel of the block with
bar without defects;

0.18–0.69

Outputs

CLi , i = 1, 2, 3, 4 Classes of signals in presence of certain loads

No-Defects Classes of signals without loads
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IF Żnorm is (Żnorm)MF2 and Stat12× 12
1norm is ES and (17.5)

Stat12× 12
2norm is L and Stat12× 12

3norm is V L

and Stat12× 12
4norm is S THEN Def ect is CL3 and Position is Far

that, after compaction and elimination of duplicate rules, leads to write a bank of 8
fuzzy rules on which the procedure explained in Sect. 17.2 is applied. For example,
considering the first rule of the above-mentioned bank:

IF Żnorm is (Żnorm)MF2 and Stat12× 12
1norm is V S and (17.6)

Stat12× 12
2norm is S and Stat12× 12

3norm is V L and

Stat12× 12
4norm is M THEN Def ect is CL1 and Position Near

the corresponding rule in terms of CWs becomes:

IF Żnorm{Parameter = Żnorm} is (Żnorm)MF2 {0.38 − 0.5;µ()} and (17.7)

Stat12× 12
1norm

{Parameter = Stat12× 12
1norm

} is V S{0.25 − 0.34;µ()} and
Stat12× 12

2norm
{Parameter = Stat12× 12

2norm
} is S{0.56 − 0.68;µ()} and

Stat12× 12
3norm

{Parameter = Stat12× 12
3norm

} is V L{0.61 − 0.78;µ()} and
Stat12× 12

4norm
{Parameter = Stat12× 12

4norm
} is M {0.32 − 0.45;µ()} THEN

Possible valuesCharacteristicDe f ect {Parameter = Class} is CL1{1;µ()} and
Possible valuesCharacteristicPosition{Parameter = Position} is Near{1;µ()}

obtaining, therefore, a ban k formed by 8 rules from which the T DS is determined
using the Eq.17.3. In this regard, indicating with t ypeDe fi the generic defect and
with µDef ect (t ypeDe fi ) the corresponding membership function, the solution of
Eq.17.3 is carries out by means of the resolution of the following maximization
problem:

µ
(
N−1

∑

i

(t ypeDe fi )
)

= suptypeDe fi

{
µmax

{
N−1

∑

i

µDef ect (t ypeDe fi )
}}

(17.8)

Table17.4 shows the results, in terms of both detection and classification, with the
proposed procedure. In addition, by comparison, results were produce using both
Fuzzy Inference System (F I S) managed by the bank of fuzzy rules (17.6) and Fuzzy
Similarity (FS) concept among classes [15–17]. These results showed a good per-
formance of the proposed approach. Specifically, in terms of detection, the proposed
procedure showed the presence of defect in all the analyzed signals, while the clas-
sification procedure was correctly categorized by 99.6% of the cases. The remaining
0.4% of misclassification, although the defect has been detected, is not able to clas-
sify it. However, the problem can be solved by creating a new class of defects that
the procedure detects and classifies.
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Table 17.4 Comparison of the results (in terms of both detection and classification) achieved by
CWs, Mamdani’s F I S and FS

CWs FIS FS

Detection (%) 100 100 100

Classification (%) 99.6 96.4 99.7

17.4 Conclusions

In this work, starting from a campaign of ECs uncertainties measurements, a fuzzy
procedure based on CWs for the construction of a bank of fuzzy rules has been
conceived, implemented and tested for detecting and classifying defects in steel bar
of reinforced concrete specimens subjected to groups of axial traction loads gradually
increasing. In particular, in advance, a Mamdani’s multi-input/multi-output F I S
was built where the inputs considered were electrical parameters and their particular
statistical features while the outputs were their membership classes. From this F I S
a new system based on CWs, but equivalent to it, was carried out able, on the one
hand, to detect the presence of the defect with certainty and, on the other hand,
classify it with a high percentage of success comparable with the results carried out
by the established procedure based on FS. Finally, the proposed system is structured
to consider misclassified cases as a further class in which the defect is however
detected and classified as a case of doubt.
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Chapter 18
Appraisal of Enhanced Surrogate Models
for Substrate Integrate Waveguide
Devices Characterization

Domenico De Carlo, Annalisa Sgrò and Salvatore Calcagno

Abstract Nowadays the use of surrogate models (SMs) is becoming a common
practice to accelerate the optimization phase of the design ofmicrowave andmillime-
ter wave devices. In order to further enhance the performances of the optimization
process, the accuracy of the response provided by a SM can be improved employing
a suitable output correction block, obtaining in this way a so-called enhanced surro-
gate model (ESM). In this paper a comparative study of three different techniques
for building ESMs, i.e. Kriging, Support Vector Regression Machines (SVRMs) and
Artificial Neural Networks (ANNs), applied to the modelling of substrate integrated
waveguide (SIW) devices, is presented and discussed.

18.1 Introduction

Over the last few decades, computer aided design (CAD) techniques have played a
fundamental role to analyze and design innovative microwave and millimeter wave
devices. However, despite their great predictive accuracy, current CAD simulations
are computationally demanding [1]. This poses a serious bottleneck in the device
design cycle, especially during the optimization phase where a great number of
CAD simulations are required [1]. To overcome this problem, the employment of
surrogate models (SMs) is becoming a common practice among the designers [1].
Roughly speaking, the basic idea behind the concept of SM is the development of a
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computationally tractable and reasonably accurate model able to replace the original
time consuming physical model (also known as high-fidelity model) embodied in a
CAD program. Despite of the fact that the SM output response is always obtained
in a faster way than that provided by the related high-fidelity model, very often
it is not enough close to this latter, being so mandatory improving its closeness.
During the years many techniques have been proposed to this aim, but the most
effective it has been proved that based on the use of a suitable correction block
placed in cascade to the output of the SM. In this way a new SM, called enhanced
surrogate model (ESM), is obtained [2]. In this paper the performances of three
different techniques to build ESMs, i.e. Neural Networks, Support Vector Regression
Machines and Kriging, are validated considering the characterization of a suitable
substrate integrated waveguide (SIW) device: a circular cavity SIW resonator [3].

18.2 Improved Surrogate Modelling Techniques

As stated in the introduction, an ESM can be obtained by adding a correction block
to the output of a SM. This block is usually built by means of a interpolation or
regression process applied on the set of residuals obtained evaluating the differ-
ence between the output values provided by the high-fidelity model and by the SM,
respectively, in correspondence of the same set of input values. In this section an
overview of the three techniques employed in this work to assemble the correction
block i.e., Kriging, Support Vector Regression Machines (SVRMs) and Artificial
Neural Networks (ANNs), is given.

18.2.1 Kriging

In the Kriging model for regression [4, 5], the observed responses {y(x(i))}Ni=1 ∈ R
are related to the input vectors {x(i)}Ni=1 ∈ Rn by means of a stochastic process of the
form [6]

y(x(i)) = f (x(i)) + ν(x(i)) (18.1)

where f (·) describes the input-output relationship trend, and ν(·) is a stochastic
process modelling the differences between f (·) from y(·), which is characterized by
a mean μ = 0, a variance σ2 and by covariance C = σ2P, where P is the correlation
matrix. The elements pi, j of P are of the form

pi, j = exp

(
−

N∑
l=1

θl |x (i)
l − x ( j)

l |2
)

(18.2)
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In (18.2) the terms x (i)
l and x ( j)

l are the l-th components of the i-th and j-th input
vectors x(i), x( j), respectively, and θl, l ∈ {1, . . . , N } are N unknown parameters
describing the degree of correlation among the components of these vectors. Once
that the optimum coefficients θ̂l, l ∈ {1, . . . , N } have been evaluated by solving a
maximization problem specified on the data, the output response y(x(N+1)) at a new
input x(N+1) is given by

y(x(N+1)) = μ̂ + rtP−1
(
y − 1μ̂

)
(18.3)

where μ̂ is the mean value evaluated using the previous coefficients θ̂l , y is the vector
of the observed outputs, rt is the transpose vector containing the correlation between
x(N+1) and the input vectors {x(i)}Ni=1, and 1 is the vector which components are equal
to the unity.

18.2.2 Support Vector Regression Machines

A SVRM is a heuristic structures designed to solve regression problems [7]. In
this context, the observed responses {y(x(i))}Ni=1 ∈ R are related to the input vectors
{x(i)}Ni=1 ∈ Rn by using a linear relation of the form

f (x) = w�(x) + b (18.4)

Equation (18.4) defines the support vector regression estimation function, in which
�(·) denotes a nonlinear mapping from Rn to the feature space (which is a higher
dimensional vector space than Rn). The goal is to search for the values of the param-
eters w that minimize the following functional

�(w, ξ) = 1

2
||w||2 + C

∑
i

(ξ+ − ξ−) (18.5)

where ξ+, ξ− are slack variables representing upper and lower constraints on the
output data and C is a parameter that determines the penalties on the estimation
errors. The value of C is selected in a way to obtain the right compromise between
penalties on the errors and SVRM generalization ability.

18.2.3 Artificial Neural Networks

An ANN can be defined as a nonlinear statistical data modeling device able to
transform its internal configuration during the learning phase in conformance with
the information that flows through itself [8–12]. The basic element of an ANN is the
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artificial neuron, which emulates the behavior of a human brain neuron. In an ANN
the artificial neurons are interconnected among them and arranged in input, output
and hidden layers. The performances of an ANN depends on its topology which is
defined by the pattern of connections among its artificial neurons [13, 14]. Among
the different ANNs architectures developed in literature in what follows the feed
forward multi-layered perceptron neural network (MLPNN) will be considered. A
MLPNN models the relationship between the observed responses {y(x(i))}Ni=1 ∈ R
and the input vectors {x(i)}Ni=1 ∈ Rn as [11]

y(x(i)) = f
(
x(i),W

)
(18.6)

whereW is the weight matrix. During the supervised learning training phase Tp for
the network the weights wi j ∈ W are changed until a suitable cost function E(W)

E(W) =
∑
p∈Tp

Ep(W) (18.7)

results minimized. In (18.7) the term Ep(W) represents the least square error related
to the p-th tuple in Tp

Ep(W) =
[
1

2

M∑
k=1

(ŷpk − yk(W, x̂p))
2

] 1
2

(18.8)

In this last relation, the term yk(W, x̂p) represents the k-th output of MLPNN related
to the input x̂p and ŷpk is the kth element of the output vector ŷp. The nonlinear least
square optimization problem defined by (18.7) is usually solved by using different
approaches all based on the following update rule

W(t) = W(t − 1) + ΔW(t − 1) (18.9)

where ΔW(t − 1) is updating matrix computed at the step t − 1 of the optimization
process.

18.3 SIW Devices Modelling: The Case of the Lossy
Circular SIW Cavity

Nowadays passive devices operating from microwaves to THz frequency band are
often built by means of the technology of the substrate integrated waveguide (SIW).
In particular, circular SIW cavities are intensively exploited to build many of them,
as filters, antennas and so on [3, 15]. Accordingly, the proper evaluation of the
fundamental resonant frequency fr and of the related quality factor Qr of SIW
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cavities can be considered of paramount importance for a correct design process of
the devices developed by using this technology.

18.3.1 The Physical Model

The geometry of a circular SIW cavity is shown in Fig. 18.1. Inside a SIW structure
the field scattered by the metallic vias can be formulated as [3]

Hs
cyl(r) =

∑
l

∑
n,m

[
Mn(kρm , kzm , |æ − æl |, z)AT E

m,n,l +

Nn(kρm , kzm , |æ − æl |, z)ATM
m,n,l

]
(18.10)

a series of outgoing cylindrical vector wave functions Mn , Nn having coefficients
ATM
m,n,l , A

T E
m,n,l , computed by solving the following matrix system [3]

[
LT M,T E

]
AT M,T E = GT M,T E (18.11)

arising from the discretization via Method of Moments of the relevant scattering
operator [3]. Resonances fr are the real part of the complex frequencies f̄r for which

Fig. 18.1 A lossy circular SIW cavity
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Eq. (18.11) has a nontrivial solution for GT M,T E = 0 (see [16, 17]). The related
quality factors Q are computed as [18]

Qr = Re( f̄r )

2Im( f̄r )
(18.12)

18.3.2 The Surrogate Model

A SM able to evaluate the resonant frequency fr and the quality factor Qr of the
fundamental T M010 mode can be obtained by means of the well established relations
valid for a metallic circular cavity resonator [19], i.e.

fr = χ10c0
2π

√
εr Req

(18.13)

Qr =
⎡
⎣2

√
εr rs

(
1 + Req

h

)
120πχ10

+ tan(δ)

⎤
⎦

−1

(18.14)

(whereχ10 = 2.405 is the first zero of the Bessel function of first kind and order zero,
c0 is the velocity of light in the vacuum, εr is the SIW substrate dielectric relative
permittivity, tan(δ) is its dielectric loss tangent, and rs is the surface impedance for
unit length of the metallic plates) where it is used an empirical equivalent radius
Req , defined as

Req = R

[
1 − α1

( p

R

)2 − α0

R

]
(18.15)

in which the values of coefficients α0,α1 are given in [19].

18.4 Numerical Results

In this section we compare the performances of the three different ESMs obtained by
adding to the SM described in Sect. 18.3.2 a correction block formed by exploiting
an ANN, a SVRM and Kriging, respectively. These three ESMs will be denoted
in the following as ESMA, ESMS and ESMK . To this aim, firstly, in the range D
of physical and geometrical parameters of interest to designers (see [18]), we have
computed a database of residuals ( f̂r , Q̂r ) obtained as the difference between the
values provided by the SM (see relations (18.13) and (18.14)) and those computed
bymeans of a full wave code based on the physical model described in Sect. 18.3.1 in
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Table 18.1 Percentage normalized mean square error

Model PNMSENtp

55 110 195 230 390

ESMA (%) 7.36 3.95 2.57 1.99 1.54

ESMS (%) 10.91 6.57 4.68 3.09 2.11

ESMK (%) 6.50 3.34 1.95 0.97 0.54

correspondence of the same input values. In order to select these values inD the Latin
hypercube sampling has been exploited [1]. For the numerical results reported in this
work a variable number Nsp of sample points (Nsp ∈ [55, 110, 195, 230, 390]) has
been exploited to built the database of residuals. Concerning the ESMA surrogate
model, it was assembled using a MLPNN architecture having three layers: an input
layer composed by six neurons, one hidden layer composed by nine neurons and
an output layer composed by two neurons. All the neurons have been characterized
by using a sigmoid transfer function. As learning rule, it was employed the resilient
backpropagation rule. As for the ESMS surrogate model, it was assembled using a
SVRM having a two degree polynomial kernel with C = 10 and ε = 0.01. Finally,
to develop the ESMk model the DACEKriging toolbox has been employed [20]. The
performances of the three ESMs models have been evaluated in term of normalized
mean square error (PNMSE) as a functionof Nsp byusing afixednumber of test points
Ntp = 150 randomly selected in D . As it can be noticed by observing the results
reported in Table 18.1, despite that the PNMSE decreases when Ntp increase for all
the ESMs models considered in this study, the best performances are always offered
by the ESMK surrogate, followed by ESMS and ESMA surrogate, respectively.

18.5 Conclusions

In this paper three different techniques to obtain ESMs, i.e. Neural Networks, Sup-
port Vector Regression Machines and Kriging, applied to model substrate integrated
waveguide (SIW) devices, have been investigated. The case of the lossy SIW circu-
lar resonator has been considered. ESMs performances have been compared in term
of the PNSME as a function of the number of sample points used to assemble the
residuals database. The numerical results shown the superiority of the ESM based
on Kriging respect to the other methods considered in this study.
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Chapter 19
Improving the Stability of Variable
Selection for Industrial Datasets

Silvia Cateni, Valentina Colla and Vincenzo Iannino

Abstract Variable reduction is an essential step in data mining, which is able effec-
tively to increase both the performance of machine learning and the process knowl-
edge by removing the redundant and irrelevant input variables. The paper presents
a variable selection approach merging the dominating set procedure for redundancy
analysis and awrapper approach in order to achieve an informative and not redundant
subset of variables improving both the stability and the computational complexity.
The proposed approach is tested on different datasets coming from the UCI reposi-
tory and from industrial contexts and is compared to the exhaustive variable selection
approach, which is often considered optimal in terms of system performance. More-
over the novel method is applied to both classification and regression procedures.

19.1 Introduction

Variable Selection, also known as feature selection, is the procedure of selecting the
subset of the input variables which mostly affect a given process or phenomenon,
where the terms variable and feature are often used as synonyms. Actually, the
term variable indicates the “raw” initial variable, while feature refers to a variable
that could also be derived by pre-processing and eventually combining some input
variables. In most contexts, the two words can both be used, as the same algorihms
are applied for selection in both cases [21]. Variable selection is a necessary stage
especially when working with industrial datasets, for instance when the number of
input variables is highwith respect to the number of available samples [7]. The topic of
variable selection has been deeply studied in literature for several tasks; for example
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for prediction of a continuous target [10, 26, 28], for classification purposes [7, 9,
11, 16, 17] and finally for clustering tasks [30]. An important topic to be studied
when treating with variables reduction methods is the stability. A variable reduction
procedure is defined instablewhen exploiting different training data set, the algorithm
provides different variable subsets.

The paper presents a variable selection approach merging the dominating set
procedure for redundancy analysis and a wrapper approach in order to achieve an
informative and not redundant subset of variables improving both the stability and
the computational complexity of the overall selection procedure.

The paper is organised as follows: Sect. 19.2 provides a brief literature survey;
in Sect. 19.3 a description of the proposed method is provided; the obtained results
are then shown in Sect. 19.4 and finally in Sect. 19.5 some concluding remarks are
given.

19.2 State of the Art

Variable reduction and selection is a significant preliminary phase of the develop-
ment of Artificial Neural Network (ANN)-based models. An inadequate selection of
the input variables can worsen the performance of ANN in the training phase [14]. In
common thinking ANNs are able to recognize redundant and noisy variables during
the training phase and this belief leads the developers to include a large number
of variables thinking that if the size of the ANN is high, more information can be
included. However, the number of variables which are fed as inputs to the ANN
affects the computational burden as well as the training time. Moreover the occur-
rence of redundant variables introduce a disturbance, which can hide or mask the real
input-output association [25]. Another important aspect, which is largely discussed
in literature, is the so-called curse of dimensionality [2]: as the dimensionality of a
model enhance linearly, the total volume of the modelling process domain enhance
exponentially. ANN architectures are very sensitive to this phenomenon, because the
number of connection weights increases with the number of variables. The variable
selection techniques can be divided in three main categories: filters, wrappers and
embedded approaches. Filter approaches can be seen as a pre-processing stage, as
they are independent on the developed learning algorithm. The variables subset are
generated by valuing the association between input and output and the input variables
are ranked on the basis on their relevancy to the target by executing statistical tests.
The main advantage of the filter approaches lies in their simplicity, which makes
them fast and also appropriate for dealing with large and complex databases [8].
Wrapper approaches, that were presented in [23], evaluate the performance of the
learningmachine in order to select a subset of variables on the basis on their predictive
power. Wrappers use the learning algorithm as a black box making these approaches
remarkably universal. The most common wrapper approach is the exhaustive search,
also known as brute force method, which considers all combinations of available
variables. The exhaustive approach is considered the best ones in terms of accuracy
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of the model, but its main limit lies in the fact that when we deal with large dataset it
becomes impractical. Considering k potential input variables, there are 2k possible
candidate variable sets to test and 2k training procedures to execute in order to find
the best one. Another popular wrapper approach is the so calledGreedy Search strat-
egy, which progressively generates the variables subset by addition or removal of
single variables from an initial set. Greedy search in fact works into two directions:
Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS). SFS
begins from an empty set of variables and the other variables are iteratively added
until a fixed stopping condition is achieved. SBS works in the opposite direction:
the procedure starts with all features and progressively eliminates the least signif-
icant ones. A variable is considered significant if the performance of the learning
machine tends toworsenwhen it is removed. Greedy search strategies require atmax-
imum k(k + 1)/2 training procedures. Others variable selection procedures based on
genetic algorithms are proposed in literature in order to obtain a good performance
in a reasonable time. Wrappers are usually heavier from the computational point
of view than filters, due to the fact that the induction algorithm is trained for each
tested subset; on the other side, they are more efficient in terms of accuracy, as they
exploit the adopted machine learning procedure [19]. Embedded methods perform
the variable selection as portion of the learning phase and are typically specific of
a precise learning machine. Typical examples of embedded approaches comprise
classification trees, random forests [6] and other methods based on regularization
approaches [5]. The main advantage of embedded methods is their inclusion in the
learning algorithm which considers the relevance of the variables. Recently several
hybrid variable selection approaches have been suggested in order to exploit their
advantages by overcoming their shortcomings. An example of hybrid approach is
proposed in [9, 12] where the set of initial variables is initially reduced with a com-
bination of filter selection methods and then the exhaustive search is executed to
achieve a sub-optimal set of variables in a reasonable time. Another hybrid algo-
rithm is proposed in [12], where a combination of four popular filter methods with
sequential selection method is performed in order to provide a more informative sub-
set in a reasonable time. Finally, an important aspect to be considered dealing with
variable selection is the stability of the solution. The stability of a variable selection
approach is generally defined as the robustness of the variables selected related to
modifications in the training sets generated from the same creating distribution [22].
In the last years, the stability issue has received increasing interest in the context of
variable selection [13, 15, 24, 27].

19.3 Proposed Method

The proposed method is the combination of two steps: firstly, the proposed method
reduces the dataset performing a redundancy analysis, in order to work with a dataset
composed by variables which are almost uncorrelated to each other; then, a wrapper
variable selection based on Genetic Algorithm (GA) is applied in order to select



212 S. Cateni et al.

Fig. 19.1 Scheme of the proposed approach

only the relevant non-redundant variables in a reasonable time. This approach does
not need a priori assumption about the considered process, which is important when
treating with real-word applications. The procedure is repeated in order to evaluate
its stability in providing the variables that mostly affect the considered target as well
as the effects on the performance of the predicition model. A general scheme of the
method is shown in Fig. 19.1.

Dataset and Target
Let us consider a multivariate dataset containing N instances, M variables and a
target to predict, which is a binary or a continuous vector. If the target is binary then
the fitness function will optimize the performance of the adopted binary classifier,
while if the target is a continous vector then the fitness function will tend to reduce
the mean average relative error of the regression model.

Normalization
Dataset and target (only in the case of continuous target) are normalized in order to
obtain a value in the range [0, 1] as follows:

NormVariable(i) = v(i) − µ[v(i)]
max[v(i)] − min[v(i)] (19.1)

where v(i) is the ith variable, µ[v(i)] represents the mean value of the ith variable
and finally max[v(i)] and min[v(i)] are, respectively, the maximum and minimum
value assumed by the ith variable.
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Fig. 19.2 Example of dominating set algorithm

Redundancy Analysis
Redundant variables are those variables that are highly correlated or “redundant”with
one another. If so, any one of these variables should be adopted as a proxy for all the
others. Removal of redundant variables provides improvement in interpretability. In
the proposed approach redundant variables are identified by applying the so–called
dominating set algorithm, which derives from the graph theory [3, 4]. Such algorithm
considers redundant the variables with a high predictive capability with respect to at
least another variable belonging to the same dataset. In particular, each variable is
used as input to a feedforward ANN in order to predict each of remaining variables.
If the prediction error is less than a fixed threshold then one of the two variables is
considered as redundant. Then the algorithm identifies theminimal dominating set of
the graph corresponding to the set with the minimal number of vertexes: redundant
variables are those variables of the graph do not falling inside theminimal dominating
set. An example of dominating set algorithm is given in Fig. 19.2 where 1–7 are the
initial input variables and if a variable is connected to another one means that the
two variables can be considered correlated.

A simple way to identify the correlation between two variables is the evaluation of
the Pearson coefficient [31]; however. this approach identify only the linear depen-
dence, while using the prediction based on ANN we are able to identify also non
linear dependence between input variables. In the above examples (a), (b), (c), (d)
are dominating set of different sizes where each vertex can be reached by selected
verteces. The dominating set algorithm selects the minimal dominating set, i.e. case
(d), the dominating set having the minimal size (three in the present example). The
performed neural network is a feedforward network with one hidden layer. The neu-
rons in the hidden layer has been evaluated according to an empirical formula, largely
used in literature, which takes into account the number of free parameters.
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GA-based Variable Selection
Once the redundant variables are removed from dataset, a GA-based variable selec-
tion procedure is applied. The chromosomes are represented by binary vectors whose
length is equal to the number of non-redundant input variables: each gene corresponds
to a variable. If the gene assumes an unitary value it states that the associated vari-
able is selected to be fed as input to the model, otherwise the associated variable
is discarded. The fitness function is computed for each chromosome of the popu-
lation and genetic operators (mutation and crossover) are evaluated. The mutation
operator randomly select a binary gene of the chromosome switching it, while the
crossover operator establish each gene of the son chromosome by randomly extract-
ing genes from the two parent chromosomes. The dataset is divided in two subsets:
75% of the data are used for the network training, the remaining 25% are adopted
as validation set. The objective function to minimize is the average relative error, in
case of a regression model, or the classification error, computed on the basis of the
confusion matrix, in case of a classifier [20]. The developed neural model is a tradi-
tional feedforward ANN with one hidden layer and a fixed number of neurons. The
number of neurons is automatically calculated based on the number of input-output
samples included in the training set. The GA stops when a fixed maximum number
of iterations is achieved or a plateau of the fitness function is reached. The winner
chromosome outputs the subset of input variables associated to the best value of the
fitness, i.e. to the minimum prediction/classification error. An important limitation
of the GA is represented by the fact that the initial population is randomly selected,
thus a variable can sometimes be included in the winner chromosome even if it is
not correlated with the target to be predicted. For this reason, the GA is run several
times and the winner chromosomes are stored in a matrix. The occurrence frequency
of each variable in the winning chromosomes is evaluated and finally a variable is
considered as selected only if it is present in more than the 80% of the five winning
chromosomes [10, 11].

Stability Evaluation
The stability concept was introduced by Turney [29] in 1995 and represents an impor-
tant aspect, mainly when variable selection is applied not only to enhance the system
performance but also as a data mining technique, in order to improve the knowledge
of the variables which mostly affect a particular process or phenomenon. In effect, a
satisfactory variable selection algorithm should output a stable selection also when
varying the training data sets [13].Wrapper approaches can often be affected by insta-
bility problems. Therefore within the proposed approach, the Tanimoto distance [18]
is evaluated in the different GA iterations, in order to measure the stability of the
variable selection method, as it calculates the similarity between two binary vectors.
As described above, a subset of input variables can be represented by a binary vector.
The Tanimoto distance between two binary vectors b1 and b2 is computed as:

T (b1,b2) = |b1 · b2|
|b1| + |b2| − |b1 · b2| (19.2)

where | · | is the norm and · is the scalar product.
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The Tanimoto distancemetric evaluates the amount of overlap between two sets of
arbitrary cardinality. T includes values in the range [0,1] where null value means that
there is no overlap between the two sets while unitary value identifies two identical
sets.

19.4 Experimental Results

The proposed variable reduction approach has been tested on different applications
by exploiting different datasets included in UCI learning repository [1] as well as
some datasets coming from industrial applications. The method has been applied to
both classification and regression tasks. A description of the main characteristics of
the exploited datasets is given in Table19.1.

The industrial datasets, which refer to binary classification applications, derive
from an industrial context related to fault detection problems and quality check issues
in the metal industry. The obtained results have been compared to the exhaustive
method, which is considered the optimal one in terms of accuracy, as it considers
an tests all the combinations of input variables. Results related to the exhaustive
approach are shown in Table19.2. The first column represent the analysed dataset,
the second column shows the error (in terms of relative error for regression tasks
or misclassification rate for the classification tasks), the third column provides the
length of the final selected subset and the last column is the stability index in terms of
Tanimoto distance. Table19.3 shows the results provided by the proposed approach.
In this table another column has been added, which represents the improvement of
the stability index with respect to the exhaustive approach.

Table 19.1 Datasets description

Dataset #Instances #Variables Regression (R),
Classification (C)

Source

Baseball 337 16 R UCI

Computer hardware 209 7 R UCI

Yacht hydrodynamics 308 6 R UCI

Ind-I 107 15 R Industrial

Breast cancer 699 9 C UCI

Heart 270 13 C UCI

PimaDiabete 768 8 C UCI

Ind-II 1915 10 C Industrial

Ind-III 3756 6 C Industrial
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Table 19.2 Obtained results with exhaustive method

Dataset Error Subset length Stability

Baseball 0.018 4 0.38

Computer hardware 1.4 ∗ 10−3 4 0.43

Yacht hydrodynamics 0.003 4 0.44

Ind-I 0.056 5 0.48

Breast cancer 0.003 4 0.46

Heart 0.005 5 0.42

PimaDiabete 0.003 3 0.48

Ind-II 0.001 5 0.48

Ind-III 5.3 ∗ 10−4 3 0.35

Table 19.3 Obtained results with the proposed method

Dataset Error Subset length Stability Stability
improvement (%)

Baseball 0.019 4 0.48 26

Computer hardware 1.5 ∗ 10−4 4 0.9 109

Yacht hydrodynamics 0.002 2 1 127

Ind-I 0.057 5 0.65 35

Breast cancer 0.002 3 0.56 22

Heart 0.005 4 0.49 17

PimaDiabete 0.002 3 0.52 8

Ind-II 0.001 4 0.62 30

Ind-III 5 ∗ 10−4 2 0.56 60

19.5 Conclusions

Anovel approach for variable reduction is proposed.Themain idea is the combination
of the dominating set approach for removing redundant variables before applying
a GA-based variable selection method aiming at removing irrelevant variables. The
proposed approach provides a more informative and stable subset in a reasonable
time and it can be applied to all kind of datasets without any a priori assumption
on the data. Moreover it is suitable to different purposes, such as classification or
prediction tasks. The proposed approach has been successfully tested on different
datasets coming fromapublic repository andon somedatasets coming from industrial
contexts.

Future work deals with the application of this approach to different machines
learning; i.e. other classifiers in order to prove that the proposed method is able to
improve the stability with respect to the brute force approach, independently from
the machine learning performed, by preserving the performance of the final system.
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Chapter 20
Cause and Effect Analysis in a Real
Industrial Context: Study of a Particular
Application Devoted to Quality
Improvement

Silvia Cateni, Valentina Colla, Antonella Vignali and Jens Brandenburger

Abstract This paper presents an analysis of the occurrence of ripple defects during
Hot Deep Galvanising of flat steel products, with a focus on the study on thick coils
having low zinc coating. Although skilled personnel can manage ripples defects
through particular operations, for instancewiping nitrogen instead of air in air blades,
the real effects of each process parameter variation is unknown. Therefore, the study
of these phenomena can improve the quality of coils, by decreasing reworked or
scrapped material and reducing costs related to a redundant use of nitrogen. An
accurate pre-processing procedure has been performed and then the analysis focused
on the possible causes of ripples occurrences. In particular, the attention is focused
on the development of a model capable to identify process variables with a stronger
impact on the presence or absence of ripples, by expressing such effect through an
appropriate relationship.
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20.1 Introduction

Hot-Dip Galvanizing (HDG) is one of the most used processes for coating steel with
a layer of zinc. This process consists in a passage of the steel strip through molten
zinc at a temperature of 860 ◦F in order to obtain zinc carbonate (ZnCO3). Zinc
carbonate is a strong material that provides sacrificial protection against corrosion
over the steel surface [16, 17]. The present work is devoted to the analysis of the
occurrence of ripple defects during HDG, focusing on the study on thick coils having
low zinc coating. Ripples are diffused coating ruffles, appearing on the coil surface in
the formof transversal lines [2], and are identifiedby anAutomatic Surface Inspection
System (ASIS). The occurrence and gravity of this type of defect is affected by several
process variables. Although skilled personnel can manage ripple defects through
particular operations, for instance using nitrogen as wiping medium in air blades,
the real effects of each process parameter variation is unknown. Hence, the study
of these phenomena can improve the quality of coils, by decreasing reworked or
scrapped material and reducing costs related to a redundant use of nitrogen. The
paper is organised as follows: Sect. 20.2 provides a description of the industrial
dataset analysed; in Sect. 20.3 the proposed method is described; the obtained results
are then depicted in Sect. 20.4 and finally in Sect. 20.5 some concluding remarks are
provided.

20.2 Dataset Construction and Description

The phenomenon under consideration has been studied by analysing process data
coming from one of theHDG lines of an Italian company. Currently the production of
high quality steel is supported bymodernmeasuring systems collecting an increasing
amount of high resolution (HR) quality and process data along the whole flat steel
production chain. Process data sampling is based on length, meaning that many
process variables are sampled every 10m of coil, while some of them are sampled
every 1m. It is important to notice that each measurement is related to a longitudinal
position on the coil, while defects, detected by ASIS, are represented by a two
dimensional spatial position on the coil and by the involved area. Therefore, the coil
surface has been divided into disjoint tiles, each of them representing a portion of the
coil. Since the number of tiles depends on the adopted resolution, different resolution
levels, named stages, have been defined and are shown in Table20.1

Specifically, each tile of each stage has a single TileID and is thus identified by
the couple Stage and TileID. Since process variables are 1D-continuous, collected
measure data have been aggregated on each coil cross section by computing themean
value. Coil cross sections are called slices and are obtained by aggregating tiles along
the coil width. On the other hand, defect areas inside a tile have been summed and
the obtained value has been then normalized towards the tile area in order to find the
percentage of area occupied by defects inside a tile. Furthermore, in order to develop
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Table 20.1 Grid definitions

Stage Tiles x-axis Tiles y axis Number of tiles

0 1 2 2

1 2 4 8

2 4 8 32

3 8 16 128

4 16 32 512

5 32 64 2048

6 64 128 8192

7 128 256 32768

8 256 512 131072

a cause and effect analysis between process variables and defects, the defect tiles are
aggregated on slices by means of a sum operation. In this way a sequence of coil
slices has been created and the measure (1D) can be correlated to defects (2D) [3].
The target of the analysis has been defined as the percentage of area occupied from
defects inside a slice. The analysis is devoted to the occurrence of ripple defects on
thick material and low zinc coating coils. In particular the analysed coils show the
following characteristics:

• thickness ≥ 1.5 mm
• 50 g/m2 ≤ Zinc coating weight ≤ 71 g/m2

The final number of analysed coils is 356 while the process variables, which are
20, have been selected by the skilled personnel of the company and can be associated
to four mainclasses:

1. Air-knife (including Nitrogen, pressure, distance and angle)
2. Temperatures (zones situated before and after zinc bath, top-roll, water bath

cooling)
3. Line speed
4. Fan coolers along the cooling tower.

Some of suggested variables have been removed because highly correlated with
other ones and therefore redundant. In order to study the two different cases based on
the use of air or nitrogen in air blades, the coils have been divided into two groups: the
first group includes 179 coils using air blowing, while the second one is made of 177
coils exploiting nitrogen blowing. Therefore, two different datasets were prepared
for air and nitrogen blowing and each of them is represented by a matrix, where rows
correspond to slices of coils, while columns correspond to the suggested process
variables.
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20.3 Proposed Method

After the dataset construction, an accurate pre-processing procedure has been per-
formed. Firstly, a plausibility analysis has been applied in order to create prediction
models starting from process parameters with acceptable values. To this aim, a plau-
sibility range or plausible values have been defined for each process parameter with
the help of technical personnel, in order to check process variable measurements
during data pre-processing. Another check concerns the possibility to have missing
values on some process variable on some slices of the coils, due to measurement
errors: all rows or coil slices where at least one value is missing or not plausible are
removed. Moreover, if more than 30% of the samples of a process variable are not
plausible, that variable is eliminated. Subsequently, a fully automatic fuzzy-based
outlier detection has been applied. An outlier is defined as an observation that devi-
ates from the rest of the available data. Outliers can be caused bymeasurement errors
or by a drastic alteration of the considered phenomenon. Thus, on the basis of the
application, an outlier can be a sample to be discarded or, on the contrary, it can
represent a relevant although anomalous case to be investigated. Outlier detection
is an important step of data mining as well as it is a useful pre-processing stage in
many applications belonging to different contexts such as financial analysis, fraud
detection, network robustness analysis, network intrusion detection [24, 27, 31].
Traditional outlier detection approaches can be categorized into four main classes:
distribution-based [23], distance-based [28], density-based [30] and clustering-based
[26]. The approach which is proposed here calculates a feature belonging to each
class and then they are combined through a Fuzzy Inference System (FIS) [8–10,
22]. The distribution-based approach is usually addressed in the field of statistics.
According to this approach an outlier is defined as an object that does not fit well
with a standard distribution considering that the distribution is not a priori known. A
largely used method belonging to this approach is the Grubbs test for outliers which
detects outliers approximating the distribution of such data by a Gaussian function.
The distance based approach was presented in [26], where the following definition is
provided: An object x in a dataset T is a DB(p, D)-outlier if at least fraction p of the
objects in T lie a distance greater than D from x. In order to identify a definition of
distance, the Mahalanobis distance is adopted as metric. The density-based method
for outliers detection was introduced in 2000 [6]. This approach assigns to each
datum a degree of outlierness considering the density of its neighbourhood called
Local Outlier Factor (LOF). Finally the clustering based method defines an outlier as
a point that does not belong to any cluster after an appropriate clustering operation.
In this context the adopted clustering method is the Fuzzy C-means [19]. The four
features are fed in input to the FIS [29] that outputs an outlierness degree belong-
ing to the range [0, 1], that if it is close to one the corresponding pattern is labeled
as outlier [8]. In this industrial context, outlier detection has been applied on each
coil independently from other coils, being some process settings depending on coil
basic features. After the pre-processing phase, the analysis has been focused on the
identification of possible causes of ripples occurrences. In particular, the attention is
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focused on the development of a model capable to identify process variables with a
stronger impact on the presence/absence of ripples by expressing such effect through
an appropriate relationship. To this aim, a binary classification based on a Decision
Tree (DT) has been adopted, which considers two classes:

• Class 0: slice without ripples defects.
• Class 1: highly defective slices, with defects exceeding a threshold automatically
calculated and equal to the 95th quantile of the empirical cumulative distribution
of the percentage area of defects.

In the considered context, the focus is on the identification of class 0 samples in the
air-blowing case and of class 1 samples in the nitrogen-blowing case [1, 18, 32].
The performance of the developed classifier has been evaluated in terms of average
accuracy, also known as Balanced Classification Rate [25], which is suitable also
for imbalanced dataset [12, 15] that are quite frequent in industrial contexts. The
formula of Balanced Classification Rate (BCR) is defined as in Eq.20.1:

BCR = 1

2
(

T P

T P + FN
+ T N

T N + FP
) (20.1)

where:

• TP True Positive, number of unitary samples correctly classified.
• TN True Negative, number of null samples correctly classified.
• FP False Positive, number of null samples incorrectly classified.
• FN False Negative, number of unitary samples incorrectly classified.

Furthermore, the ratios T P
T P+FN and T N

T N+FP are also known as sensitivity and
specificity, respectively. The main advantage on the use of a DT-based classifier lies
in the fact that it is awhite boxmodel and it is understandable by unskilled people, as it
appears as a chain of simple if-then rules [4, 5, 20]. Each node of the DT is associated
to a process variable, a branch corresponds to a range of values and finally leaf nodes
are associated to the two classes. Firstly, data are randomly shuffled and then are
divided into a training set, represented by the 75% of the data, and a validation set
corresponding to the remaining 25% of data. 10 different training procedures have
been performed in order to ensure a general validity of results. The performance of the
DT has been evaluated by computing the BCRon the validation set andAfterward the
average accuracy on different trainings has been computed. Finally an appropriate
procedure to determine the most important variables, i.e. variables which mostly
affect the classification [7, 10–14], has been adopted in order to provide a measure
of the impact of each input variable on the occurrence or absence of defects [12].
This procedure computes an estimate of variable importance for a decision tree by
summing variations in the risk caused by splits on each variable. One importance
degree is then returned for each variable in the data adopted to train the tree. For each
node a risk is evaluated as the node error value weighted by the node probability. The
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Variable importance degree Imp(v) is calculated as the proportion of observations
from the initial data that fulfill the conditions for the considered node, as follows:.

Imp(v) = 1

Nodes

∑

N∈Nv

EN − (ER + EL)

instances
(20.2)

where Nv is the set of all nodes associated to the variable v, nodes is the number
of nodes, instances is the number of available samples, EN represents the number
of errors in the node N and finally, ER and EL correspond to the number of errors
of the right and left children, respectively. The error of a node is represented by the
declassification probability for that node. The variable importance has been computed
for each attribute present in the DT, while a null value is associated to the attributes
that are missing in the DT. Afterwards, each variable importance degree has been
normalizedwith respect to themaximumvalue in order to obtain an importance value
in the range [0, 1]. The unitary value corresponds to the most important variable.
The procedure is repeated 10 times and an average importance degree is determined
for each variable.

20.4 Obtained Results

A plausibility range has been provided for each input variable and samples out
of range have been discarded. Moreover, the above presented outlier fuzzy-based
approach has been applied in order to obtain a clean and reliable dataset [15].
Tables20.2 and 20.3 show the number of input samples, the number of not plau-
sible data, the number of detected outliers and finally the percentage of outliers in
both case studies: air and nitrogen blowing.

Outlier detection has been applied coil per coil and it has been omitted for lower
stages (0–3), since the number of samples for each coil is too low. Results on the

Table 20.2 Pre-processing results concerning air-blowing

Stage Samples Not plausible Outliers Outliers (%)

0 358 0 – –

1 716 0 – –

2 1432 0 – –

3 2864 0 – –

4 5728 0 216 3.77

5 11456 0 207 1.81

6 22912 0 228 1

7 45024 0 237 0.52

8 91648 0 253 0.28
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Table 20.3 Pre-processing results concerning Nitrogen-blowing

Stage Samples Not plausible Outliers Outliers (%)

0 354 0 – –

1 708 0 – –

2 1416 0 – –

3 2832 0 – –

4 5664 0 236 4.17

5 11328 1 220 2.02

6 22656 3 214 1.23

7 45312 3 215 1.19

8 90624 3 214 1.18

Table 20.4 Balanced classification rate

Blowing type Accuracy (%)

overall class 0 class 1

Air 99.34 99.78 98.90

Nitrogen 97.65 98.92 96.37

pre-processing phase show that in both cases (air or nitrogen blowing) a low number
of samples have been discarded. The two datasets, obtained with air or nitrogen
blowing, are individually given in input to a DT-based classification algorithm. The
average accuracy of the binary classification has been evaluated in terms of Balanced
Classification Rate (BCR) and Afterward the mean accuracy on ten iterations on
different training sets has been calculated. The results for both cases (air and nitrogen
blowing) are shown in Table20.4.

The obtained results not only show good classification performances in terms
of average accuracy, but also provide very precise rules, inferred by DTs, with a
simple syntax that allows to easily act on the affecting process variables in order
achieve the desired quality level. This result, from an industrial point of view, is
clearly very satisfactory, as it provides an effective way to support decisions and to
inform operators on the actions to take in order to avoid defects [21]. Furthermore,
the most relevant variables have been identified. Tables20.5 and 20.6 show the mean
importance degree of the relevant variables in a decreasing order in both studied
cases: air blowing and nitrogen blowing.

The variables that are listed in the two tables are in line with the expectations
of industrial experts. In addition, all variables involved in this analysis except for
the Water bath cooling temperature can be adjusted in line in order to tune the
process in “ripples safe” conditions. TheWater bath cooling temperature represents
the temperature of the water quench located towards the end of the coating process
and it is a consequence of other parameters, such as the residual strip heat, speed or
thickness, and consequently the operator cannot modify it.
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Table 20.5 Mean variable importance in the case of air blowing

Process variables Mean importance degree

Distance air-blade 1

Tunnel zone temperature 0.69

Speed process section 0.29

Pressure air-blade 0.25

Fans reference speed 0.15

Top-roll zone temperature 0.08

Water bath cooling temperature 0.07

Strip temperature 0.02

Table 20.6 Mean variable importance in the case of Nitrogen blowing

Process variables Mean importance degree

Water bath cooling temperature 1

Distance air-blade 0.45

Hot briddle zone temperature 0.39

Speed process section 0.14

Pressure air-blade 0.14

Fans reference speed 0.10

Height air knife 0.05

Top-roll zone temperature 0.02

20.5 Conclusions

The analysis of the occurrence of ripple defects during HDG in the production of flat
steel products has been presented, with a focus on the study on thick coils having
low zinc coating. An accurate pre-processing procedure has been applied and then a
DT-based classification model has been developed. The proposed method is generic
and does not require any a-priori assumptions, thus it can be applied to other real
applications such as the studyof the occurrence of different defects type. The obtained
results demonstrate the effectiveness of the proposedmethod (average accuracymore
than 97% in the nitrogen blowing case and an average accuracy even greater than
99% in the air blowing case), moreover another important result lies in the fact
that DTs approach provide defined rules with simple sintax becoming an effective
tool to support decisions. Finally, the approach outputs a mean importance degree
of relevant variables giving a deeper understanding of the process that can lead to
improved coil quality, by reducing the reworked or discarded material and reducing
the costs associated with an excessive use of the nitrogen.
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Chapter 21
An Improved PSO for Flexible
Parameters Identification of Lithium
Cells Equivalent Circuit Models

Massimiliano Luzi, Maurizio Paschero, Antonello Rizzi
and Fabio Massimo Frattale Mascioli

Abstract Nowadays, the equivalent circuit approach is one of themost usedmethods
for modeling electrochemical cells. The main advantage consists in the beneficial
trade-off between accuracy and complexity that makes these models very suitable
for the State of Charge (SoC) estimation task. However, parameters identification
could be difficult to perform, requiring very long and specific tests upon the cell.
Thus, a more flexible identification procedure based on an improved Particle Swarm
Optimization that does not require specific and time consuming measurements is
proposed and validated. The results show that the proposed method achieves a robust
parameters identification, resulting in very accurate performances both in the model
accuracy and in the SoC estimation task.

21.1 Introduction

Battery Management Systems (BMSs) are one of the most critical and influencing
devices in the technological evolution concerning energetic efficiency and sustain-
able mobility. In fact, they are of extreme importance for monitoring and protecting
any Energy Storage System (ESS) used in Smart Grids and microgrids [1–3], or in
hybrid and electric vehicles [4, 5]. The main role of any BMS is to ensure that each
electrochemical cell composing the ESS remains in its safety operating area; second,
BMS has to estimate the State of Charge (SoC) of each cell, giving thus information
about the amount of residual stored energy. In particular, SoC estimation is the most
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critical task of BMS, since only an accurate information about this quantity allows
to maximize the life, the efficiency and the effectiveness of ESSs.

Several methods for SoC estimation have been proposed in the literature [6].
Among them, the techniques based on nonlinear state observers, such as Extended
Kalman Filters (EKF) or Unscented Kalman Filters (UKF), are showing the most
robust and promising estimation accuracies [7–9]. In thesemethods, a suitable model
of electrochemical cells in which the SoC quantity belongs to the state space vector
is used for estimating SoC, together with other system state components. Thus, it
is clear that the effectiveness of state observer methods is strictly dependent on the
accuracy of the considered cell model.

Among the several approaches proposed in the literature [10–12], equivalent cir-
cuit models has showed a promising trade-off between accuracy and computational
demand [13, 14]. Thus, they are often used for SoC estimation. In these models, a
connection of bipolar lumped elements is adopted in order to emulate the voltage
response of the cell to the input current. However, the parameters identification pro-
cedure could be often stiff and/or inaccurate. For example, in [13] the identification
procedure has to be performed offline and it requires a very long and specific charging
and discharging test in order to get accurate values for the electric components com-
posing the model. Alternatively, in [15, 16] a Gray Wolf Optimization (GWO) and
a Particle Swarm Optimization (PSO), respectively, have been used for identifying
the model parameters by fitting the datasheet curves of the cell. Nevertheless, these
approaches can result in a loss of accuracy because the cells can work differently
with respect to the datasheet due to manufacturing deviations or aging.

In this work, a flexible parameters identification procedure based on an improved
PSO is proposed. Instead of considering the generic data of the datasheet, the pro-
posed method searches for the best parameters set resulting in the best fitting of data
directly measured on the cell under test. Consequently, this approach results in a
more flexible identification procedure that does not require any specific test over the
cells, allowing a possible application in real time during the actual usage of ESS.
Moreover, it brings to a more accurate identification of the considered cell.

In the following section, the architecture of the equivalent circuit model is pre-
sented. In Sect. 21.3, a detailed description both of the proposed identification pro-
cedure and of the improvements implemented on the PSO are discussed. Then, the
performed tests are discussed and commented in Sect. 21.4. Finally, Sect. 21.5 con-
tains the concluding remarks.

21.2 Equivalent Circuit Model

A new equivalent circuit model based on a mechanical analogy has been proposed in
[13, 14]. In these works, the authors showed that the generic voltage response Vout

of any cell can be thought as the superimposition of three contributions related to
different timescales, namely the instantaneous, the dynamic and the quasi-stationary
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Fig. 21.1 Equivalent circuit model of an electrochemical cell

contributions. More precisely, the instantaneous term Vist models the memoryless
relationship between the input current Iin and the output voltage Vout ; the dynamic
term Vdyn models the low pass transient response of the cell; the quasi-stationary term
Vqst models the voltage contribution due to the amount of currently stored charge.
In particular, Vqst is equivalent to the Open Circuit Voltage (OCV) of the cell. The
model proposed in [13] is shown in Fig. 21.1. Its main contribution consists in the
use of nonlinear circuit components, such as nonlinear resistors and capacitors, in
order to model the nonlinear response to the input current. This allows to obtain a
model closer to the physical behavior of the cell, avoiding any kind of mathematical
artifices such as SoC dependent resistors.

In this circuit,Vqst ismodeledwith a nonlinear capacitorwhosegoverning function
is the OCV-SoC curve typical of any cell, whereas Vist and Vdyn are modeled with a
nonlinear resistor and the series of three first order RC low pass filters, respectively.
The input and the output of the model are the current Iin and the voltage Vout ,
respectively, whereas the state variables are SoC and each voltage V i

dyn related to the
RC filters. Thus, the following state form equations can be derived:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎫
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⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Vout [k] = Ṽqst (SoC[k]) +
3∑

i=1

V i
dyn[k] + R̃ist (Iin[k])Iin[k]

(21.1)

In the above formula, SoC has been evaluated with the Coloumb Counting approach
[17], where Ts is the sampling time, η is the Coloumbic efficiency and Cn is the
nominal capacity expressed in Ah, that is the total amount of charge that the cell
can store between the maximum and minimum allowed SoC. The nonlinear function
Ṽqst (.) is the OCV-SoC curve modeling the behavior of the nonlinear capacitor
Cqst , whereas R̃ist (.) is the nonlinear function modeling the nonlinear resistor Rist .
Consequently, the parameters to be identified are the nonlinear functions Ṽqst (.) and
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R̃ist (.) with respect to the quasi-stationary and the instantaneous terms, respectively,
and the values of Ri

dyn and τ i
dyn = Ri

dynC
i
dyn for eachRCdipolemodeling the dynamic

contribution.
In [13] the authors has proposed a very accurate parameters identification proce-

dure for this model. Its main advantage is that it identifies separately the parameters
related to the different timescale contributions. However, in order to achieve this sep-
arated identification, the method requires to test the cell with a very specific current
profile. Moreover, this test cycle must have a very long time duration and it could
last some days in order to allow the identification of the dynamic parameters related
to the slowest transient response. As a consequence, this identification procedure is
very rigid and expensive to perform, because it requires to disassemble the cell from
ESS and to test it offline, with a high accuracy and for a very long time.

21.3 Flexible Identification Procedure

In order to facilitate the parameters identification, the model of Fig. 21.1 has been
simplified by modeling Vist with a linear resistor in place of the nonlinear one of the
originalmodel. Thus, all the parameters have been expressed byonly one real number,
except for those of the quasi-stationary contribution. In fact, the identification of the
OCV-SoC curve is more complicated since it requires to retrieve the shape of the
nonlinear function Ṽqst (.). In order to do that, the same procedure discussed and
proposed in [14] has been considered here. In this procedure, a limited number L
of samples equally distributed in the function domain are used as representatives
of the nonlinear function to identify. Then, the considered samples are interpolated
with a cubic polynomial in order to recover the overall shape of the function. Thus,
the identification procedure is in charge to find only the values of the L samples,
searching for the best sampling representing Ṽqst (.). Summarizing, the parameters
set θ to be identified is given by the following vector:

θ = {
Rist , τ

1
dyn, R

1
dyn, τ

2
dyn, R

2
dyn, τ

3
dyn, R

3
dyn, V

1
qst , V

2
qst , . . . , V

L
qst

}
(21.2)

where V i
qst indicates the i-th sample of the OCV-SoC curve representation.

In this work, it has been adopted an approach similar to those proposed in [15,
16]. More precisely, the identification procedure has been formulated as a fitting
problem solved with swarm intelligence algorithms. However, instead of consider-
ing the curves of the datasheet, the fitting problem has been applied to generic data
measured directly on the cell. This procedure has allowed to generalize the param-
eters identification, to make it more flexible, and to tailor it on the cell under test.
Thus, given any measured sequence of voltage Vout and current Iin , the optimization
algorithm will search for the optimal parameters set θopt that minimizes the error
between the estimated voltage and the measured one. Thus, being V̄ θ

out the estimated
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voltage given the parameters set θ , the identification procedure consists in solving
the following optimization problem:

θopt = argmin
θ

{
MSE

(
Vout , V̄

θ
out

)}
(21.3)

where MSE(.) indicates the mean square error evaluated between Vout and V̄ θ
out .

In this work, the optimization problem (21.3) has been solved by means of a
PSO. In particular, in order to improve both the convergence to the global minimum
and the robustness of the parameters identification, an improved implementation of
PSO, called Hybrid Genetic-PSO (HG-PSO), has been developed. Three kind of
improvements have been introduced with the aim of reducing the stagnation effect,
to increase the exploration and exploitation capability, and to avoid the convergence
to local minima.

The main improvement has regarded the hybridization of PSO with the Genetic
Algorithm (GA). This hybridization has aimed at enhancing the exploitation capabil-
ity of the algorithm, facilitating it in escaping from local minima. At each iteration,
a certain number of new particles are generated by applying the genetic operators
of crossover and mutation. In particular, a K-tournament algorithm is considered for
determining the particles affected by the genetic operators. Once the new individuals
have been generated, these will substitute a set of particles randomly chosen from
the worst half of the original swarm.

The second improvement has been amulti-swarm implementation of PSO.Herein,
the entire swarm is split in a numberG > 1 of sub-swarms, each one characterized by
having its own global best. In this topology, each particle belongs to the sub-swarm
related to the closest global best, and consequently it updates its position with respect
to that global best. The advantage of using a multi-swarm implementation consists
in an improved exploration capability that allows to search in different areas of the
solution space, and to avoid a premature convergence to local minima.

The final improvement was the implementation of the Guaranteed Convergence
update rule [18]. In this version, the velocity of each particle close to the global best
is updated with expression (21.4) in place of the standard rule of PSO:

v[n] = ωv[n − 1] + gbest − θ [n − 1] + δ(1 − 2r) (21.4)

where v, θ and gbest are the velocity, the current particle position and the global best,
respectively, ω is the inertial coefficient, whereas r ∈ [0, 1] is a random number
chosen from the uniform distribution, and δ is a scaling factor. This update rule
introduces a more random behavior of the particles close to the global best, allowing
to avoid stagnation and to improve the exploitation around the current global best.
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21.4 Validation Procedure

The proposedmethod has been validated by performing the parameters identification
procedure upon a real Li-ion cell. In order to highlight the achieved flexibility, the
Randomized Battery Usage Dataset [19] collected by the NASA Ames Research
Center has been considered for building the Training Set (TrS) and the Test Sets
(TsS). This dataset is composed of the measurements performed by testing a Li-ion
cell model 18650 with a sequence of random charging/discharging current pulses.
Thus, the considered data for the parameters identification is totally generic and not
chosen a priori. The TrS and the TsS are shown in Fig. 21.2.

In order to analyze the robustness of the proposed procedure, the parameters
identification has been performed ten times, considering a different random initial-
ization of the swarm for each run. Then, a statistical analysis of the results has been
performed considering the values of the 1-st, 2-nd and 3-rd quartiles; note that the
2-nd quartile coincides with the median value. The configuration of HG-PSO is
shown in Table21.1, where ω, cp and cg are the inertial coefficient and the accel-
eration coefficients related to the personal and global bests, respectively. Moreover,
the identification of the nonlinear function Ṽqst (.) has been performed considering
L = 15 and a total of 1000 interpolation points.

−4

−2

0

2

4

I in
[A

]

Training Set Test Set

0

0.5

1

So
C
[%

]

0 2 4 6

3.5

4

Time [h]

V o
ut
[V

]

0 2 4 6
Time [h]

Fig. 21.2 Dataset related to the Randomized Battery Usage Dataset
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Table 21.1 HG-PSO configuration

Particles ω cp cg Mutations Crossovers K Sub-swarms δ

50 0.7298 1.4962 1.4962 5 5 5 2 0.1

Table 21.2 Comparison between HG-PSO and PSO

Median Q1 Q3 Q3-Q1

HG-PSO PSO HG-PSO PSO HG-PSO PSO HG-PSO PSO

MSE TrS 2.49e-4 3.08e-4 2.49e-4 2.81e-4 2.50e-4 3.34e-4 9.84e-7 5.32e-5

MSE TsS 7.46e-4 8.24e-4 7.44e-4 7.73e-4 7.50e-4 9.62e-4 6.00e-6 1.90e-4

Rist [mV] 78.92 85.64 78.81 83.68 79.12 86.07 0.31 2.39

R1
dyn [mV] 20.35 26.21 20.19 22.62 20.54 27.65 0.36 5.03

τ 1dyn [h] 7.58e-3 2.50e-2 7.29e-3 1.87e-2 7.95e-3 2.90e-2 6.57e-4 1.02e-2

R2
dyn [mV] 21.34 16.89 21.11 15.11 21.43 50.62 0.33 35.51

τ 2dyn [h] 8.58e-2 5.14e-1 8.23e-2 1.51e-1 9.14e-2 4.66 9.05e-3 4.51

R3
dyn [mV] 16.63 27.39 6.93 12.89 69.87 54.36 62.94 41.47

τ 3dyn [h] 5.43 6.26 4.31 4.04 10.75 7.81 6.44 3.77

Q1 = 1st Quartile; Q3 = 3rd Quartile
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Fig. 21.3 Comparison between the Ṽqst identified by the HG-PSO and the PSO

With the aim of highlighting the improvement gained with the customization
discussed in Sect. 21.3, the same identification procedure has been performed with
a standard PSO sharing the same configuration of HG-PSO, except for the genetic
and multi-swarm setup. The results related to the performed MSE and the values of
the statistical analysis of Rist , Ri

dyn and τ i
dyn are shown in Table 21.2, whereas the

statistical analysis of the Ṽqst function is shown in Fig. 21.3.
Both HG-PSO and PSO has achieved a great accuracy with the former perform-

ing a median MSE of 2.49e-4 and 7.46e-4 for the TrS and the TsS, respectively,
whereas PSO has performed a median MSE of 3.08e-4 and 8.24e-4. The similar
MSE performed in the TrS and the TsS proves the good generalization capability of
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Fig. 21.4 Comparison between real and estimated SoC and Vout performed by executing the SR-
UKF over the models built considering the parameters got from the HG-PSO procedure

the proposed method. Moreover, beside the better MSE performed both in the TrS
and in the TsS, the most relevant result of HG-PSO is related to the significantly
better robustness of the identified parameters. In fact, the differences between the
third and the first quartiles performed by HG-PSO are almost always two order of
magnitude lower than those of PSO. This is because the three implemented upgrades
has allowed HG-PSO to converge every time to very close solutions, and thus to find
almost always the same parameters set. On the contrary, PSO often has stuck in local
minima, resulting in a greater deviation both in the identified parameters and in the
performed MSE.

In addition to the robustness analysis, the ten models obtained by executing the
HG-PSO procedure have been used into a Square Root UKF (SR-UKF) [7] for
performing SoC estimation upon the TsS data. In order to avoid a trivial test in which
the states of the cell are known, SoC estimation has been performed considering a
temporal offset of t = 1h. This way, the cell is in a non-stationary condition in which
each dynamical state variable is totally unknown. The obtained estimations of SoC
and Vout are shown in Fig. 21.4, where SR-UKF has been initialized considering a
generic state with SoC = 0.5 and V i

dyn = 0 for each RC filter. It can be seen that
SR-UKF succeeds in correcting the state estimation in a few minutes, achieving then
an accurate SoC estimation along the entire length of the TsS sequence. In particular,
it has performed a median MSE between the real SoC and the estimated one equal
to 6.13e-4. Moreover, it is noticeable also the robustness of the estimation with the
median almost always overlapped with both the first and the third quartiles evaluated
on the SoC estimated by the ten models.

21.5 Conclusions

In this work, a flexible procedure for performing the parameters identification related
to an equivalent circuit model of an elecrochemical cell has been addressed. The
identification procedure has been formulated as a fitting problem in which a PSO
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is in charge to find the best parameters set resulting in the minimization of the
MSE between the measured voltage and the estimated one. In order to increase the
robustness of the algorithm, three improvements to the standard PSO have been
implemented: the genetic hybridization and the guaranteed convergence has allowed
to improve exploitation and to avoid the stagnation on local minima; themulti-swarm
implementation has improved the exploration capability. The main advantage of the
proposed approach is that it does not require any specific test on the cell, and it is
able to identify the model parameters starting from generic measurements.

The proposed method has been validated by performing parameters identification
upon the Randomized Battery Usage Dataset of the NASA Ames Research Center.
In particular, the procedure has been performed ten times and a statistical analysis
of the results has been made. Moreover, the effectiveness of the obtained models
has been analyzed by using them in a SR-UKF for the SoC estimation. The results
show very promising performances, with the identified models succeeding not only
in achieving a good estimation accuracy of Vout and SoC, but also a very robust
identification of the model parameters.

Future efforts will focus on using and testing the proposed procedure for per-
forming an online parameters identification. Furthermore, it will be investigated a
closed loop architecture in which the SR-UKF and the HG-PSO work together for
estimating the SoC and updating the model parameters at the same time.
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Chapter 22
Yield Curve Estimation Under Extreme
Conditions: Do RBF Networks Perform
Better?

Alessia Cafferata, Pier Giuseppe Giribone, Marco Neffelli
and Marina Resta

Abstract In this paper we test the capability of Radial Basis Function (RBF) net-
works tofit the yield curve under extreme conditions, namely in case of either negative
spot interest rates, or high volatility. In particular, we compare the performances of
conventional parametricmodels (Nelson–Siegel, Svensson anddeRezende–Ferreira)
to those of RBF networks to fit term structure curves. To such aim, we consider the
Euro Swap–EUR003MEuribor, and the USDollar Swap (USD003M) curves, on two
different release dates: onDecember 30th 2004 and 2016, respectively, i.e. under very
different market situations, and we examined the various ability of the above–cited
methods in fitting them. Our results show that while in general conventional methods
fail in adapting to anomalies, such as negative interest rates or big humps, RBF nets
provide excellent statistical performances, thus confirming to be a very flexible tool
adapting to every market’s condition.

22.1 Introduction

The yield curve represents a relationship between the spot rates of zero coupon
bonds and their respective maturities and provides a way of understanding whether
the economy will be strong or weak. Understanding the evolution of the yield curve
is therefore an important issue in finance, especially for assets pricing, financial risk
management and portfolio allocation.
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During the past forty years considerable research efforts have been devoted to
this task. The two main research tracks refer to equilibrium models, as pioneered by
Vasicek [26], and statistical models. Here we are mainly concerned with discussing
those latter, as the underlying approach is strongly related to our research question:
can Radial Basis Function nets provide a suitable environment to fit the yield curve
under extreme conditions? Statistical contributions embrace a wide range of tech-
niques, including the smoothed bootstrap by Bliss and Fama [13], and the parametric
approaches by Nelson and Siegel [21], Svensson [24], and de Rezende and Ferreira
[10]. These techniques deal with in–sample estimation of the yield curve, while the
forecasting issue has been addressed in a more recent literature track. Diebold and
Li [11], [12] pioneered the field with a dynamic version of the Nelson–Siegel model
(NSm), and [2] modified the NSm by way of a procedure based on ridge regression
to avoid collinearity issues. Furthermore, approaches employing Machine Learning
(ML) paradigms have been already explored by Ait Sahalia [1], Cottrell et al. [8],
Tappinen [25] to cite some, who proposed nonparametric models, with no restric-
tion on the functional form of the process generating the structure of interest rates.
More recently Bose et al. [5], Joseph et al. [19], Rosadi et al. [22], Sambasivan and
Das [23] explained the behavior of the yield curve with various neural architectures,
while Barunik and Malinska [3] employed artificial neural networks to fit the term
structures of crude oil future prices. However, so far very little attention has been
devoted to the practice of fitting the yield curve in extreme conditions within the ML
framework: to the best of our knowledge, Gogas et al. [15] is the only attempt of
forecasting recession from a variety of short (treasury bills) and long term interest
rate bonds applying Support Vector Machines [7] for classification. We therefore
think that there is enough room for contributing with Radial Basis Function (RBF)
Networks. Indeed RBF nets have been already widely employed in financial applica-
tions: for some examples one can refer to [16, 20]; however, we intend to explore how
much this technique can be effective in providing in–sample matching to the yield
curve under conditions of stress, andwe are going to compareRBFnets performances
to those of traditional statistical models.

What remains of the paper is organized as follows; Sect. 22.2 introduces the the-
oretical framework with a brief discussion concerning both conventional parametric
techniques and Radial Basis Function Networks. Section22.3 contains simulation
settings and the results discussion. Section22.4 concludes.

22.2 Theoretical Framework

In this section we provide an overview on the estimation models generally employed
to fit the yield curve: starting from the parametric models in Sect. 22.2.1, we then
describe the RBF Networks in Sect. 22.2.2.
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22.2.1 Thirty Years of Parametric Estimation Models of the
Yield Curve

We are mainly concerned on the Nelson and Siegel model and on the extensions
discussed by Svensson [24] and by de Rezende and Ferreira [10]: for other variants
the reader can refer to [9]. Nelson and Siegel suggested to model the yield curve in
the following way:

yNS(t,β, τ ) = β0 + β1
τ

[
1 − exp(−t/τ)

]

t
+ β2

τ
[
1 − exp(−t/τ)

] − exp(t/τ)

t
(22.1)

where the dependent variable yNS represents the zero rate to be determined, t is the
time to maturity, β = [β0 β1 β2]′ is the parameters vector, with β0 representing the
impact of long–run yield levels, β1 and β2 expressing the short–term and the mid–
term components, respectively; finally τ is the decay factor. By properly estimating
the parameters value, (22.1) makes possible to explain the different shapes the yield
curve can assume: flat, humped or S–shaped.

The extension suggested by Svensson in 1994 introduced the possibility to model
a second hump in the yield curve:

ySV (t,β, τ ) = β0 + β1
τ1

[
1 − exp(−t/τ1)

]

t
+ β2

τ1
[
1 − exp(−t/τ1)

] + − exp(t/τ1)

t
+

+ β3
τ2

[
1 − exp(−t/τ2)

] − exp(t/τ2)

t

whereβ = [β0 β1 β2 β3]′, withβ0, β1, β2 likewise in (22.1),whileβ3 is the parameter
associated to the second hump.Moreover, we now have: τ = [τ1 τ2]′ representing the
decay factors associated to earlier three parameters (τ1) and to β3 (τ2), respectively.

Finally, de Rezende and Ferreira [10] in 2011 discussed a five parameters exten-
sion of the Nelson–Siegel model, allowing to insert a third hump in the yield curve:

ydRF (t,β, τ ) = β0 + β1
τ1

[
1 − exp(−t/τ1)

]

t
+ β2

τ1
[
1 − exp(−t/τ1)

] − exp (t/τ1)

t
+

+ β3
τ2

[
1 − exp(−t/τ2)

] − exp(t/τ2)

t
+ β4

τ3
[
1 − exp(−t/τ3)

] − exp (t/τ3)

t

where β = [β0 β1 β2 β3 β4]′, with β4 being the parameter associated to the third
hump, and τ3 ∈ τ = [τ1 τ2 τ3]′ representing the decay factor associated to β4.

Clearly both the Svensson (SV) and de Rezende–Ferreira (dRF) variants of the
original Nelson–Siegel (NS) model are more complex to manage than the NSmodel,
but they generally improve the desired fitting, as rising the number of parameters
the related SSE, and MSE decrease and R2 increases. In all the examined cases, the
estimation of parameters can be performed byway of quasi–Newtonmethods like the
Broyden–Fletcher–Goldfarb–Shanno algorithm–BFGS–[4] or with an optimization
heuristic, as in [14]. However, while this latter solution seems to be capable of
reliably solving the models, it fails (likewise the BFGS) in assuring the stability of
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estimated parameters under certain conditions, namely under small perturbations of
the data. This motivated us to explore a non–parametric alternative, represented by
RBF networks.

22.2.2 Radial Basis Function Networks

Radial Basis Function Networks–RBF–[6] are a kind of neural architecture generally
organized into three layers, as illustrated in Fig. 22.1.

Here x1, x2, . . . , xm represent the components of the input vector x that are trans-
mitted to the first layer nodes (in the same number as the input elements), by acting a
linear transformation. The signal thenmoves to the hidden layerwhere it is interpreted
by a number of radial functions φ j (·), j = 1, . . . , n, whose number n is decided by
the user, being:

φ j (x) = exp

(
−||x − c j ||

r j

)
, j = 1, . . . , n (22.2)

where c j and r j are the center and the radius of the function, respectively. The charac-
teristic feature of those functions φ j (·) is that their response decreases monotonically
with distance from a central point. Finally the output neuron generates a weighted
sum of the information processed by the hidden layer units:

F(x) =
n∑

j=1

ωjφj(x) (22.3)

The output signal F(x) is then compared to the observed value, and the weights
ω j ( j = 1, . . . , n) are adjusted accordingly, by way of an iterative process, until a
stopping criterion is reached. It is a common practice to initialize the number n of
nodes in the hidden layer to a small value, iteratively inserting an additional node if
the desired tolerance is not fullfilled.

Fig. 22.1 The traditional Radial Basis Function Network
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22.3 Simulation Settings and Results Discussion

The goal of our work is to asses the capability of RBF nets to fit the yield curve
in situations of stress, likewise in case of extreme humps or when interest rates
turn being negative. To such aim, we collected end–of–month data from Bloomberg
sheets containing the bid and ask par rates for the Euro Swap–EUR003M Euribor,
and the USDollar Swap–USD003M Curves, both observed on two different release
dates, on December 30th 2004 and 2016, respectively. The average between bid and
ask par rates was computed for each tenor and employed to derive the zero rates for
each curve. We were therefore able to manage four curves whose name is provided
in Table22.1.

Our choice can be easily motivated: the credits crunch in 2007–2008 and the
Eurozone sovereign debt crisis in 2009–2012 have changed the fixed incomemarket,
fostering the emergence of the s.c. multiple curve issue [18] and altering traditional
connections between interest rates and zero coupon bond prices [17]; our rationale
is then to consider curves in both pre–crisis and crisis times to check the different
fitting ability of conventional interpolation techniques against RBF nets. Figure22.2
shows the dynamics of the yield curves under examination.

At thefirst glance, the 3MonthsEuriborCurves (bothEur003MOld andEur003M)
appear being a bit more tricky to fit than the 3 Months USD Swap curve: starting
from the graphs in the left–hand side, in fact, the USD003MOld curve is sensitively
smoother than the EUR003MOld; moving to the right–hand side of Fig. 22.2, the
actual EUR003Mprofile shows singularities and slowdowns to negative values,while
the USD003M is still quite flat, apart from a hump at short maturities.

Figures22.3, 22.4, 22.5 and 22.6 show the graphical comparison among the inter-
polations obtained with the various methods.

Figures are self–explaining: the parametric methods work well, at the same level
of the RBF net in interpolating the EUR003Mold yield curve; the performance, how-
ever, is declining, at least for what is concerning the de Rezende–Ferreira approxi-
mation model, in the fitting of the USD003MOld; this is probably due to the known
problems (already discussed in Sect. 22.2.2) of precision in the parameters estima-
tion procedure. Things go worst when we turn to examine the estimation performed
on actual data. In this case, the fitting to the observed yield curves is quite poor for
all the examined parametric techniques; on the contrary the RBF net performances
maintain stable. This evidence is also confirmed by analysing the main statistics of

Table 22.1 Yield curves employed in this work

ID Extended name Inception date Length

EUR003MOld 3–Months Euribor 12/30/2004 22

EUR003M 3–Months Euribor 12/30/2016 22

USD003MOld 3–Months USDollar Swap 12/30/2004 22

USD003M 3–Months USDollar Swap 12/30/2016 22
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Fig. 22.2 The dynamics of the examined yield curves: time to maturity is on the x–axis, while the
value of zero rates appears on y–axis. On top: the 3 Months Euribor Curve (release date Dec. 2004
on the left, release date Dec. 2016 on the right), on the bottom: the 3 Months USD Swap Curve
(release date Dec. 2004 on the left, release date Dec. 2016 on the right)

the various methods, given in Table22.2 for the parametric techniques, including
parameters estimation, and in Table22.3 for the RBF network.

The values in Tables22.2 and 22.3 support the graphical evidence: quite sur-
prisingly the de Rezende–Ferreira model is the worst, in terms of R2 and RMSE,
in three over four cases (namely, in approximating the EUR003M, USD003MOld
and USD003M curves). The remaining parametric techniques (Nelson–Siegel and
Svensson) maintain satisfying values of the R2, but the related RMSE is sensitively
higher than in the case of RBF net interpolation.
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Fig. 22.3 From top to bottom and from left to right: interpolation of the EUR003MOld yield curve
with the Nelson–Siegel (NS), Svensson (SV), de Rezende–Ferreira (dRF) models and with the RBF
network
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Fig. 22.4 From top to bottom and from left to right: interpolation of the USD003MOld yield curve
with the NS, SV, dRF models and with the RBF network
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Fig. 22.5 From top to bottom and from left to right: interpolation of the EUR003M yield curve
with the NS, SV, dRF models and with the RBF network
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Fig. 22.6 From top to bottom and from left to right: interpolation of the USD003M yield curve
with the with the NS, SV, dRF models and with the RBF network
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Table 22.2 Estimated coefficients for the parametric techniques

Coeff. Eur003M Swap Curve

NS2004 SV2004 dRF2004 NS2016 SV2016 dRF2016

β0 0.051205 0.049531 0.023256 0.019413 0.017525 0.023256

β1 −0.029522 −0.028132 −0.024378 −0.022607 −0.021132 −0.024378

β2 −0.029323 0.00111 −17.834098 −0.029211 −0.006591 −17.83410

β3 – −0.05842 17.874810 – −0.053531 17.87481

β4 – – −0.157251 – – −0.157251

τ1 2.471681 0.740510 0.230981 3.4671849 0.556850 0.230980

τ2 – 1.687435 0.232039 – 2.3897270 0.232039

τ3 – – 1.048890 – – 1.048890

R2 0.998042 0.997884 0.998594 0.986832 0.992417 0.314388

RMSE 0.000423 0.000467 0.000408 0.000701 0.000564 0.005736

Coeff. USD003M Swap Curve

NS2004 SV2004 dRF2004 NS2016 SV2016 dRF2016

β0 0.060161 0.0606401 0.023256 0.028773 0.027744 0.023256

β1 −0.035384 −0.0368601 −0.024378 −0.020578 −0.020762 −0.024378

β2 0.003668 −0.0145134 −17.83410 0.002111 0.105636 −17.834098

β3 – −0.0512392 17.87481 – −0.122490 17.874810

β4 – – −0.157251 – – −0.157251

τ1 4.034936 0.5146503 0.230981 2.641094 0.583050 0.230981

τ2 – 2.0924553 0.232039 0.704717 0.232039

τ3 – – 1.048890 – – 1.048890

R2 0.994607 0.9996403 −93.09985 0.965927 0.981953 −397.747844

RMSE 0.000905 0.0002480 0.1355922 0.001413 0.001091 0.173339

Table 22.3 RBF nets settings for the observed yield curves

Eur003MOld Eur003M USD003MOld USD003M

Max Nr Neur. 100 100 100 100

RMSE 7.32293E-11 1.30206E-10 9.38584E-11 1.96893E-10

22.4 Conclusion

In this work we performed a comparison between parametric techniques and RBF
networks to fit the yield curve under conditions of stress. The issue is of actual
interest in this challenging time of high volatility and negative interest rates, because
the yield curve is an important tool in finance, especially for assets pricing, financial
risk management and portfolio allocation. We therefore investigated the capability
of various methods to interpolate the yield curve under such extreme conditions of
instability; to such aim, we considered the Euro Swap Euribor (EUR003M), and the
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USDollar Swap (USD003M) curves, on two different release dates (December 30th
2004 and 2016), corresponding to very different market situations, and we examined
the various ability of the above–cited methods in fitting them. The results confirm
that RBF nets can reach very satisfying results to manage anomalies such as extreme
humps or negative interest rates. Besides, our opinion is that the results pave the way
to a research trail more focused on the use of Machine Learning methods to provide
a integrate model of in–sample fitting and forecasting that actually is under the study
of our research group.
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Chapter 23
New Challenges in Pension Industry:
Proposals of Personal Pension Products

Valeria D’Amato, Emilia Di Lorenzo and Marilena Sibillo

Abstract Within the current post-crisis economic environment, characterized by
low growth and low interest rates, retirement and long-term saving represent a cru-
cial challenge. Furthermore, the expansion of life expectancies modifies the demand
of pension products and insurers and pension providers have to guarantee the sus-
tainability and competitiveness of their products, in spite of the economic stagnation.
Within the context of the personal pension products, in the paper we propose a new
contract with profit participation, which consists in a deferred life annuity with vari-
able benefits changing according with two dynamic financial elements: the periodic
financial result of the invested fund year by year and the first order financial technical
base checked at the beginning of predefined intervals all along the contract life. A
numerical implementation explains the forecasted trend of the inflows and outflows
connected to the contract under financial and demographic stochastic assumptions.

Keywords Pension · Variable annuity · Participating profit

23.1 Introduction

An ever-growing interest in the development of funded private pension plans can be
observed in every advanced economy, where private pension systems are regarded
as tools for economic development, as well as means to fuel social security systems
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(cf. [12]). This is because funded private pension plans can easily represent a funding
source for enterprises and long-term investments (cf. [2]). As highlighted in [2],
then, pension funds can be seen as meaningful tools to the aim of funding productive
enterprises. This can be achieved, for example, by steering pension funds investments
toward listed companies, thereby triggering positive effects not only with regards
to the individual enterprises (both in terms of funding and of control on strategic
decisions), but also the overall dynamics and functioning of the market.

It is no surprise, therefore, that pension funds in Italy, among other investors
(including private ones), have recently been granted exemption from income taxes,
should they operate medium-and long-term investments in the real economy
(cf. [15]).

Private pension plans’ strategic role, therefore, appears to have a two-fold value:
these represent, in fact, a driving force for enterprises activities, on the one hand, and
an effective means to safeguard households investments, on the other. The central-
ity of these aspects has systematically been acknowledged by European authorities;
among the various initiatives on the matter, the European Insurance and Occupa-
tional Pension Authority (EIOPA) promoted a consultation, taking place in October
2016, dealing with personal pension products (PPP), aiming at triggering an inte-
gration process among member states (cf. [8]). This consultation, which academics,
individuals, specialists and consumers associations took place in, attempted to over-
come PPPs normative and contractual fragmentation, as these products constitute the
core structure of the third pension pillar. Additionally, it endeavored to lay down the
foundation of a discussion platform concerned with Europe’s pension future.

Public pension systems’ fragility, coupledwith elderly populations growing needs
in member States, as well as the prolonged episode of low interest rates and low eco-
nomic growth (cf. [9]), let EIOPA to shelve the Pan-European Personal Pension
product (PEPP), namely a plan for individual pension products, standardized and
homogenized at a European level. These products ought to entail common funds,
policies and other financial products, which can be defined in relation to consumers
pension needs and their risk profile. One of the foreseen advantages protecting indi-
vidual consumers is represented by a significant reduction of costs connected with
the sales network; from this perspective, it can be argued that the ambitious aim of
amalgamating retirement and long-term saving may well revivify capitals market,
even thought the harmonization of fiscal aspects still represents the Achilles heel of
the entire project.

The European Commission nonetheless highly prioritized the debate on individ-
ual pension products in 2017, aiming to strike a balance between consumer protec-
tion and a good uptake at EU level of the PEPP product, as illustrated as part of
the Update by the European Commission in [11]. The Organization for Economic
Co-Operation and Development (OECD) estimated private pension assets to have
globally exceeded USD 38 trillion in 2015 (cf. [11]); furthermore, returns were posi-
tive in most countries. Yet, despite all this, the number of pension funds has sensibly
decreased in several countries, probably due to competition reasons. An investigation
led by the OECD in 20 countries, where assets invested by pension funds represent
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65% of global pension assets (cf. [12]) revealed that there is no significant correlation
between the number of pension funds and the real net rate of returns.

The interest of the market in retirement and annuity products in the recent years
(see [13, 17]) is reflected in the current actuarial literature, where several products
are proposed focusing on specific guarantee structures.

Among the various proposals, we recall the contractual formswithminimumguar-
anteed benefits (see, for example, [14]), the annuities with benefits linked to actual
mortality experience (see [16]), as well as the annuities with guaranteed minimum
benefits and participation in insurers’ surpluses (cf. [10]). Denuit et al. [4] propose
that annuitants bear the nondiversifiable mortality risk and successively (cf. [5]) they
develope this idea considering longevity-contingent deferred life annuities. Bravo et
al. [1] aim at sharing both longevity and investment risks.

In general the overall suggestions aims at designing products which include a risk
transfer system between annuitants and provider (cf. [3]). Within this framework an
interesting analysis is developed by Weal et al. (cf. [20]), who compare traditional
indexed annuities with annuities where the payout rates are linked to differences
between expected and actual mortality rates of the specific annuitants cohort.

The contribution we provide in this paper is framed in a life annuity market
experiencing at present new vivacity and increasing tangible and potential demand.
Starting from the consideration that the current financial context offers heavily low
interest rates, the life annuity market, as most of the financial activities personal-
saving oriented, is affected by the scanty desirability of its products. The guaranteed
interest rate, known as the first order technical financial base, is fixed at the issue time
and, due to the financial market present dynamics, has to be very low. Even in case of
profit sharing schemes (cf. [6, 7]), when the benefits due in case of life are linked to
the periodic financial result of the invested fund, the technical financial base applied
in the contract constitutes the hard tie. The low level of the guaranteed interest rate is
actually a strong constraint in particular if it is highly probable an increasing trend,
as it seems currently possible. Even more meaningful this consideration is if you
take into account the marked high length in average of the life annuity contracts.

In light of the above mentioned recalls, we introduce an innovative structure,
against the proposals provided in the current literature, within the life annuity con-
tractual scheme, consisting of a kind of dynamic profit participation. The point is
to remove the hypotheses that the first order technical financial base is fixed at the
issue time and to allow it to increase if the financial general conditions so allow.
It consists in a system of periodic upwards adjustments of the first order financial
technical base, structured considering the prudential point of view of the pension
provider together with the insureds chance of benefiting by settled better market
conditions. We propose a variable deferred life annuity, where the structure of the
profit participation is based on the periodic financial result of the invested fund year
by year as well as on periodic adjustments according to the spreads between the cur-
rent trend of the first order financial base and the financial guarantees (planned at the
issue time). This contractual scheme allows providers’ sustainability and insureds’
profitability.
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In this paper, in Sect. 23.2 the new product is outlined and its mathematical struc-
ture is presented. In Sect. 23.3, after a quantitative representation of the financial and
demographic scenario, we investigates a case study, providing a numerical imple-
mentation in order to forecast the behavior of inflows and outflows related to the
contract.

23.2 The Contract. Profit Participation Annuities
with Periodic Adjusted Guaranties

The new contract we are proposing is placed within the framework of the life insur-
ance products with profit participation [7]. It consists in a variable deferred life
annuity issued on an individual aged x, with constant premiums paid at most all
along the deferment period; the benefits are due to the insured after the deferment
interval in case of life.

We suppose the benefits are variable according with two dynamic financial ele-
ments: they are linked to the periodic financial result of the invested fund year by
year and can be also adjusted at the beginning of predefined intervals according to
the trend the first order financial base is following with respect to that one guaranteed
to the insured at the issue time.

Indicating by d the deferment period, p the constant time interval between two
guarantee adjustments and T the number of periods p constituting the whole ben-
efit payment length, the following financial equivalence describing the contractual
equilibrium holds:

P

{
E

τ∑
h=0

v(0, h)h px

}
= E

⎧⎨
⎩

T−1∑
h=0

B̃h

d+(h+1)p∑
k=d+hp+1

v(0, h)h px

⎫⎬
⎭ (23.1)

where P is the level premium paid at the beginning of each year until the time τ ,
τ < d, and B̃h the annual variable installment paid at the end of each year (h = d +
1, d + 2, ω − x − 1), both due in case of life of the insured; v(0, h) is the stochastic
value in t = 0 of a monetary unit in t .

In the benefit settlement we insert an embedded option involving the insureds
participation in the fund annual financial profit, if, after paying the fund management
expenses, it is strictly positive and according to a predefined participation rate. The
profit rate assignable to the insured is that one arising from the difference between
the Cash Net Profit Rate (CNP) and the first order technical base, guaranteed inside
the contract to the insured, both referred to the same payment period of one year. The
rate CNP of the fund in which the premiums are invested is the profit rate calculated
year by year on the cash-flow representing the increase in the net assets from the
operations attributable to the contract-holders (cf. [7]).
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The new characteristic we insert in the contract is added to the aim of relaxing the
strong conditioning due to the setting of the first order technical financial base at the
issue time. Especially when the interest rates are very low, the competitiveness of the
life product can be strongly improved making the guaranteed interest rate flexible,
able to match the interest rate market behavior. This aspect is particularly relevant if
the interest rates are forecasted on an upward trend and in all the cases, as the life
products mainly are, characterized by long durations. In light of these considerations,
we assume that the insurer will be able to calibrate the profit participation of the
insureds also taking into account the trend of the current first order technical financial
base. We pose he can resort to these adjustments at the beginning of each of the T
periods of p years each.

We indicate by ρ the participation rate and by i the initial first order annual
technical base, fixed at the issue time. The benefit B̃h paid to the insured at the end
of the h-th year, is given by:

B̃h = Bh + [ρ(CN Ph − ih + sh)
+]

⎡
⎣τ−1∑

j=0

Pj (1 + i)h− j

⎤
⎦ 1T≤t<|K (x)≥t . (23.2)

In formula (23.2), sh is the spread the insurer assesses at the beginning of each of
the T periods of p years, suitably quantified according to the annual interest rates
i j , j = d, d + p, d + 2p, . . . , d + (T − 1)p, the first order financial technical base
detectable at the beginning of each period p.We suppose that sh is constant during the
period p. The indicator function takes the value 1 if the event at subscript happens,
otherwise takes the value 0, K (x) is the random curtate lifetime of an annuitant aged
x at the issue time, (CN Ph − ih + sh)+ is themaximum between (CN Ph − ih + sh)
and 0.

23.3 Numerical Application and Forecasting Evidences

The goal of the section is to present the empirical outcomes of the model implemen-
tation.

In order to define the contract financial details, we need to consider two important
issues in the riskmanagement evaluation: on the one hand the demographic projection
and on the other hand the financial forecasting.

23.3.1 The Demographic Scenario

About the stochastic mortality rates, we refer to a Poisson Lee Carter model, which
works well in terms of goodness of fitting according to [18]. The Lee-Carter model
in the Poisson setting is characterized by the following expressions:
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Dxt ≈ Poisson(Extμxt ) (23.3)

where the force of mortality is assumed to have the log-bilinear form:

ln(μxt ) = αx + βxkt . (23.4)

Ext represents the exposures to the risk of death (in other words, the number of
person years from which Dxt occurs), αx means the main age effect, kt maps out the
mortality changes as function of time,βx represents the impact of kt on the population
(cf. [18]). They are subject to the constraints:

∑
t

kt = 0;
∑
x

βx = 1.

The dataset is represented by Male US population collected by 1985–2007, related
to an age range from 0 to 110. We assume the inception date in January 2017, the
expiration date in January 2037.

Following [18], we fit the model by a likelihood methodology. The resulting
parameter estimates are shown in Fig. 23.1. The diagnostics of residuals is illustrated
by Fig. 23.2 and it looks realistically random, showing a good model performance.

Figure23.3 is referred to the parameter forecasts and in particular to the stochastic
time-varying parameter kt , which depicts mortality changes over times (cf. [18]),
projected till the expiration date, to the aim of getting the mortality rates.

23.3.2 The Financial Scenario

As regards the financial scenario, we describe either the future evolution of the
technical base either the periodic financial result of the invested fund by means of
two suitable stochastic models. Starting from the first one, in order to study the
investment fund performance to the aim of forecasting the profit sharing behavior,
we need to estimate the future evolution of the rate of return. Our example is based
on the choice of a balanced investment, where the equity component is represented
by 30% on US market and fixed-income securities are divided into 40% Treasury
bills and 30% Treasury bonds. Different investment strategies would imply different
stochastic description and obviously different financial outcomes. In this specific
case we choose to implement a Vasicek model, described by the following equation:

drt = a(b − rt )dt + σdWt (23.5)

where rt is the interest rate, a the speed of reversion, b the long term mean, σ the
instantaneous volatility, Wt a Wiener process (cf. [19]).
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The parameter estimation has been performed on the dataset composed by time
series from 1928 to 2006 (http://www.stern.nyu.edu/_adamodar/New_Home_Page/
data.html).

In Fig. 23.4 the forecasted trend is shown, fixing the issue time at the beginning
of 2017.

Figure23.5 provides a comparison between the active funds related to contract
duration; the dashed one referred to the guaranteed rate at level of i = 0.015 and the
black one to the forecasted rates. The bandwidth between the two cases highlights
the different trends.

Passing to the financial technical base projection, we implement a CIR model,
described by the following equation:

drt = a(b − rt )dt + σ
√
rtdWt (23.6)

where the parameters has the same meaning as in formula (23.5).
In this case, the parameter estimation has been developed on the dataset of Trea-

sury bonds downloaded by Federal Reserve (www.fedgov.org) collected from 1980
(January) to 2016 (December). More specifically Fig. 23.6 presents the outcomes,
also in this case fixing the initial time in t = 0.

23.3.3 Experiment Results

We consider the case of a temporary deferred life annuity issued on a policyholder
aged x = 60, the deferment period being equal to 5 years. The insurer promises a
guaranteed rate (financial first order technical base) i = 0.015 and the guaranteed
benefit payable at the end of each year in case of the insureds life is equal to 1.
The contract, as described in Sect. 23.2, is based on the variability of the benefits
according to two financial elements: the profit participation of the insured year by
year and the improvement, if it happens, of the financial technical base.

We pose to proceed with the adjustment every 3 years starting from the end of
the deferment, that is year 5. In our exemplification, we pose to fix the new financial
technical base as the average of the interest rates referred to the three years of interest.
The adjustment will be put into effect if this average is greater than the guaranteed
one (1.5%).

Figure23.6 presents the benefits outlook all along the contract duration. The ben-
efits vary according to the profit participation mechanism, as in formula 23.2, and
the guaranteed interest rate adjustment at periods 5, 8, 11, 14, 17.

The plot in Fig. 23.6 clearly puts in evidence the profitability of the proposed con-
tract in particular in the insured’s perspective. The policyholder can take advantage
not only from the good behavior of the invested fund, but also from the increasing
trend of the financial technical base. This virtuous mechanism happens by means of
a level premium of 2.61, calculated applying formula (23.1) to the contract structure,
paid at the beginning of each year during the deferment period.

http://www.stern.nyu.edu/_adamodar/New_Home_Page/data.html
http://www.stern.nyu.edu/_adamodar/New_Home_Page/data.html
www.fedgov.org
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Fig. 23.4 Active portfolio funds, contract duration

Fig. 23.5 Financial technical base forecasting, CIR model

Fig. 23.6 Insured’s inflow performance forecasting
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23.4 Conclusions

In the paper we proposed a personal pension product, which consists in a variable
deferred life annuity with profit participation and improvable guarantees.

The benefits are linked to the periodic financial result of the invested fund and are
calculated year by year at the payment time.Moreover, at the beginning of predefined
intervals, they also can vary according to the dynamics in time of the first order
financial base, with respect to that one guaranteed to the insured at the issue time.
In the contract the first order technical financial base set at the issue time constitutes
the floor of the yield assigned to the insured. Such a contract involves embedded
options with expiry dates at each benefits payment time for what concerns the profit
participation and at the beginning of each predefined period for what concerns the
adjustable guarantees.

We simulated the cash flows of the proposed Personal Pension Product (PPP), to
show its performance under an illustrative scenario of the fund inwhich the premiums
are invested, according to a specific investment policy.

Future research could explore the effectiveness of the calibration between the
product competitiveness, due to the additional participating benefits, and the con-
sumers’ perception of the profitability, due, among others, to costs, returns and taxa-
tion, as these are filtered according to the personal risk aversion attitude and collective
behavior in financial/insurance markets.
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Chapter 24
A PSO-Based Framework for Nonsmooth
Portfolio Selection Problems

Marco Corazza, Giacomo di Tollo, Giovanni Fasano and Raffaele Pesenti

Abstract We propose a Particle Swarm Optimization (PSO) based scheme for the
solution of a mixed-integer nonsmooth portfolio selection problem. To this end, we
first reformulate the portfolio selection problem as an unconstrained optimization
problem by adopting an exact penalty method. Then, we use PSO to manage both
the optimization of the objective function and the minimization of all the constraints
violations. In this context we introduce and test a novel approach that adaptively
updates the penalty parameters. Also, we introduce a technique for the refinement
of the solutions provided by the PSO to cope with the mixed-integer framework.

Keywords Portfolio selection problems · Particle swarm optimization
Mixed-integer nonlinear programming

24.1 Introduction

Particle Swarm Optimization (PSO) is an iterative bio-inspired population-based
metaheuristic for the solution of unconstrained global optimization problems.
Recently, this metaheuristic has been applied to the unconstrained reformulation of
a realistic portfolio selection problem [3]. This portfolio selection problem is N P-
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hard, nonconvex, nondifferentiable and mixed-integer. Since exact methods could be
extremely time-consuming for its solution, a PSO approach was proposed for practi-
cal purposes. This problem was initially reformulated as an unconstrained optimiza-
tion problem by adopting an exact penalty method where all the penalty parameters
were constant. Then, PSO was used to both optimize the objective function and
minimize all the constraints violations.

On this guideline, in this paper we propose a novel approach that adaptively
updates the penalty parameters. We also introduce a technique for the refinement of
the solution provided by the PSO to cope with the mixed-integer framework. Results
from numerical experiences show that this solution approach seems preferable, with
respect to a more standard one from the literature. In particular, the latter conclusion
holds for costly problems, where a reduced number of PSO iterations is allowed and
the refinement technique proved to have a terrific impact.

The remainder of this paper is organized as follows. In the next section, we
introduce the portfolio selection problem we deal with. In Sect. 24.3, we recall the
basics of standard PSO. In Sect. 24.4, we first reformulate the portfolio selection
problem in terms of an unconstrained nonsmooth optimization problem, then we
present our PSO approach. In Sect. 24.5, we provide some computational results
coming from a series of applications to the Italian stock market. Finally, in Sect. 24.6
we draw some conclusions.

24.2 The Portfolio Selection Problem

Making an effective portfolio selection in real stock markets is not an easy task,
for the following reasons. It is necessary to assess the risk by measures that satisfy
appropriate theoretical properties, are able to deal with the non-normal return dis-
tributions characterizing real stock markets and are parameterized with respect to
the investor’s risk attitude. In addition, it is necessary to take into account several
practices and rules of the portfolio management industry.

To deal with the above issues, we consider the portfolio selection problem pro-
posed by Corazza et al. in [3]. In this problem, a coherent risk measure based on the
combination of lower and upper moments of different orders of the portfolio return
distribution is considered [2]. This measure both manages non-Gaussian distribu-
tions of asset returns, and takes into account the risk contained in the left tail of the
distributions and the chance contained in the right one; finally, it is parameterized
to model different investors’ risk attitudes. The problem in [3] imposes bounds on
the minimum and the maximum number of stocks to trade, and on the minimum and
the maximum capital percentage to invest in each asset. This allows to easily model
some of the most common professional practices and rules. The overall portfolio
selection problem is formulated as follows:
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min
x,z

ρa,p(r) := a‖(r − E[r ])+‖1 + (1 − a)‖(r − E[r ])−‖p − E[r ] (24.1a)

s.t. E[r ] ≥ re (24.1b)
N∑

i=1

xi = 1 (24.1c)

Kd ≤
N∑

i=1

zi ≤ Ku (24.1d)

zid ≤ xi ≤ ziu, i = 1, . . . , N (24.1e)

zi ∈ {0, 1}, i = 1, . . . , N (24.1f)

where: xi ∈ IR, for i = 1, . . . , N , is the unknown percentage of capital to invest
in the i-th asset of the portfolio; N is the number of assets; zi ∈ {0, 1}, for i =
1, . . . , N , is the binary variable such that zi = 1 if the i-th asset is included in
the portfolio, zi = 0 otherwise; r = ∑N

i=1 xiri is the random variable indicating
the portfolio percentage rate of return, in which ri , for i = 1, . . . , N , is a random
parameter indicating the percentage rate of return of the i-th asset; ρa,p(r) is a
coherent risk measure associated to r , being a ∈ [0, 1] and p ∈ [1,+∞) parameters
used to model different investor’s risk attitudes; E[·] indicates the expected value
of its argument; y− := max{0,−y} and y+ := (−y)−; re is the minimum expected
percentage rate of return of the portfolio desired by the investor; Kd and Ku are
the minimum and the maximum numbers of stocks to trade, respectively; d and u
are the minimum and the maximum percentage of capital to invest in each asset,
respectively.

Note that the above nonconvex, nondifferentiable and mixed-integer portfolio
selection problem (24.1a)–(24.1f) can be proven to be N P-hard.

24.3 Basics on Standard PSO

PSO is a bio-inspired methodology for the solution of global optimization prob-
lems [4], which iteratively tries to improve swarm candidate solutions, the so-called
particles. Several PSO variants are proposed in the literature, both for unconstrained
and constrained [1, 7] problems. Let P be the size of the swarm and f : IRn → IR
be the function to minimize such that for each ȳ ∈ IRn the corresponding level
set of f

L f (ȳ) := {y ∈ IRn : f (y) ≤ f (ȳ)}

is compact. For each particle j of the swarm, the basic PSO iteration k ≥ 0 yields

ξ k+1
j = ξ k

j + νk+1
j , j = 1, . . . , P,
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where ξ k
j ∈ IRn is the current position of the j-th particle (i.e., the j-th candidate

solution in the language of optimization), while νk+1
j ∈ IRn is the current velocity of

particle j (i.e., the search direction). Thus, ξ k+1
j will be the new position of particle

j in the next iteration.
Unlike the standard gradient based methods, the vector νk+1

j is not necessarily a
descent direction for function f (y) at ξ k

j . This suggests that at each step k the j-th
particle might not provide an iterate which improves the objective function value.
Indeed, the direction νk+1

j is a cone combination of the vector νk
j , which represents

the inertia of particle j to modify its trajectory, with other two vectors. The latter
two vectors affect the trajectory of the j-th particle exploiting the best solutions so
far found by particle j and by the whole swarm, respectively. In particular, we have

νk+1
j = νk

j + αk
j ⊗ (pkj − ξ k

j ) + βk
j ⊗ (pkg − ξ k

j ), k ≥ 0, (24.2)

where αk
j , β

k
j ∈ IRn are positive vectors, the symbol ‘⊗’ indicates the entry-by-entry

product between vectors, and the vector pkj , respectively pkg , is the best solution so
far found by particle j , respectively by the swarm, i.e.

pkj ∈ arg min
0≤h≤k

{
f (ξ h

j )
}
, j = 1, . . . , P and pkg ∈ arg min

0≤h≤k
j=1,...,P

{
f (ξ h

j )
}
.

In (24.2), the parameters αk
j (cognitive parameter) and βk

j (social parameter),

respectively consider the contribution to νk+1
j from the history of the j-th particle

(i.e. pkj − ξ k
j ), and from the history of the entire swarm (i.e. pkg − ξ k

j ). Their general
expressions in the literature are respectively

αk
j = ckjr

k
1 , rk1 ∈ U [0, 1]n, and βk

j = ckgr
k
2 , rk2 ∈ U [0, 1], k = 0, 1, . . . ,

being U [0, 1] the uniform distribution with n entries between 0 and 1, and typically
ckj , c

k
g ∈ (0, 2.5]. In this paper, as proposed in [5], we consider a slightlymore general

reformulation of PSO iteration for particle j ∈ {1, . . . , P}, where at any step k ≥ 0:

{
νk+1
j = χ k

[
wkνk

j + αk
j ⊗ (pkj − ξ k

j ) + βk
j ⊗ (pkg − ξ k

j )
]
,

ξ k+1
j = ξ k

j + νk+1
j ,

being χ k the so called constriction coefficient, and wk the inertia coefficient.

24.4 A Nonsmooth Portfolio Reformulation

Given problem (24.1), we consider the following auxiliary problem:
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min
x∈IRN , z∈IRN

P(x, z; ε), (24.3)

where

P(x, z; ε) := ρa,p(r) + 1

ε0

[
ε1 max

{
0, re −

N∑

i=1

r̂i xi

}
+ ε2

∣∣∣∣∣

N∑

i=1

xi − 1

∣∣∣∣∣

+ ε3 max

{
0, Kd −

N∑

i=1

zi

}
+ ε4 max

{
0,

N∑

i=1

zi − Ku

}

+ ε5

N∑

i=1

max {0, zid − xi } + ε6

N∑

i=1

max {0, xi − ziu}

+ ε7

N∑

i=1

|zi (1 − zi )|
]

r̂i = E[ri ] and ε = (ε0, ε1, . . . , ε7)
T > 0 is the vector of the penalty parameters.

Problem (24.3) can be seen as an unconstrained reformulation of problem (24.1).
The two problems present to large extent equivalent solutions, given an oppor-
tune choice of the vector ε (see [3]). In particular, note that the terms zi (1 − zi )
allow P(x, z; ε) to be continuous and represent a reformulation of the binary con-
straints (24.1f). Indeed, the condition zi ∈ {0, 1} can be expressed as zi (1 − zi ) = 0,
for i = 1, . . . , N .

In the next subsections, we first use PSO to approximately solve the prob-
lem (24.3), adaptively updating the values of the penalty vector ε. Then, we use
a procedure to refine the obtained approximate solution.

24.4.1 Penalty Vector Settings

In this subsection we describe our approach that adaptively updates the penalty
parameter vector ε during the solution of the equivalent portfolio problem (24.3).
Within this approach, vector ε is possibly updated during some iterations of PSO.

Hereinafter, we use the symbol εk to indicate the eight entries of vector ε at
iteration k. In addition, since the problem (24.3) has 2N unknowns (namely the
vectors x and z), we represent the best position of PSO particle pkg as

pkg =
(
xkg
zkg

)
.

For k = 0 the initial parameters vector ε0 is set as
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ε0 = (
10−4 1 1 1 1 1 1 1

)T
.

The values of the entries ε0i , i = 1, . . . , 7 are chosen to initially impose an equal
penalization for all constraints violations. Differently, the value of ε00 is chosen much
smaller than all the constraints violations, in order to initially privilege feasible
solutions over optimal ones.

For k ≥ 1,weupdate vector εk accordingwith the following rules.Weupdate εk0 by
checking for a possible decrease of the value of ρa,p(rkg ), where r

k
g = ∑N

i=1

(
xkg

)
i
r̂i .

We update εki , i = 1, . . . , 7, by checking for the violation of the constraints:

v1(xkg, z
k
g) := max

{
0, re −

N∑

i=1

r̂i
(
xkg

)
i

}

v2(xkg, z
k
g) := ∣∣1T xkg − 1

∣∣
v3(xkg, z

k
g) := max{0, Kd − 1T zkg}

v4(xkg, z
k
g) := max{0, 1T zkg − Ku}

v5(xkg, z
k
g) :=

N∑

i=1

max
{
0,

(
zkg

)
i
d − (

xkg
)
i

}

v6(xkg, z
k
g) :=

N∑

i=1

max
{
0,

(
xkg

)
i
− (

zkg
)
i
u
}

v7(xkg, z
k
g) :=

N∑

i=1

∣∣∣
(
zkg

)
i

(
1 − (

zkg
)
i

)∣∣∣ .

Specifically, we adopt the following practical strategy:

• every 20 iterations of PSO we update the entry εk+1
0 of εk+1 as follows:

εk+1
0 =

⎧
⎨

⎩

min
{
3εk0, 1

}
if ρa,p(rkg ) ≥ ρa,p(rk−1

g )

max
{
0.6εk0, 10

−15
}

if ρa,p(rkg ) < 0.90 · ρa,p(rk−1
g )

εk0 otherwise;
(24.4)

• every 40 iterations of PSO we update the entries εk+1
i , i = 1, . . . , 7, of εk+1 as

follows:

εk+1
i =

⎧
⎨

⎩

min
{
2εki , 10

4
}

if vi (xkg, z
k
g) > 0.95 · vi (xk−1

g , zk−1
g )

max
{
1
2ε

k
i , 10

−4
}

if vi (xkg, z
k
g) < 0.90 · vi (xk−1

g , zk−1
g )

εki otherwise.
(24.5)

The choice of the coefficients in (24.4) and (24.5) is motivated by efficiency rea-
sons, and is obtained after a coarse initial tuning over a reference portfolio selection
instances.

Roughly speaking, relation (24.4) imposes that when the risk functional ρa,p(rkg )

increases, εk+1
0 must increase, too. This fact in turn implies that constraints’ vio-
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lations are proportionally less penalized. With a similar reasoning, when ρa,p(rkg )

decreases then also εk+1
0 is forced to decrease, in order to improve feasibility. As

regards (24.5), if the i-th violation vi (xkg, z
k
g) significantly increases with respect to

vi (xk−1
g , zk−1

g ) (i.e. we are possibly pursuing optimality while worsening feasibility),

then the corresponding penalty parameter εk+1
i is increased accordingly. Conversely,

with an opposite rationale, in case we observe a relevant improvement of feasibility
(i.e. vi (xkg, z

k
g) 	 vi (xk−1

g , zk−1
g )), then the parameter εk+1

i is decreased.

24.4.2 Refinement of the PSO Solution

In this subsection we present the last step of our solution approach. It is a refinement
technique of the solution of the optimization problem (24.3) provided by PSO.

With reference to the constraints (24.1e) and (24.1f), the solution given by PSO
generally shows slight infeasibility. For instance, the value ẑi associated to the i-
th stock included in the portfolio may not be 1 but very close to 1. Such small
approximations do not invalidate the solution x̂ , but they risk to make it unusable for
practical purposes. For this reason, we refine the solution (x̂, ẑ) of problem (24.3)
provided by PSO, by applying the following “feasibilization” procedure:

1. Determine the refined z̃i as: z̃i =
{
0 if x̂i ∈ (−∞, d) ∪ (u,+∞)

1 otherwise

2. Determine the refined x̃i as: x̃i = x̂i z̃i∑N
i=1 x̂i z̃i

.

This refinement procedure permits x̃i and z̃i to satisfy, not only (24.1e) and (24.1f),
but also the constraint (24.1c). On the contrary, it does not guarantee the satisfaction
of constraints (24.1b) and (24.1d). However, our experience, coming from several
applications, suggests that the latter constraints are generally satisfied. Note also
that, generally, the refined solution (x̃, z̃) is characterized by a fitness value which is
significantly lower than the one characterizing the solution obtained by PSO before
the refinement.

24.5 Numerical Experiences

In this section we compare the solution of the optimization problem (24.3), provided
by the standard PSO, with the solution of the same problem provided by our PSO
based framework. The purpose of this comparison is twofold: first, to analyze the
differences (if any) between the behaviours over iterations of the fitness function
P(·, ·; ·) and of the risk measure ρa,p(·); then, to investigate the main characteristics
of the selected portfolios.

In the numerical experiences, in accordance with [2, 3], we approximate the
expected values that appear in the objective function (24.1a) of our portfolio selection
problem (24.1), with the associated sample means over T periods:
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E[ri ] ≈ 1

T

T∑

t=1

ri,t .

We consider the forty assets which compose the Italian stock index FTSE MIB. In
particular, we use the time series of the daily closing returns from November 14,
2016 to April 28, 2017. Furthermore, we use the following parameter settings for
problem (24.3): a = 0.5, p = 2, re ∈ {0.02500%, 0.04375%, 0.06250%, 0.08125%,
0.10000%}, d = 0, u = 1 and (Kd , Ku) ∈ {(11, 30), (16, 25), (19, 21)}, for a total
of 15 different settings. Note that the values of re ensure that a feasible solution exists
for the problem (24.3), and that the values of the other parameters are consistent with
those usually suggested in the literature. In particular, as regards our implementation
of PSO, we set P = 160, that is the number of particles doubles the number of vari-
ables.We arrested PSO iterations at just the 150th iteration, to show the effectiveness
of our implementation of PSO since the early iterations. Finally, given the random
initialization of particles positions, we compute average results over 100 runs, for
each considered parameter setting.

Hereinafter, we use the following terminology. A portfolio is the best solution
detected by any member of a swarm; an optimal portfolio is the best solution
detected by a swarm; a global optimal portfolio is the best solution detected by
all the swarms with the same parameter setting during the different runs. Thus, since
any swarm selects 80 portfolios, and we consider 100 runs for each of the 15 dif-
ferent parameter settings, our approach produces 80 · 100 · 15 = 120.000 portfolios,
100 · 15 = 1.500 optimal portfolios and 15 global optimal portfolios.

Figure24.1 represents the typical behaviours over iterations of the fitness func-
tions and of the risk measures of the optimal portfolio. In particular, it is related to
the setting re = 0.10000% and (Kd , Ku) = (11, 30). In the upper panel, the fitness
functions provided by standard PSO (continuous line) and by our implementation
(dashed line) are represented; in the lower panel, the risk measure provided by stan-
dard PSO (continuous line) and by our implementation (dashed line) are represented.
Figure24.1 suggests that, since the early iterations, the optimal portfolio fitness func-
tion values provided by our implementation of PSO decrease significantly faster
(apart from few exceptions) than the corresponding ones produced by standard PSO.
We believe that this indicates the effectiveness of the dynamic management of the
penalty parameters in our framework. On the other hand, there is not such a strong
difference in terms of the optimal portfolio risk measures. Indeed, the best portfolio
risk measures given by our implementation are comparable with the corresponding
ones produced by standard PSO. This is consistent with the fact that, unlike the stan-
dard PSO, our solution approach has been developed to pursue both feasibility and
optimality of the found portfolios.

Table24.1 presents some results relative to some selected portfolios. In particular,
columns 3 and 4 respectively report the value of the global optimal portfolio fitness
function before the refinement of the solution (PA), and after the refinement of the
solution (PB). Column 5 reports the value of the risk measure after the refinement of
the global optimal portfolio (ρB). Column 6 reports the number of stocks to trade.
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Table 24.1 Results concerning the main characteristics of the selected portfolios

re (%) (Kd , Ku) PA PB ρB # % >

(%)
% ≥
(%)

%F (%)

0.02500 (11, 20) 99.98767 0.00264 0.00264 19 72.00 72.00 100.00

(16, 25) 84.73256 0.00279 0.00279 23 71.00 71.00 100.00

(19, 21) 28731.29529 0.00288 0.00288 21 68.00 68.00 100.00

0.04375 (11, 20) 11898.72752 0.00254 0.00254 23 70.00 70.00 100.00

(16, 25) 11.34181 0.00212 0.00212 19 69.00 69.00 100.00

(19, 21) 361.94096 0.00279 0.00279 21 71.00 71.00 100.00

0.06250 (11, 20) 14.90991 0.00254 0.00254 24 74.00 74.00 100.00

(16, 25) 57931.05767 0.00260 0.00260 19 69.00 69.00 100.00

(19, 21) 30.57782 0.00239 0.00239 21 68.00 68.00 100.00

0.08125 (11, 20) 9334.44747 0.00261 0.00261 19 70.00 70.00 100.00

(16, 25) 363.09568 0.00288 0.00288 21 66.00 66.00 100.00

(19, 21) 398.23171 0.00189 0.00189 19 75.00 75.00 100.00

0.10000 (11, 20) 44022.38778 0.00282 0.00282 21 70.00 70.00 100.00

(16, 25) 1001.45436 0.00239 0.00239 21 72.00 72.00 100.00

(19, 21) 44598.40436 0.00270 0.00270 19 70.00 70.00 100.00

Columns 7 and 8 report the percentages of iterations, calculated over all the runs for
all the portfolios, such that the value of the fitness function after the refinement in
Sect. 24.4.2 is better (% >) or not worse (% ≥) than the value of the same quantity
of the global optimal portfolio given by the standard PSO. Column 9 reports the
percentage of runs in which the optimal portfolios produced by our implementation
of PSO are feasible (%F ).

Generally, our implementation of PSO works significantly better than standard
PSO. Considering the behaviours of the fitness functions of the selected portfolios,
results in columns 7 and 8 highlight that to large extent the refinement of the solutions
in Sect. 24.4.2 is much effective. Moreover, the refinement procedure gives fitness
values for all the 15 global optimal portfolios (column 4) which are lower than the
corresponding values before the refinement procedure (column 3).

Then, note that for all the 15 global optimal portfolios the fact that PB (column
4) is equal to ρB (column 5) indicates that all the constraints are satisfied.

Finally, to further confirm the robustness and reliability of our approach, all
the 1500 optimal portfolios detected by our implementation of PSO are feasible
(column 9).



24 A PSO-Based Framework for Nonsmooth Portfolio Selection Problems 275

24.6 Final Remarks

In this paper we have proposed a novel PSO-based scheme, for the solution of an
unconstrained nonsmooth reformulation of a complex portfolio selection problem.
Our original portfolio problem is a nonconvex, nondifferentiable, mixed-integer and
N P-hard constrained optimization problem. The results we have obtained show that
the adaptive update of the penalty parameters can play an important role for PSO-
based solvers, when embedded within exact penalty frameworks.

In order to carefully detect features and drawbacks of our novel approach, in
future researches further investigations are necessary with respect to different risk
measures, constraints and data.
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Chapter 25
Can PSO Improve TA-Based Trading
Systems?

Marco Corazza, Francesca Parpinel and Claudio Pizzi

Abstract In this paper, we propose and apply a methodology to improve the per-
formances of trading systems based on Technical Indicators. As far as the method-
ology is concerned, we take into account a simple trading system and optimize its
parameters—namely, the various time window lengths—by themetaheuristic known
as Particle Swarm Optimization. The use of a metaheuristic is justified by the fact
that the involved optimization problem is complex (it is nonlinear, nondifferentiable
and integer). Therefore, the use of exact solution methods could be extremely time-
consuming for practical purposes. As regards the applications, we consider the daily
closing prices of eight important stocks of the Italian stock market from January 2,
2001, to April 28, 2017. Generally, the performances achieved by trading systems
with optimized parameters values are better than those with standard settings. This
indicates that parameter optimization can play an important role.

Keywords Technical analysis · Trading systems · Particle Swarm Optimization
FTSE MIB

25.1 Introduction

The investors working in financial market are always looking for the philosopher’s
stone: a model or an algorithm which converts the huge bulk of data available in
financial market to useful informations about future stock prices. As pointed out in
[7], an effective information extraction is necessary to forecast direction of asset
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prices and this is an important task because it means to be able to elaborate profitable
trading rules. The recurring financial crises clearly suggests us that none has found
the philosopher’s stone yet. Paper [4] presents a comprehensive review on evolu-
tionary computation in algorithmic trading. Among them we can find the Particle
Swarm Optimization (PSO) that, as well as Ant Colony Optimization, looks for the
optimum of a fitness function by mimic the behaviour of a large group of animals
or insects. Among the analysis method, they have identified three different analysis:
fundamental, blending and technical. On one hand, the aim of fundamental analysis
is to generate trading rules when the stock is undervalued or overvalued with respect
to its fundamental value. On the other hand, Technical Analysis (TA) considers Tech-
nical Indicators (TIs) that are built using the time series of stock prices and volumes.
Thus, the analysis of the patterns of sequence of prices or of volumes enables us to
generate trading rules [2]. The blending analysis combines both ones.

TIs, used typically in trend detection, are the Simple and Exponential Moving
Average (SMA and EMA, respectively), the Relative Strength Index (RSI), theMov-
ing Average Convergence/Divergence (MACD), and the Bollinger Bands (BB). All
TIs depend on one or more parameters that often assume default values. In this paper
we use the swarm intelligence approach to obtain optimal values for the parameters
that characterize four TIs that is SMA, RSI, MACD and BB. The next Section will
be devoted to introduce the methodology we will use, and in Sect. 25.3 we will show
some results of the implemented procedure. Finally, in Sect. 25.4 we draw some
conclusions.

25.2 Methodology

Our idea is to investigate the improvement of the performance of a trading system
based on TA tools. The evidence is that traders generally use a rule of thumbs to
choose TIs’ parameters, so we look for a procedure based on historical data, typ-
ically more objective. Here, we try to improve the performances of TA indicators
by optimizing their parametrizations. To this aim, we consider a simple trading sys-
tem constituted by four classical indicators, and optimize their parameters—namely,
the time-window lengths—by the metaheuristic known as PSO. The need to use a
metaheuristic as solver is justified by the fact that, as it will be explained later, the
involved optimization problem is “complex”. Therefore, the use of exact solution
methods could be extremely time-consuming for practical purposes. In the follow-
ing sections we will describe the simple trading system we will employ.

25.2.1 The Trading System

We consider a trading system based on the following TIs: EMA, RSI , MACD, and
BB. These indicators are so well-known among academicians and practitioners that
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there is no need to describe them (anyway, for details we suggest to refer to [6]).
Below, we first present four decisional rules based on these indicators, each of them
providing one trading signal. In particular, the trading signals may be: “−1”, namely
“Sell or stay short in the market”; “0”, namely “Stay out from the market”; “+1”,
namely “Buy or stay long in the market”. Then, we propose how to aggregate such
four trading signals in order to obtain a single operational one.

Now, let us consider as trading period the discrete time interval t = 1, . . . , T > 1,
and let us assume that at time t = 1 each of the four trading signals is equal to 0.
From t = 2 to t = T , the four decisional rules are:

• the one based on EMA, with EMA f (·) a fast EMA and EMAs(·) a slow EMA:

signalEMA(t)=

⎧
⎪⎨

⎪⎩

−1 if EMA f (t)<EMAs(t)∧EMA f (t−1)≥EMAs(t−1)

+1 if EMA f (t)>EMAs(t)∧EMA f (t−1)≤EMAs(t−1);

signalEMA(t − 1) otherwise

• the one based on RSI :

signalRSI (t) =

⎧
⎪⎨

⎪⎩

−1 if RSI (t) > 70 ∧ RSI (t − 1) ≤ 70

+1 if RSI (t) < 30 ∧ RSI (t − 1) ≥ 30;

signalRSI (t − 1) otherwise

• the one based onMACD, where DL(·) and SL(·) are, respectively, theDifferential
Line and the Signal Line:

signalMACD(t) =

⎧
⎪⎨

⎪⎩

−1 if DL(t) < SL(t) ∧ DL(t − 1) ≥ SL(t − 1)

+1 if DL(t) > SL(t) ∧ DL(t − 1) ≤ SL(t − 1);

signalMACD(t − 1) otherwise

• the one based on BB, where P(·) is the closing price of the considered financial
asset, and BBL(·) and BBU (·) are, respectively, the Lower Bollinger Band and
Upper Bollinger Band:

signalBB(t) =

⎧
⎪⎨

⎪⎩

−1 if P(t) < BBU (t) ∧ P(t − 1) ≥ BBU (t − 1)

+1 if P(t) > BBL(t) ∧ P(t − 1) ≤ BBL(t − 1).

signalBB(t − 1) otherwise

We remember that any indicator, and consequently any decisional rule, depends
on a given parametrization. In particular, in the following we will indicate by w f

and ws , respectively, the parameters related to EMA f and to EMAs , by wRSI the
parameter related to RSI , bywsl ,wMACD,1 andwMACD,2 the three parameters related
to MACD, and by wBB the parameter related to BB. Moreover, we denote with ω
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the vector of all the parameters, that is ω = (wEMA f , wEMAs , wRSI , wsl , wMACD,1,

wMACD,2, wBB).
As regards the definition of one operational trading signal,we propose to aggregate

the trading signals coming from the four decisional rules as follows:

signal(t) = sign(signalEMA(t) + signalRSI (t) + signalMACD(t) + signalBB(t)),

where sign(·) is the function signum. It is easy to prove that if three or all the decisional
rules give the same trading signal, then the single operational trading signal is equal to
it; it is also easy to prove that if two decisional rules provide the same trading signal
and the other two decisional rules provide different trading signals, also between
them, then the single operational trading signal is equal to the one of the two former
decisional rules.

25.2.2 The Constrained Optimization Problem

There are severalways bywhichwe canmeasure the performance of a trading system.
In this paper we employ a simple and intuitive measure, that is the net capital at the
end of the trading period, C(T ), where “net” means that the transaction costs are
explicitly taken into account.

To determine C(T ), first, let us indicate by δ the transaction costs expressed in
percentages, and define the net rate of return obtained by the trading system from
t − 1 to t as follows:

e(t) = signal(t − 1) ln

(
P(t)

P(t − 1)

)

− δ |signal(t) − signal(t − 1)| , t = 2, . . . , T ;

then, let us specify as follows the equity line produced by the trading system:

C(t) = C(t − 1)[1 + e(t)], t = 2, . . . , T ,

with C(1) a fixed amount.
At this point we are able to formalize the constrained optimization problem in the

following way:

max
ω

C(T )

s.t.

⎧
⎪⎨

⎪⎩

wEMA f < wEMAs

wsl < wMACD,1 < wMACD,2

wEMA f , wEMAs , wRSI , wsl , wMACD,1, wMACD,2, wBB ∈ N
+

. (25.1)
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As mentioned above, this problem is “complex” as it is formulated in terms of
integer variables and its objective function is highly nonlinear and nondifferentiable.
In general, this kind of problems is difficult to solve, and exact solution algorithms
which are both effective and efficient are still sought at present. For these reasons,
we need to use a metaheuristic, namely the PSO, as solver.

25.2.3 Particle Swarm Optimization and Its Implementation

PSO is an iterative bio-inspired population-based metaheuristic for the solution of
global unconstrained continuous optimization problems. Note that, unlike, our opti-
mization problem is global constrained integer. Because of this, first we will intro-
duce the basics on standard PSO we use, then we will present the performed imple-
mentation in order to take into account the peculiarities of our optimization.

Basics on PSO The basic idea of PSO is to replicate the social behaviour of shoals
of fish or flocks of birds cooperating in the search for food. To this purpose, each
member of the flock explores the search area keeping memory of its best position
reached so far, and it exchanges this information with the neighbors in the swarm.
Thus, thewhole swarm (hopefully) tends to converge towards the best global position
reached by the members. In its mathematical counterpart, the paradigm of a flying
flock may be formulated as follows: given a minimization problem, every member
of the swarm, namely a particle, represents a possible solution of the minimization
problem. Every particle is initially assigned to a random position, x1j , and velocity,
v1j , which is used to determine its initial direction of movement.

For a formal description of PSO, let us consider the global optimization prob-
lem minx∈Rd f (x), where f : Rd �→ R is the objective function. Suppose we apply
PSO for its solution, where M particles are considered. At the k-th iteration of the
algorithm, three vectors are associated to the j-th particle, with j = 1, . . . , M :

• xkj ∈ R
d , which is the position;

• vkj ∈ R
d , which is the velocity;

• p j ∈ R
d , which is the best position visited so far.

Moreover, pbest j = f (p j ) is the value of the objective function in the position p j ,
and gbest = f (pg)where pg is the best position visited by the particles of the swarm.
The overall algorithm, in the version with inertia weights (which is the one we will
use), is reported in the following:

1. Set k = 1 and evaluate f (xkj ) for j = 1, . . . , M . Set pbest j = +∞ for j =
1, . . . , M , and gbest = +∞.

2. If f (xkj ) < pbest j then set p j = xkj and pbest j = f (xkj ). If f (xkj ) < gbest then
set pg = xkj and gbest = f (xkj ).
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3. Update position and velocity of the j-th particle, with j = 1, . . . , M , as

{
vk+1
j = wk+1vkj + c1(p j − xkj ) + c2(pg − xkj )

xk+1
j = xkj + vk+1

j

.

4. If a convergence criterion is not satisfied then set k = k + 1 and go to step 2.

The values of c1 and c2 affect the strength of the attractive forces towards the
personal and the swarm best positions explored so far by the j-th particle. Thus, in
order to get the convergence of the swarm, they have to be set carefully in accordance
with the value of the inertia weight wk . The parameter wk is generally linearly
decreasing with the number of steps, that is

wk = wmax + wmin − wmax

K
k,

where typical values for wmax and wmin are respectively 0.9 and 0.4, while K is
usually the maximum number of iterations allowed.

The implementation As said before, the optimization problem (25.1) is a global
constrained integer one, whereas PSO is a solver for global unconstrained continuous
ones. Therefore, we needed to adapt properly the standard PSO algorithm for dealing
with these peculiarities.

As far as the presence of integer variables is concerned, we apply one of the
few approaches available in the specialized literature, the one proposed in [5], fol-
lowing which 	[e]ach particle of the swarm [is] truncated to the closest integer,
after the determination of its new position
 ([5], page 1584). Note that this novel
approach seems to be already effective at the current state and promising for future
improvements. In particular, 	[t]he truncation of real values to integers seems not
to affect significantly the performance of the method, as the experimental results
indicate. Moreover, PSO outperforms the [Branch and Bound] technique for most
test problems
 ([5], page 1583). So, the use of this approach permits to manage
the constraints wEMA f , wEMAs , wRSI , wsl , wMACD,1, wMACD,2, wBB ∈ N

+ of our
optimization problem.

As regards the presence of the other constraints, different strategies are proposed
in the specialized literature to ensure that achievable positions are generated at any
iterations of PSO. However, in this paper we use PSO accordingly to the original
intent, that is as a tool for the solution of unconstrained optimization problems. To
this purpose, we have reformulated our problem into an unconstrained one using the
nondifferentiable �1 penalty function method described by [3] and recently applied
in the financial context, [1]. Such an approach is known as exact penalty method,
where the term “exact” refers to the correspondence between the minimizers of the
original constrained problem and the minimizers of the unconstrained (penalized)
one. So, the reformulated version of our optimization problem is
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max
ω

C(T ) − 1

ε

[
max{0, wEMA f − wEMAs } + max{0, wsl−

−wMACD,1} + max{0, wMACD,1 − wMACD,2}
]
,

(25.2)

where ε is the so-called penalty parameter. Note that a correct choice of ε ensures
the correspondence between the solutions of the original constrained problem (25.1)
and of the reformulated unconstrained one (25.2). Note also that in the latter version
of the optimization problem, the costraints wEMA f , wEMAs , wRSI , wsl , wMACD,1,
wMACD,2, wBB ∈ N

+ do not appear as they are managed by the approach described
above.

25.3 Applications

As stated above, the purpose of this paper consists in improving the performances
of a simple trading system based on indicators coming from technical analysis, in
particular, finding the optimal values of the parameters of such indicators by using
PSO.

In this section, we compare the results coming from such a trading system with
standard settings of the parameters with the results coming from the same trading
systemwith parameters values optimized solving the optimization problem (25.2) by
using the version of the PSO described in Sect. 25.2.3. The purpose of this compari-
son is twofold: firstly, to analyze the differences, if any, between the performances,
then, to investigate the features of the optimized parameters. We apply the method-
ology proposed in Sect. 25.2 to the time series of closing prices of eight important
stocks in the Italian stockmarket: BUZZI UNICEMS.p.A. (BU), ENEL S.p.A. (EE),
ENI S.p.A. (EI), Generali S.p.A. (GE), INTESA SANPAOLO S.p.A. (IS), LUXOT-
TICAGROUPS.p.A. (LG), STMICROELECTRONICSS.p.A. (ST) andTELECOM
ITALIA S.p.A. (TE). We choose these stocks because they represent the meaningful
sectors of the Italian economy. Furthermore, all of them are components of the Italian
stock index FTSE MIB. The considered time series goes from January 2, 2001 to
April 28, 2017 (4144 prices), while the trading period goes from March 15, 2001 to
April 28, 2017 (4092 prices).1 In all applications, we have used the following values
for δ and C(1): δ = 0.15%, which is a percentage transaction cost currently applied
by several Italian brokerage companies, and C(1) = 100. As far as the trading sys-
tem with standard setting is concerned, given the relevant professional literature,
we have used the following values for the parameters: wEMA f = 12, wEMAs = 26,
wRSI = 26, wsl = 9, wMACD,1 = 12, wMACD,2 = 26 and wBB = 26. As regards the
trading systems with parameters values optimized, we have used the following value
for M , K , c1, c2 and ε: M = 10, K = 100, c1 = c2 = 1.49618 and ε = 0.0001; the
first two values have been determined by a trial-and error procedure, the last three

1The first 52 prices need to calculate the starting indicators.
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Table 25.1 Performances achieved by the various trading systems

Stock r (%) r (%) sr (%) [·, ·]95%,r rmin
(%)

rmax
(%)

% >

(%)
% ≥
(%)

BU −1.73 15.72 4.32 [7.25%, 24.20%] 0.92 22.98 88.31 89.70

EE −16.66 3.84 2.61 [−1.29%, 8.96%] −6.24 8.95 88.42 89.74

EI −16.47 1.62 4.21 [−6.63%, 9.86%] 4.21 13.50 98.36 99.65

GE −5.79 6.22 3.67 [−0.98%, 13.42%] −2.88 14.08 95.28 96.90

IS −12.44 17.30 5.95 [5.62%, 28.76%] 0.00 28.76 92.38 93.86

LG −6.49 13.32 2.97 [7.50%, 19.15%] 2.64 17.56 74.18 75.63

ST 3.93 20.77 4.06 [12.81%, 28.73%] 7.29 29.64 97.07 98.40

TE −9.88 9.83 4.79 [0.45%, 19.22%] −4.91 18.15 98.17 99.56

values are commonly suggested in the prominent specialized literature. Furthermore,
we remember that the methodology proposed in Sect. 25.2.3 is stochastic because
of the random initialization of particles positions and velocities. For these reasons,
we have applied 100 times our methodology to each stock, then we have calculated
mean or median values of the quantities of interest. In Table25.1 we present the
performances achieved by the various trading systems. In particular, in column 2 we
report the annualized rate of return performed by the trading system with standard
setting (r ); in columns 3 and 4 we respectively report the average annualized rate
of return performed by the trading system with parameters values optimized (r ) and
the associated standard deviation (sr ); in column 5 we report the 95% confidence
interval calculated using r and sr ([·, ·]95%,r ); in columns 6 and 7 we report the mini-
mum, respectively, the maximum, of r over the 100 applications of our methodology
(rmin and rmax, respectively); in columns 8 and 9 we report the average percentages
of times in which, during the trading period, the value of the equity line produced
by the trading system with parameters values optimized has been greater than, and
greater than or equal to, the value of the equity line produced by the trading system
with standard setting (% > and % ≥, respectively).

Below, we propose some remarks about these first results. Generally, with the only
exception of the stock ST, all the annualized rates of return achieved by the trad-
ing system with standard setting (column 2) are negative, whereas all the average
annualized rates of return performed by the trading system with parameters’ values
optimized (column 3) are far greater than the former and are all positive. It indicates
that also in the case of simple TA-based trading systems, like the one considered in
this paper, the parameter optimization canplay an important role. Then, no annualized
rates of return achieved by the trading systemwith standard setting (column 2) belong
to the 95% confidence interval calculated using r and sr (column 5). It indicates
that, for all the investigated stocks, r is statistically different from r at the 5% sig-
nificance level. Moreover, note also that, again for all the stocks, r < rmin (rmins are
in column 6).

All the previous remarks concern with the performances achieved by the various
trading systems in the final time instant t = T = (April 28, 2017) of the trading
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Table 25.2 Statistics on the optimized parameters

Stock Parameter w sw [·, ·]95%,w Median(w) MAD(w)

EI wEMA, f 12.00 11.25 [−10.06, 34.06] 10 9.38

wEMA,s 28.30 19.13 [−9.20, 65.80] 33 17.46

wRSI 39.45 16.47 [7.16, 71.74] 46 10.29

wsl 4.03 6.44 [−8.60, 16.66] 1 3.03

wMACD,1 14.14 9.97 [−5.40, 33.68] 13 8.00

wMACD,2 33.21 14.95 [3.92, 62.50] 32 12.79

wBB 16.98 15.64 [−13.67, 47.63] 20 12.78

ST wEMA, f 10.28 5.862 [−1.21, 21.77] 10 4.42

wEMA,s 30.57 11.41 [8.20, 52.94] 29 9.31

wRSI 19.31 15.98 [−12.00, 50.62] 12 11.83

wsl 9.13 4.67 [−0.02, 18.28] 11 3.69

wMACD,1 17.23 5.41 [6.62, 27.84] 18 4.03

wMACD,2 36.76 11.14 [14.93, 58.59] 37 9.46

wBB 20.16 13.29 [−5.89, 46.21] 27 11.34

period. But the results in column 8 and 9 well highlight that for very large part of
the trading period (never lower than 74.18%) the trading systems with parameters’
values optimized perform better than the trading system with standard setting.

As example, in Fig. 25.1 we show the performances related to the stock GE.
In particular: in the first panel, the closing price time series is represented; in the
second panel, the operational trading signal is represented; in the third panel, the
time series of the gross signal line produced by the trading system with parameters
values optimized (dotted curve), of the net signal line produced by the same trading
system (bold curve), and of the net signal line produced by the trading system with
standard setting (continuous curve) are represented.

As regards the second purpose of our investigation, that is the characteristics of
the optimized parameters, in Table25.2 we present some results which concern the
latter. In particular, in columns 3 and 4 we respectively report the average value of
the parameter (w) and the associated standard deviation (sw); in column 5 we report
the 95% confidence interval calculated using w and sw ([·, ·]95%,w); in column 6 and
7 we respectively report the median value of the parameter (median(w)) and the
associated mean absolute deviation from the median (MAD(w)).

Note that we present the results related only to the stocks EI and ST, respectively
the worst and the best in terms of r , as their peculiarities are representative of those
of all the considered stocks. Note also thatw, sw, the extremes of the 95% confidence
interval, and MAD(w) assume real values, which are inconsistent with the values
assumed by the parameters, that are only integer. Despite that, these real-valued
statistics allow us to get some useful remarks.

As we can see, generally, with few exceptions, for all the stocks the values of
the medians of the optimized parameters (column 6 for stocks EI and ST) differ
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from the values of the corresponding parameters used in the trading system with
standard setting. It indicates that there is room for improving the performances of
standard TA-based trading systems. However, in several cases these differences are
not particularly noticeable. This empirical evidence can be interpreted as follows: the
swarm constituted by the human traders, in its multi ten-year acting, has reached a
position in the parameter space—that is, the standard setting—which does not appear
so far from the optimal setting.

Generally, with some exceptions, for all the stocks the values of the parameters
used in the trading systemwith standard setting belong to the 95%confidence interval
calculated using w and sw (column 5 for stocks EI and ST). This may suggest the
standard setting does not appear so far from the optimal setting.

Finally, for all the stocks the dispersion indices, namely sw andMAD(w) (columns
4 and 7, respectively, for stocks EI and ST), are generally decreasing when the
performance of the trading system expressed in terms of r tends to increase. It likely
indicates that, beyond the parameter optimization, the trading system we consider
is too simple to be able to work on when applied to stock assets whose prices are
characterized by particularly complex dynamics.

25.4 Conclusions

In this paper, we have proposed a PSO-based methodology to improve the perfor-
mances of trading systems based on TIs coming from TA. The results, presented
in Tables25.1, 25.2 and in Fig. 25.1, show that parameter optimization can play an
important role, as the results of our proposal in terms of annualized rate of return is
always better than the classical TA-based one. Our future goal is to verify the pro-
posed technique with different stocks series belonging to foreign markets. Further
work will be devoted to apply the optimization and combination procedure in an out-
of-sample framework in order to anticipate the market signals using observational
data.
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Chapter 26
Asymmetry Degree as a Tool
for Comparing Interestingness Measures
in Decision Making: The Case
of Bayesian Confirmation Measures

Emilio Celotto, Andrea Ellero and Paola Ferretti

Abstract Bayesian Confirmation Measures are used to assess the degree to which
an evidence E supports or contradicts a conclusion H , making use of prior prob-
ability P(H ), posterior probability P(H |E) and of probability of evidence P(E).
Many confirmation measures have been defined till now, their use being motivated
in different ways depending on the framework. Comparisons of those measures have
already been made but there is an increasing interest for a deeper investigation of
relationships, differences and properties. Here we focus on symmetry properties of
confirmation measures which are partly inspired by classical geometric symmetries.
Measures which do not satisfy a specific symmetry condition may present a dif-
ferent level of asymmetry: we define an asymmetry measure, some examples of its
evaluation providing a practical way to appraise the asymmetry degree for Bayesian
Confirmation Measures that allows to uncover some of their features, similarities
and differences.

Keywords Bayesian confirmation measures · Symmetries · Asymmetry measure

26.1 Introduction

Relationships hidden in datasets are often expressed in terms of inductive rules,
E → H , meaning that knowledge E corroborates a conclusion H . Such rules can
be supported by a dataset with different intensities that need to be assessed to rank
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the rules with respect to their reliability. This is of particular interest in the field of
Decision Making in Economics when intelligent tools have to be considered.

A typical way in which rules are ranked is via the so-called confirmation mea-
sures: they evaluate the degree to which an evidence E supports or contradicts the
conclusion,H , using prior probabilityP(H ), posterior probabilityP(H |E) andP(E),
the probability of evidence E. The revealing of evidence E may change the knowl-
edge about the occurrence of H , indeed conclusion H may be confirmed when
P(H |E) > P(H ), or disconfirmed when P(H |E) < P(H ). It is therefore natural to
define a measure c(H ,E) such that

c(H ,E) > 0 if P(H |E) > P(H ) (confirmation case)
c(H ,E) = 0 if P(H |E) = P(H ) (neutrality case)
c(H ,E) < 0 if P(H |E) < P(H ) (disconfirmation case)

which is called a Bayesian Confirmation Measure (BCM). Bayesian Confirmation
Measures (BCMs) have been defined and used in different contexts (see, e.g., [5, 8,
10]) often resulting in coinciding measures, which are named differently depending
on the context, or with partially overlapping definitions. So, it makes sense to wonder
if there is a BCM that performs better than other ones given a specific use of the
measure we have in mind. The way in which BCMs are related, their similarities or
differences can be clarified by means of some geometric or even visual approach,
which could result particularly meaningful for the comprehension and selection of
different measures (see [2, 22, 23]). In the same way, the study of analytical prop-
erties of BCMs may provide useful insights into the differences among measures
(see [9, 14]).

In this paper we compare BCMs by means of their symmetry properties and, in
doing that, we will consider a set of guinea pig measures which are well known
confirmation measures:

d(H ,E) = P(H |E) − P(H ) (26.1)

which was defined by Carnap [1],

F(H ,E) = P(H |E) − P(H )

P(H )
(26.2)

defined by Finch [7],

G(H ,E) = log

[
P(E|H )

P(E|¬H )

]
(26.3)

which was defined by Good [12],

K(H ,E) = P(E|H ) − P(E|¬H )

P(E|H ) + P(E|¬H )
(26.4)

defined by Kemeny and Oppenheim [15], and
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Z(H ,E) =

⎧⎪⎨
⎪⎩
Z1(H ,E) = P(H |E) − P(H )

1 − P(H )
in case of confirmation

Z2(H ,E) = P(H |E) − P(H )

P(H )
in case of disconfirmation.

(26.5)

The last measure explicitly takes into account the different confirmation and discon-
firmation situations and was defined by Rescher [19] and further analysed in [5, 14].

Remark that, besides d , F and Z , with the help of some algebraic manipulation
also G and K can be expressed in terms of P(H ) and P(H |E) only:

G(H ,E) = log

[
P(H |E)

P(H )

[1 − P(H )]
[1 − P(H |E)]

]

K(H ,E) = P(H |E) − P(H )

P(H |E) − 2P(H |E)P(H ) + P(H )
.

The BCMs that can be written as functions of P(H |E) and P(H ) only, constitute
the special class of IFPD (Initial Final Probability Dependence) confirmation mea-
sures. But for many BCMs (not-IFPD measures) a third variable must be included
in the definition, for example the probability of the evidence P(E).

For this reason, we add two more measures to our guinea pigs set of BCMs,
considering a couple of not-IFPD measures: Mortimer’s M [17] and Nozick’s N
[18]. They are respectively defined as

M (H ,E) = P(E|H ) − P(E) (26.6)

and
N (H ,E) = P(E|H ) − P(E|¬H ). (26.7)

The last two BCMs can be rewritten using only P(H |E), P(H ) and P(E) (but not
less than three variables) as

M (H ,E) = P(E)
P(H |E) − P(H )

P(H )

and

N (H ,E) = P(E)
P(H |E) − P(H )

P(H )(1 − P(H ))
.

26.2 Symmetries

Symmetry properties of confirmation measures have been widely discussed in the
literature (see, e.g., [11, 14]) observing that some of them should be required
while some other ones should be avoided. In the following we recall the symmetry
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definitions that have been recently proposed in [4] (after being partially introduced
in [1] and subsequently investigated in [13]).

Definition 26.1 A confirmation measure c satisfies

Evidence Symmetry (ES) if c(H ,E) = −c(H ,¬E);
Hypothesis Symmetry (HS) if c(H ,E) = −c(¬H ,E);
Evidence Hypothesis Symmetry (EHS) if c(H ,E) = c(¬H ,¬E);
Inversion Symmetry (IS) if c(H ,E) = c(E,H );
Evidence Inversion Symmetry (EIS) if c(H ,E) = −c(¬E,H );
Hypothesis Inversion Symmetry (HIS) if c(H ,E) = −c(E,¬H );
Evidence Hypothesis Inversion Symmetry (EHIS) if c(H ,E) = c(¬E,¬H ).

Some of the proposed definitions refer to simple geometric symmetry properties
(see [2, 3]) that, by the way, are considered desirable properties in the literature (see
[4, 6]).

A geometric interpretation of some symmetries is presented in [2] referring to the
so-called Confirmation Space which is based on the two dimensions x = P(H |E)

and y = P(H ), useful for confirmation measures that are IFPD measures. We define
the three dimensional Extended Confirmation Space considering the variables

x = P(H |E), y = P(H ), z = P(E)

and this allows to express the previously defined symmetries in terms of x, y, z, as
reported in Table26.1.

Note that the considered symmetries are defined by means of different combina-
tions ofH , E and of their negations¬H and¬E, in other words by logical variations
of the involved elements in the inductive ruleE → H . By algebraic computations and
well-known probability theorems, it is then possible to reformulate their definition
in terms of the probabilities P(H |E), P(H ) and P(E). For example, if we consider
symmetry HS, i.e.,

c(H ,E) = −c(¬H ,E)

in the Extended Confirmation Space, HS can be written as

c(P(H |E),P(H ),P(E)) = −c(P(¬H |E),P(¬H ),P(E))

= −c(P(1 − P(H |E), 1 − P(H ),P(E))

that is, c(x, y, z) = −c(1 − x, 1 − y, z).

26.3 Degree of Asymmetry

In general, confirmation measures do not satisfy all the above defined symmetry
properties. For example, Nozick’s N (H ,E) = P(E|H ) − P(E|¬H ) satisfies only
properties ES, HS and EHS, Carnap’s d(H ,E) = P(H |E) − P(H ) satisfies just HS
symmetry.ABCMcan also satisfy all the above considered symmetries, likeCarnap’s
b [1] which is defined as
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Table 26.1 Symmetries in the extended confirmation space

Symmetry Definition in (H ,E) Definition in (x, y, z)

(ES) c(H ,E) = −c(H ,¬E) c(x, y, z) =
−c((y − xz)/(1 − z), y, 1 − z)

(HS) c(H ,E) = −c(¬H ,E) c(x, y, z) =
−c(1 − x, 1 − y, z)

(EHS) c(H ,E) = c(¬H ,¬E) c(x, y, z) = c(1 − (y −
xz)/(1 − z), 1 − y, 1 − z)

(IS) c(H ,E) = c(E,H ) c(x, y, z) = c(xz/y, z, y)

(EIS) c(H ,E) = −c(¬E,H ) c(x, y, z) =
−c(1 − xz/y, 1 − z, x)

(HIS) c(H ,E) = −c(E,¬H ) c(x, y, z) = −c((1 − x)z/(1 −
y), z, 1 − y)

(EHIS) c(H ,E) = c(¬E,¬H ) c(x, y, z) = c(1 − (1 −
x)z/(1 − y), 1 − z, 1 − y)

b(H ,E) = P(E ∧ H ) − P(E)P(H ). (26.8)

Remark that b(H ,E) = P(E) d(H ,E), so, simply multiplying Carnap’s measure
d(H ,E) by P(E), we move from a measure that satisfies only symmetry HS to a
measure which satisfies all the symmetries proposed in Definition 26.1. It is this
variety of behaviors that makes evaluating the degree of asymmetry of a BCM par-
ticularly interesting.

To define the degree of asymmetry of a BCM, we consider now a different way
to define symmetry properties, with an approach which recalls some studies on the
degree of exchangeability of continuous identically distributed random variables (see
[16, 20, 21]).

Let us start by considering the Evidence Symmetry (ES). Looking at the last
column of Table26.1, we can say that a confirmation measure c satisfies ES if

c(x, y, z) = ĉ(x, y, z)

with

ĉ(x, y, z) = −c

(
y − xz

1 − z
, y, 1 − z

)
.

In a similar way, we can observe that c fulfills Hypothesis Symmetry (HS) if

c(x, y, z) = ĉ(x, y, z)

with
ĉ(x, y, z) = −c(1 − x, 1 − y, z).
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More in general, a confirmation measure c satisfies symmetry σ , where

σ ∈ {ES,HS,EHS, IS,EIS,HIS,EHS}

if
c(x, y, z) = ĉ(x, y, z) (26.9)

and ĉ(x, y, z) is a suitably defined function, depending on the chosen symmetry;
the functions ĉ to be considered are reported in the right hand side term of the
last column in Table26.1. Function ĉ, in some sense, takes into account both the
considered symmetry and the particular Bayesian Confirmation Measure c.

Accordingly, when condition (26.9) is not satisfied, c is called σ -asymmetric. For
example, Nozick’s N is IS–, EIS–, HIS– and EHIS–asymmetric. In the same way,
Carnap’s d is asymmetric with respect to ES, EHS, IS, EIS, HIS and EHIS.

Considering again the same two BCM’s, we can deepen the investigation on
their symmetry properties observing that both Nozick’s N and Carnap’s d are IS-
asymmetric measures. The question we focus on is: what is the magnitude of their
asymmetry?

With the aim of giving an answer to this question, we define

cσ (x, y, z) = c(x, y, z) + ĉ(x, y, z)

2
cσa(x, y, z) = c(x, y, z) − ĉ(x, y, z)

2

so that each Bayesian Confirmation Measure c may be written as

c(x, y, z) = cσ (x, y, z) + cσa(x, y, z) (26.10)

i.e., c can be viewed as the sum of two functions where cσ is σ–symmetric by
construction.

In fact, we observe that

c is σ -symmetric ⇐⇒ cσa(x, y, z) = 0 ⇐⇒ c(x, y, z) = cσ (x, y, z)

while c is σ -asymmetric otherwise.
For example, if we consider again Carnap’s d and we analyse the Inversion Sym-

metry (IS), the confirmation measure can be decomposed into

dIS(x, y, z) = (x − y)(y + z)

2y
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and

dISa(x, y, z) = (x − y)(y − z)

2y
.

To evaluate the degree of asymmetry of a BCM we first introduce an order of
asymmetry: this definition is necessary to avoid the possibility of facing two BCMs
which are inversely ordered by different asymmetry measures [21].

Definition 26.2 In the Extended Confirmation Space, a confirmation measure c1 is
called to be less σ -asymmetric than a confirmation measure c2, written c1≺σac2, if

|c1(x, y, z) − ĉ1(x, y, z)|
|c1(x, y, z)| ≤ |c2(x, y, z) − ĉ2(x, y, z)|

|c2(x, y, z)|
for each feasible choice of (x, y, z).

Note that the feasibility of (x, y, z) requires that probabilities x, y and z satisfy the
Total Probability Theorem (see [2]).

Observe that≺σa is a preorder, that is the relation is reflexive and transitive; more-
over it is not antisymmetric, given that for example, both Nozick’s N and Carnap’s
d are Hypothesis Symmetric confirmation measures. Finally, it is clearly not a total
order since not all BCMs can be ordered by≺σa: if we consider for example Carnap’s
d and Finch’s F that are both not EIS–symmetric, when (x, y, z) = (1/6, 2/3, 1/6)
it is

|d(x, y, z) − d̂(x, y, z)|
|d(x, y, z)| <

|F(x, y, z) − F̂(x, y, z)|
|F(x, y, z)|

while the inequality is reversed in (x, y, z) = (2/5, 1/3, 1/2).
Finally, we can propose a general definition of asymmetry measure which is

compatible with the partial order ≺σa:

Definition 26.3 A measure of σ -asymmetry is a function μσa that satisfies the fol-
lowing conditions:

1. μσa(c) = 0 if and only if c is σ -symmetric;
2. if c1≺σac2 then μσa(c1) ≤ μσa(c2).

In the following, we consider the particular class of σ -asymmetry measures
defined as:

μp(c) =
∥∥∥∥c − ĉ

c

∥∥∥∥
p

(26.11)

where ‖ · ‖p denotes the Lp-norm, for each p ∈ [1,∞]. A measure μp is clearly
compatible with the partial order ≺σa as required in Definition 26.3.

Observe that different choices of p allow to emphasize different kinds of σ -
asymmetries: for example, when p = 1 attention is on the average degree of σ -
asymmetry, while p = ∞ drives the focus on the maximal degree of asymmetry that
can be attained on single points.
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26.4 Asymmetry Degree Comparison

In this section we provide some examples of asymmetry degree computations on
BCMs; all computations were performed with Wolfram’s software Mathematica
(version 11.0.1.0).

We focus here on four symmetries, namely ES, HS, IS, EIS, and on four BCMs:
d (which satisfies onlyHS), F (only IS),M (only ES) and N (which satisfies ES and
HS). The asymmetry of a measures is here computed using the L1 norm. The results
are reported in Table26.2.

Let us observe the results obtained for symmetry ES (see Table26.2): d and F
are asymmetric with the same asymmetry score of 0.5. While it could be not so easy
to guess it ex ante, this common score can be explained ex post since d measures
the difference between posterior and prior probabilities and F essentially considers
their ratio. Moreover,M and N turn out to be ES symmetric: this fact can be proved
analyticallywith some tricky algebraicmanipulations, but the numerical computation
immediately suggests the property.

With respect to symmetryHS, instead, Carnap’s measure d and Nozick’s measure
N are symmetric, the corresponding asymmetry evaluations are equal to zero, while,
not too surprisingly, F andM are equally asymmetric: in fact, their definitions differ
only by the multiplicative factor z = P(E), which does not affect the definition of
symmetry HS.

The results concerning symmetries IS and EIS, allow to completely rank the four
BCMs. Considering IS, measure F is symmetric while we find d , N and M with
increasing asymmetry. The order changes when we consider symmetry EIS: the less
asymmetric measure is now M and then with increasing asymmetry we find d , F
and N . This result is (a priori), again unexpected.

Table 26.2 Degree of asymmetry of some BCMs (L1 norm and μ1)

BCM ES HS IS EIS

Carnap d
x − y

5.0000E-01 0.0000E+00 3.8629E-01 3.8629E-01

Finch F
(x − y)/y

5.0000E-01 9.0584E-01 0.0000E+00 5.0000E-01

Mortimer M
z (x − y)/y

0.0000E+00 9.0584E-01 4.2835E+04 3.3333E-01

Nozick N
z (x − y)/[y (1 − y)]

0.0000E+00 0.0000E+00 3.5118E+00 5.3809E+00
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Table 26.3 Degree of asymmetry of some BCMs (L2 norm and μ2
2)

BCM ES HS IS EIS

Carnap d
x − y

2.0026E+01 0.0000E+00 9.9485E+00 9.9485E+00

Finch F (x − y)/y 2.0026E+01 2.8020E+02 0.0000E+00 2.0026E+01

Mortimer M
z (x − y)/y

0.0000E+00 2.8020E+02 3.3333E+09 7.1753E+00

Nozick N
z (x − y)/[y (1 − y)]

0.0000E+00 0.0000E+00 3.3333E+08 1.0556E+09

26.5 Conclusions

The large variety of Bayesian Confirmation Measures made available by the liter-
ature on the subject, makes the choice of the measure to be used a rather tricky
task. Ways to compare the measures are still needed, even if geometric, visual and
analytical proposals have already been suggested (see [2, 22, 23]): among them,
symmetry properties appear to be quite informative. Defining an asymmetry mea-
sure (Sect. 26.3) we suggest a practical way to appraise the asymmetry degree of a
BCM and their ranking, also providing an example computed on a little set of guinea
pigs measures (Sect. 26.4).

Even if the research should be extended to a larger set of BCMs and symmetries,
the numerical results show how by using an asymmetry measure it is possible to
easily highlight features of a BCMwhich are not obvious ex ante and, sometimes, to
discover even unexpected properties, thus paving the way to the interpretation and
the analytical proof of those features (see Sect. 26.4).

We remark that the definition of the asymmetrymeasure is not unique, in particular
the choice of the norm to be used in the computations can be changed. In fact different
norms (i.e. different p values) provide an evaluation of the degree of asymmetry
with different sensitivity on extreme values. To illustrate this fact, we computed the
degree of asymmetry not only using norm L1 (Table 26.2) but also with norm L2;
the corresponding (squared) values are reported in Table26.3. There is a glaring
numerical difference with Table26.2, but the asymmetry ranking of the BCMs is
the same. An extension of the numerical computations to a set of other BCMs and
symmetries should be made, to better understand which norms, even different from
L1 and L2, allow a better comparison of the asymmetry degrees.
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Chapter 27
A Method Based on OWA Operator
for Scientific Research Evaluation

Marta Cardin , Giuseppe De Nadai and Silvio Giove

Abstract This paper proposes a model for faculty evaluation based on OWA
aggregation operators. Our method permits to consider interactions among the crite-
ria in a formal way, and, at the same time, to realize an easy approach to understand,
implement and apply.

Keywords Bbliometric indicator · Aggregation operators · OWA

27.1 Introduction

The evaluation of the performance of the academic activity has gained a growing
interest in recent years andmanyUniversities undertake periodic assessments of their
faculty members which act as a first step for a wider performance evaluation process
involving, at different levels, departments, faculties and Universities.

A vast literature is interested in themeasurement of the research output of scholars
and several approaches have indeed been proposed to assess the scientific production
(see for example [1, 2, 4, 6, 7, 9]). The traditional method based on peer review may
be accurate but subjective and very time-consuming. There are also many methods
for ranking scientific publications, and as it is well known most of them are based
on citations.
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There are many bibliometric indicators such as total number of publications, total
number of citations, citations per paper, number of highly cited papers and so on. It
is straightforward to note that all indicators highlight only a particular dimension of
the research output.

In this paper we take into account the multidimensional nature of the considered
evaluation problem, and the need of indices that provide useful information about a
researcher’s activity by summarizing it with a single and numerical score. A good
research output indicator has to capture both the quantitative and the qualitative
dimension of the research.

As it is well known, aggregation operators play an important role in several fields
such as decision sciences, computer and information sciences, economics and social
sciences (see [5, 8]). The most commonly used aggregation is the Weighted Averag-
ing (WA). The ordered weighted averaging operators (OWA) developed by Yager in
[14] assigns the weights to the ordered values (i.e. to the smallest value, the second
smallest and so on) rather than to the specific values. Since its introduction, the OWA
aggregation has been received increasingly interest in many publications (see [13]).
The main reason for the success of OWA consists into the capability to take interac-
tions among the criteria into account, so that it is a suitable tool to properly reflects
the preference structure of a Decision Maker. Given its linear nature, the WA cannot
include interactions between criteria, requiring the satisfaction of the Preferential
Independence axiom that is rarely satisfied. This implies that WA requires complete
compensativeness, i.e. a low value of one criterion, can be compensated by a high
value of another one, and this can be undesiderable.

In this paper we propose a model to rank journals or authors based on OWA
aggregation operators. The paper is structured as follows. Section27.2 introduces
Aggregation Operators, mainly focusing on OWA operators. In Sect. 27.3 our model
is introduced while in Sect. 27.4 is reported a simulated application. The last Section
concludes and presents possible extensions and future work.

27.2 OWA as Aggregation Operators

Aggregation has for purpose the simultaneous use of different pieces of informa-
tion provided by several sources, in order to come to a conclusion or a decision so
aggregation functions transform a finite number of inputs, called arguments, into
a single output. Aggregation functions are applied in many different domains and
in particular aggregation functions play an important role in different approaches to
decisionmaking.Many functions of different type have been considered, and various
properties can be imposed by the nature of the considered aggregation problem. See
[8] for a comprehensive overview on aggregation theory and for the characterization
and the properties of Aggregation Operators.

We denote by E a non empty real interval and n represents the number of values
to be aggregated an aggregation operator is a function A : En → E . Two basic
mathematical properties of the aggregation functions are the following:
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• Monotonicity For all x, y ∈ En if xi ≤ yi (i = 1, . . . , n) then A(x) ≤ A(y)
• Idempotence If x ∈ E then A(x, . . . , x) = x

Moreover we consider the case in which E = [0, 1] and we assume that boundary
conditions A(0, 0, ..., 0) = 0, A(1, 1, ..., 1) = 1 are satisfied. These properties are
very general, thus a very large family of n−-dimensional operators can be obtained,
each of them with a properly own characterization and its specific set of parameters.
The class of Choquet integrals is widely used in the applications, given its high
generalization capability, and the same holds also for the family of Sugeno integrals.
Nevertheless, both the Choquet and the Sugeno integral (see [5, 8]) requires 2n

parameters to be estimated where n is the number of the criteria.
OWA operators, introduced by Yager in [14], received particular attention due to

their general representation properties and the limited number of parameters, and are
defined as follows:

OW Aw(x1, x2, ..., xn) =
n∑

i=1

wi xσ(i) (27.1)

where {xi } is the normalized value of the i-th criterion, for every i , i = 1, 2, ..., n, {pi }
a weight, pi ≥ 0,

∑n
i=1 pi = 1 and σ is a permutation of the index set {1, 2, ..., n}

such that xσ(1) ≥ xσ(2) ≥ ... ≥ xσ(n). The weights represent the relative importance
of the criteria, and need to be determined by direct assignment or using a learn-
ing procedure. The WA is compensative and homogeneous of degree 1 (see [10]).
Moreover, note that OWA is linear w.r.t. the ordered values of the criteria.

As opposed to linear Aggregation Operators, as simple weighted mean, OWA
operators enable a more or less significant degree of compensativeness, considering
synergic or conflicting interactions among the criteria. That is, a low value of a
criteria cannot be compensated by a high value of an other one. This property can be
desirable in many applications, see for instance [5]. Different Aggregation Operators
can be obtained in function of the value of the weights, see [13], moving from a
completely conjunction behavior up to a disjunction behavior, and passing through
the simple averaging. The MIN operator is obtained with wn = 1,wi = 0 for every
i, i = 1, ..., n − 1 while the MAX if w1 = 1,wi = 0 for every i, i = 2, ..., n.

Moreover if wi = 1
n , for every i, i = 1, ..., n we get the simple average and with

suitable choice of the weights vector, we can get the median, the k-th order statistic
and others.

27.3 OWA in Multi-person Decision Problems: Scientific
Paper Evaluation

Aswe noted before when we evaluate a scholar we have to consider both the quantity
and the quality of his scientific production.
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A commonly used approach ranks the publications according to the Impact Factor
of the Journal where they are published (other bibliometric index could also be
considered, for instance considering the number of citations of the paper itself).

The more-is-better assumption (more citations, more papers...) is normally con-
sidered, but with care (see [12]). For instance it is not so obvious which is the better
researcher if one has more citations but in lowly cited papers while the other has
a number of highly cited publications. Then many indicators, like the well-known
h-index, consider only a subset of an author’s publications. The h-index considers
the first most productive publications each having at least h citations. Although we
can note that h-index is insensitive to lowly cited papers, on the other hand the it does
not enlight researchers with a moderate number of research papers but with a very
high impact. Moreover it does not satisfy the independence property as emphasized
in the following example presented in [4].

Consider two authors; the first one has 4 papers with 4 citations each; the second
has 3 papers with 6 citations each. We see that the first one is judged better than the
second one, according to the h-index, since the h-index for the first author is equal to
4, whereas the h-index for the second author is 3. Suppose now that each of the two
authors publish together an additional paper with 6 citations. Now the two authors
are judged as equivalent, because the h-index is equal to 4 for both.

We recall also the approach proposed by [3, 11] which is based on the concept
of scoring rules. This approach considers summation-based rankings and therefore
authors are ranked according to the sum over all their publications, where each paper
is evaluated by some partial scores. It is interesting to note that scoring rule approach
satisfies independence.

Anywise, in some real-world situations, for instance to evaluate the scientific per-
formances of a University Department member, a critical debate regards the optimal
number of publications to be considered inside a fixed period. For what above said,
too few number of publications (only one in an extreme case) characterizes a strong
non compensatory behavior, i.e. clearly the excellence is considered, given that only
the best one is taken into account. On the other side, a more production-prone behav-
ior tends to consider all the publications, not only the best ones, but every assessable
publication, in the spirit of the additive rule [11]. Clearly, different choices can be
adopted among these two extreme situations, depending on the decision making atti-
tude. In fact, if we ask to someDepartment members, we get different answers about.
In our model, we choose as Decision Makers a suitable selected subset of the full
time researchers of the Department. To each of them we asked for the most “right”
number of publications that has to be considered for the evaluation, and elaborated all
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the numerical answers, see formulas (27.2) and (27.3) below, obtaining a set of OWA
weights which respect as most as possible all the furnished answers. Despite to other
commonly used methods, like the simple answers averaging, our model takes all the
respondents requests into account, avoiding to fix a pre-determined threshold, but
weighting into decreasing order all the scientific products of the evaluated author.
Clearly, the first publications will receive more weights, and the relative weight
depends on the number of Decision Makers who specified the relative position of
this publication into account.

To formalize our model, let us consider a set {D1, D2,..., DK } of K Decision
Makers or Experts and let nk the number of publications that the Expert Dk consid-
ers as optimal. Moreover, let us consider M scholars to be evaluated, each of them
presents ni , i = 1,.., M publications. Let σi, j be the score of the i−th publication
of the j−th scholar, i = 1,..., ni , j = 1,.., M . We also suppose that, for practical
reasons, an upper limit is considered for the number of publications, say L , so that
ni ≤ L ,∀i = 1,.., M . Then the (not normalized) OWA weights, defined in the dis-
crete set S = 1, 2,..., L , can be obtained as follows:

w∗
i = Card{k : 1 ≤ k ≤ K , nk ≥ i} (27.2)

Finally, the OWA weights are normalized:

wi = w∗
i∑

k w
∗
k

(27.3)

27.4 A Simulated Application

In this Section a numerical example is presented. To this purpose, let us suppose
the case of 10 Experts, and 40 authors to be evaluated for their best 7 publications,
i.e. K = 10, M = 41, L = 7. Figure27.1 reports the publications of each author
ordered in descending order of SNIP factor, i.e. the values σi, j . Again, suppose
that the values of nk, k = 1, ..., 10, ordered in increasing order, are collected in the
vector {1, 1, 1, 2, 2, 4, 4, 4, 5, 7}. This means that three Experts require only one
publication to be considered (thus these Experts are optimality-prone), while other
two Experts consider the first two publications, and so on, up to the limit case of one
Experts which retain to evaluate all the 7 publications (we can say that this Expert is
productivity-prone). From (27.2) and (27.3) the OWA weights are easily computed
and reported in the first row of the table in Fig. 27.1.

The last two columns of Fig. 27.1 report the final scores of all the 40 authors,
computed through OWA and (simple) weighting averageWA, while Fig. 27.2 reports
the author’s ranking computed with the two methods, and sorted in descending order
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Fig. 27.1 OWA weights and scholar’s data base

of OWA. We can observe that for some authors the rank is reversed. For instance,
authors 39 and40 report a score equal to 0.95 and1.47 respectivelywithWA, but 2.40,
1.65 with OWA. The reason is due to author 39 is characterized by low productivity
(only 3 papers, see Fig. 27.1) but with high quality (SNIP are 4, 3.5, 2 respectively).
Conversely, author 40 is more productive (he presented 10 papers), but with lower
quality (the best has SNIP = 2m all the other have SNIP from1.2 up to 1.5). Namely,
WA favors author 40, because for author 30 all the SNIP are null a part the first 3. The
converse using OWA, given that the averagemulti-Expert preference, represented by
the OWA weights, highlights the excellence. In fact relatively high values are only
for the first two best papers: the two first OWA weights, 0.322 and 0.225, sum up to
more than 50%. Naturally, different assignment of values nk will produce different
set of OWA weights, and consequently different scores and ranking.
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Fig. 27.2 Evaluation



306 M. Cardin et al.

27.5 Final Remarks and Conclusion

The model that we have considered in this paper is extremely stylized. It presents
the following advantages: it is immediate to be computed, understood and easy to be
communicate. For these reasons it could be proposed in situations where the main
focus is the selectionof theoptimal number of researchproducts satisfing the trade-off
between excellence and productivity. Anywise, more detailed analysis could carried
on to include more specific items. For instance, more than one single performance
index, as the citation counts couldbe considered, togetherwith the relative importance
of each Expert, depending on their effective role inside the Academy. Again, suitable
consensus model together with a refinement of the way by which the information is
elicited (web questionnaire, etc.) could be considered in a future work.
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Chapter 28
A Cluster Analysis Approach
for Rule Base Reduction

Luca Anzilli and Silvio Giove

Abstract In this paperwe propose an iterative algorithm for fuzzy rule base simplifi-
cation based on cluster analysis. The proposed approach uses a dissimilarity measure
that allows to assign different importance to values and ambiguities of fuzzy terms
in antecedent and consequent parts of fuzzy rules.

Keywords Fuzzy systems · Rule base reduction · Cluster analysis · Ambiguity

28.1 Introduction

The number of rules in a fuzzy system (FIS, Fuzzy Inference System) exponentially
increases with the number of the input variables and the number of the linguistic val-
ues that these inputs can take (antecedent fuzzy terms) [11, 17]. Several approaches
for reducing fuzzy rule base have been proposed using different techniques such as
interpolation methods, orthogonal transformation methods, clustering techniques [3,
4, 12, 13, 19, 20]. A typical tool to perform model simplification is merging similar
fuzzy sets and rules using similarity measures [2, 5, 6, 9, 10, 16].

In this paper we propose a new clustering procedure for simplifying rule-based
fuzzy systems based on a distance (dissimilarity measure) which takes into account
the value and the ambiguity of terms. In particular, our proposal allows to assign
different importance to values and ambiguities.

The paper is organized as follows. In Sect. 28.2 we illustrate the motivation of
our proposal. In Sect. 28.3 we briefly review the basic notions of cluster analysis
and prove a result that will be used later. In Sect. 28.4 we illustrate our rule-base
reduction method. Finally, in Sect. 28.5 we propose a validity index.
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28.2 The Idea

The aim of this paper is to propose a rule-base reduction method based on clustering
techniques using a distance (dissimilarity measure) that allows to assign different
importance weights to values and ambiguities of antecedent and consequent parts.
We recall that the value and the ambiguity of a fuzzy number A with α-cuts A(α) =
[AL(α), AR(α)], α ∈ [0, 1], are defined, respectively, as

Val f (A) =
∫ 1

0
mid(A(α)) f (α) dα , Amb f (A) =

∫ 1

0
spr(A(α)) f (α) dα

where mid(A(α)) = (AL(α) + AR(α))/2 and spr(A(α)) = (AR(α) − AL(α))/2
are the middle point and the spread of A(α) and f is a weighting function.

We start with the distance between two closed intervals I1 = [a1, b1] and I2 =
[a2, b2] introduced in [18]

dθ(I1, I2) = (
(mid(I1) − mid(I2))

2 + θ (spr(I1) − spr(I2))
2
)1/2

(28.1)

where the mid-spread representation of the involved intervals is employed, that is
mid(I ) = (a + b)/2 and spr(I ) = (b − a)/2 denote themiddle point and the spread
of the interval I = [a, b], respectively. The parameter θ ∈ [0, 1] indicates the rela-
tive importance of the spreads against the mids [18]. Note that for θ = 1 we have
d2

θ=1(I1, I2) = 1
2d

2
2 (I1, I2), where d2 is the distance (L2 distance)

d2(I1, I2) = (
(a1 − a2)

2 + (b1 − b2)
2
)1/2

.

This means that the distance d2 gives the same importance to mids and spreads.
The distance dθ can be extended to the space of all fuzzy number by the distance

distθ(A, B) defined by

dist2θ (A, B) =
∫ 1

0
d2

θ (A(α), B(α)) f (α) dα (28.2)

where A and B are two arbitrary fuzzy numbers and A(α), B(α) are the α-cuts of
A and B, respectively. Taking into account that midpoints are connected with the
value of a fuzzy number and spreads with its ambiguity, the parameter θ ∈ [0, 1]
reflects the relative importance of the ambiguity against the value.

Our proposal is to employ the previous distance between fuzzy numbers as a
dissimilarity measure between two fuzzy rules able to give different weight to values
and ambiguities of the antecedent and consequent terms. For example (see Sect. 4.3)
the distance between j-th fuzzy terms Ak, j and A�, j of the antecedent part of rules
Rk and R� is

http://dx.doi.org/10.1007/978-3-319-95098-3_4
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dist2θ (Ak, j , A�, j ) =
∫ 1

0
d2

θ (Ak, j (α), A�, j (α)) f (α) dα

that has the following explicit form

dist2θ (Ak, j , A�, j ) =
∫ 1

0

(
mid(Ak, j (α)) − mid(A�, j (α))

)2
f (α) dα

+ θ

∫ 1

0

(
spr(Ak, j (α)) − spr(A�, j (α))

)2
f (α) dα

being Ak, j (α) the α-cuts of Ak, j . Moreover, the distance between antecedent parts
of two rules can be defined as follows D2

θ (Antk, Ant�) = ∑n
j=1 dist

2
θ (Ak, j , A�, j ),

the distance between consequents as D2
θ (Consk,Cons�) = dist2θ (Bk, B�) and the

distance between rules as D2
θ (Rk, R�) = D2

θ (Antk, Ant�) + D2
θ (Consk,Cons�).

28.3 Cluster Analysis

In this section we present a brief review of the c-means clustering method. Further-
more, we prove a result that will be used later for Rule base reduction.

Clustering groups data objects (instances) into subsets in such a manner that
similar objects are grouped together, while different objects belong to different
groups. The objects are thereby organized into an efficient representation that char-
acterizes the population being sampled. Since clustering is the grouping of similar
instances/objects, some sort of measure that can determine whether two objects are
similar or dissimilar is required. There are twomain type ofmeasures used to estimate
this relation: distance measures and similarity measures. Many clustering methods
use distance measures to determine the similarity or dissimilarity between any pair
of objects.

Several clustering techniques are developed in literature, such as c-Means algo-
rithm (or K -Means or crisp c-Means), fuzzy c-Means algorithm, entropy-based
method. The c-means clustering algorithm belongs to unsupervised classification
methods which group a set of input vectors into a previously defined number (c) of
classes.

28.3.1 The c-Means Algorithm

We now deal with the c-means algorithm (for a survey on this subject see e.g. [8]).
The parameter c is the number of clusters which should be given beforehand. The
c-means algorithm starts from a partition of points which may be random or given by
an ad hoc rule. The iterative c-means algorithm works as follows. Given the initial
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partition, the following steps are repeated until convergence, that is, no change of
cluster memberships:

1. Select initial location of cluster centers;
2. Generate a (new) partition by assigning each point to its closest cluster center;

that is for each center we find the subset of training points (its cluster) that is
closer to it than any other center;

3. Calculate new cluster centers as the centroids of the clusters;
4. If the cluster partition is stable, stop; else go to Step 2.

The c-means algorithm can be mathematically formulated as follows. Let X =
{x1, . . . , xN } be a set of objects and let assume xk ∈ R

p. The c-means algorithm
classifies objects in X into c disjoint subsets G1, . . . ,Gc, called clusters. In each
cluster Gi a center vi is determined. We denote by G = {G1, . . . ,Gc} the cluster
partition and by V = {v1, . . . , vc} the set of centers. G is a partition of X , that is
such that

⋃c
i=1 Gi = X and Gi ∩ G j = ∅ for i �= j . The objective function of the

minimization problem is

J (G, V ) =
c∑

i=1

∑
xk∈Gi

D2(xk, vi ) .

The c-means algorithm is the following:

1. Generate a set of initial centers V̄ = {v̄1, . . . , v̄c};
2. Allocate all objects xk to the cluster of the nearest center, that is calculate

Ḡ = argmin
G

J (G, V̄ ) (28.3)

3. Update cluster centers, that is calculate centers (as centroids, or center of gravity)
of new clusters Ḡi by solving

V̄ = argmin
V

J (Ḡ, V ) (28.4)

4. If Ḡ or V̄ is convergent, that is the new Ḡ (or V̄ ) coincides with the last Ḡ (or
V̄ ), stop; else go to Step 2.

28.3.2 Solution of c-Means Algorithm
with Euclidean Distance

If we use the Euclidean distance in R
p defined by D2(x, y) = ∑p

j=1(x
j − y j )2 for

all x = (x1, . . . , x p) and y = (y1, . . . , y p) in Rp, the solution of (28.4) is



28 A Cluster Analysis Approach for Rule Base Reduction 311

v̄i = 1

|Gi |
∑
xk∈Gi

xk , i = 1, . . . , c

that is, for all i = 1, . . . , c, the center v̄i = (v̄1
i , . . . , v̄

p
i ) is calculated as

v̄
j
i = 1

|Gi |
∑
xk∈Gi

x j
k j = 1, . . . , p .

28.3.3 Solution of c-Means Algorithm with Distance Dγ

Wenow discuss the solution of c-means algorithm in the case whenwe use a different
distance that we call Dγ(x, y). The obtained result will be used later for Rule base
reduction. For convenience, we formulate the problem in the spaceR2p. We consider
the following distance in R

2p

D2
γ(x, y) =

p∑
j=1

(x j − y j )2 + γ

2p∑
j=p+1

(x j − y j )2

for all x = (x1, . . . , x2p) and y = (y1, . . . , y2p), where γ > 0 is a parameter. The
c-means algorithm applied to the set X = {x1, . . . , xN }, with xk ∈ R

2p, using the
distance Dγ(x, y) leads to minimize the objective function

Jγ(G, V ) =
c∑

i=1

∑
xk∈Gi

D2
γ(xk, vi ) . (28.5)

Proposition 28.1 The solution of (28.4) (in Step 3 of c-mean algorithm) is

v̄i = 1

|Gi |
∑
xk∈Gi

xk i = 1, . . . , c . (28.6)

Of course, clusters G = (G1, . . . ,Gc) will depend on γ.

Proof By computation, we get

∂ Jγ

∂v
j
i

=
⎧⎨
⎩
2

∑
x∈Gi

(v
j
i − x j

k ) j = 1, . . . , p

2γ
∑

x∈Gi
(v

j
i − x j

k ) j = p + 1, . . . , 2p .
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By solving
∂ Jγ

∂v
j
i

= 0 and observing thatγ > 0weobtain (28.6). The assertion follows

taking into account the quadratic form of the minimization problem. ��

28.4 A Model for Rules Base Reduction
Using Cluster Analysis

We now propose a rule-base reduction method based on clustering techniques.

28.4.1 Fuzzy Systems

The knowledge of a FIS can be obtained from available data using some optimization
tool as a neural approach, or by direct elicitation from one or a group of Experts. In
the latter case, the Experts represent their knowledge by defining a set of inferential
rules. The input variables are processed by these rules to generate an appropriate
output. In the case of a FIS with n input variables, x1, . . . , xn and a single output y
(miso fuzzy system, [11]) every rule has the form

Ri : IF x1 is Ai,1 and . . . and xn is Ai,n THEN y is Bi i = 1, . . . , N

where Ai, j is a fuzzy sets of universe space X j and Bi is a fuzzy set of universe
space Y , and N is the number of rules. The fuzzy set Ai, j is the linguistic label
associatedwith j-th antecedent in the i-th rule and Bi is the linguistic label associated
with the consequent in the i-th rule. We recall that a linguistic label can be easily
represented by a fuzzy set [7]. The rule i , Ri , can be represented by the ordered couple

Ri =
(⋂n

j=1 Ai, j (x j ), Bi

)
, being Ai, j (x j ) the j-th component of the antecedent and

Bi the consequent, i = 1, . . . , N , and
⋂

is the conjunction operator.

28.4.2 Distance Between Fuzzy Numbers

We consider the distance between two fuzzy numbers defined in (28.2) as

dist2θ (A, B) =
∫ 1

0
d2

θ (Aα, Bα) f (α) dα

being dθ the distance between intervals defined in (28.1).
We denote T = T (m, s) a symmetric triangular fuzzy number with α-cuts Tα =

[m − s(1 − α),m + s(1 − α)], with α ∈ [0, 1]. We observe that if T1 = T1(m1, s1)
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and T2 = T2(m2, s2) are symmetric triangular fuzzy numbers and theweighting func-
tion f is defined by f (α) = 1 for all α, the distance between T1 and T2 is given by

dist2θ (T1, T2) = (m1 − m2)
2 + θ

3
(s1 − s2)

2 . (28.7)

28.4.3 Distance Between Rules

Let us consider a fuzzy system with n input variables (= number of antecedents of
each rule) and N rules

Rk =
⎛
⎝ n⋂

j=1

Ak, j (x j ), Bk

⎞
⎠ , k = 1, . . . , N

being Ak, j (x j ) the j-th component of the antecedent and Bk the consequent. We
define for θ ∈ [0, 1] the distance between antecedents as

D2
θ (Antk, Ant�) =

n∑
j=1

dist2θ (Ak, j , A�, j )

and the distance between consequents as D2
θ (Consk,Cons�) = dist2θ (Bk, B�). Fur-

thermore, we define the distance between rules (dissimilarity measure) by

D2
θ (Rk, R�) = D2

θ (Antk, Ant�) + D2
θ (Consk,Cons�) . (28.8)

We assume that the antecedent and consequent terms of each rule are symmetric
triangular fuzzy numbers, that is

Ak, j = T (mk, j , sk, j ) Bk = T (mB
k , sBk ) .

In this way, we can identify each rule Rk as a vector of R2n+2, that is

Rk = (mk,1, . . . ,mk,n,m
B
k , sk,1, . . . , sk,n, s

B
k ) .

Furthermore, we have

D2
θ (Antk, Ant�) =

n∑
j=1

(mk, j − m�, j )
2 + θ

3

n∑
j=1

(sk, j − s�, j )
2

and

D2
θ (Consk,Cons�) = (mB

k − mB
� )2 + θ

3
(sBk − sB� )2 .
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Thus, the distance between two fuzzy rules Rk and R� is

D2
θ (Rk , R�) =

n∑
j=1

(mk, j − m�, j )
2 + (mB

k − mB
� )2 + θ

3

⎛
⎝ n∑

j=1

(sk, j − s�, j )
2 + (sBk − sB� )2

⎞
⎠ .

28.4.4 Clustering Rules Using Distance

Let R = {R1, . . . , RN } be the set of Rules. The problem is to find a partition G =
{G1, . . . ,Gc} ofR and centers V = {Rv

1 , . . . , R
v
c } in order to minimize the objective

function

Jθ(G, V ) =
c∑

i=1

N∑
Rk∈Gi

D2
θ (Rk, R

v
i ) (28.9)

where Dθ(Rk, Rv
i ) is defined in (28.8). The algorithm we propose is the following:

1. Generate a set of initial centers V̄ = {R̄v
1 , . . . , R̄

v
c };

2. Allocate all Rules Rk to the cluster of the nearest center, that is calculate

Ḡ = argmin
G

Jθ(G, V̄ ) ; (28.10)

3. Update cluster centers, that is calculate centers (as centroids, or center of gravity)
of new clusters Ḡi by solving

V̄ = argmin
V

Jθ(Ḡ, V ) ; (28.11)

4. If Ḡ or V̄ is convergent, that is the new Ḡ (or V̄ ) coincides with the last Ḡ (or
V̄ ), stop; else go to Step 2.

28.4.5 Solution

Using the result proved in Proposition 28.1 with p = n + 1 (and thus 2p = 2n + 2)
and γ = θ/3, we can deduce that the solution of Step 3, V̄ = {R̄v

1 , . . . , R̄
v
c } with

R̄v
i =

⎛
⎝ n⋂

j=1

Āv
i, j (x j ), B̄

v
i

⎞
⎠ , i = 1, . . . , c
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is given by
Āv
i, j = T (m̄i, j , s̄i, j ) B̄v

i = T (m̄B
i , s̄ Bi )

where

m̄i, j = 1

|Gi |
∑
Rk∈Gi

mk, j , s̄i, j = 1

|Gi |
∑
Rk∈Gi

sk, j , (28.12)

and

m̄B
i = 1

|Gi |
∑
Rk∈Gi

mB
k , s̄ Bi = 1

|Gi |
∑
Rk∈Gi

sBk . (28.13)

28.4.6 Value and Ambiguity

We observe that solutions (28.12) and (28.13) can be rewritten (using arithmetic of
triangular fuzzy numbers), respectively, as

Āv
i, j = 1

|Gi |
∑
Rk∈Gi

Ak, j , B̄v
i = 1

|Gi |
∑
Rk∈Gi

Bk .

Using the properties of value Val f and ambiguity Amb f , it follows that

Val f ( Ā
v
i, j ) = 1

|Gi |
∑
Rk∈Gi

V al f (A
v
k, j ) , Val f (B̄

v
i ) = 1

|Gi |
∑
Rk∈Gi

V al f (B
v
k )

and

Amb f ( Ā
v
i, j ) = 1

|Gi |
∑
Rk∈Gi

Amb f (A
v
k, j ) , Amb f (B̄

v
i ) = 1

|Gi |
∑
Rk∈Gi

Amb f (B
v
k ) .

We observe that clusters G1, . . . ,Gc are dependent on parameter θ and thus they
reflect the relative importance assigned to ambiguities against the values.

28.5 Validity Index

Quality of centroid-based clustering is usually evaluated by internal validity indexes
(for a survey see [1]). There are many purposes to employ cluster validity measures;
one of themost important applications is to estimate the number of clusters. A reliable
validity index for the cluster algorithm must consider both cohesion (compactness)
within each cluster and separation between clusters. If only ameasure of compactness
is considered, the best partition is obtained when each data point is considered as
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a separate (singleton) cluster. On the other hand, if only a separation measure is
considered, the trivial solution corresponding to one cluster is obtained. In this section
wefirst give definitions for the separation and cohesionmeasures and thenwepropose
a validity index.

The separation measure, based on the distance from the cluster centroids to the
global centroid, is given by (note that

∑c
i=1 |Gi | = N )

Sθ = 1

N · c
c∑

i=1

Dθ(R
v
i , Rtot )|Gi |

where Rtot is the centroid of all the clusters. The cohesion (compactness) measure,
based on the distance from the points in a cluster to its centroid, is given by

Cθ = 1

c

c∑
i=1

⎛
⎝ 1

|Gi |
N∑

Rk∈Gi

Dθ(Rk, R
v
i )

⎞
⎠ .

We propose the following validity index

Vθ = h(Sθ,Cθ)

where the function h is increasing with respect to Sθ, decreasing with respect to Cθ

and bounded in [0, 1]. The higher the value of Vθ, the more suitable the number of
clusters. Thus we have to maximize Vθ. Examples of Vθ are

V 1
θ = Sθ

Sθ + Cθ

and (see the score function introduced in [14, 15])

V 2
θ = 1 − 1

eeSθ−Cθ
.

In order to apply our methodology, we have generated a FIS with 1000 rules.
Each rule is described by 5 fuzzy terms in the antecedent part and by 1 fuzzy term
in the consequent part. Each fuzzy term is modelled as a symmetric triangular fuzzy
number. Figure28.1 shows the evolution of validity index V 1

θ with respect to the
number of clusters for different values of parameter θ.

In Fig. 28.1 we have plotted the curve of the validity index as a function of number
of cluster c, from c = 2 to c = 20, for different (fixed) values of parameter θ, namely
θ = 0 (lower curve), θ = 0.1, θ = 0.5 and θ = 1 (upper curve). From the analysis of
the figure we may observe that the global maximum for θ = 0 is achieved at c = 5.
Furthermore the global maximum for θ = 0.1 and for θ = 0.5 is achieved at c = 6.
Finally, the global maximum for θ = 1 is achieved at c = 7.
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Fig. 28.1 Validity index V 1
θ for different values of parameter θ

28.6 Conclusion

In this paper we have proposed amethodology for a fuzzy system rule-base reduction
based on clustering techniques. As a future development, we intend to investigate
the effect of parameter θ on both solutions of cluster analysis and optimal number
of clusters.
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