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1 Introduction

Several real applications have required in the last decades the solution of both dense and
sparse challenging large scale linear systems. In a parallel process we have seen relevant
advances in the development of efficient and reliable iterative solvers for symmetric linear
systems [4]. More recently, parallel computing has also provided effective new tools to tackle
problems with specific structure [16, 15].

Iterative solvers for large linear systems often suffer from finite precision along with round-
off in the computation. However, depending on the problem in hand, the linear systems in
optimization frameworks may possibly not require large accuracy in the solution. In these
cases the stability analysis provides key suggestions [11], for the practical implementation
of the algorithms. In addition, optimization frameworks often require the computation of
reliable search directions, whose effective computation may result from the use of appropri-
ate linear systems solvers, based on conjugate directions. Indeed, Newton-type directions
can be easily generated using conjugate vectors, both with positive definite and indefinite
linear system [7, 5, 2].

Here we propose a 3-term conjugacy recurrence for solving symmetric positive definite
linear systems. We analyze some theoretical properties of the new algorithm, aiming to
possibly controlling the inaccuracy which arises in the CG. To a large extent our method
encompasses the CG and has some similarities with the Lanczos process, which belongs
to the class of 3-term recurrence iterative methods, too. Now we briefly review the latter
methods (see also [6]), in order to detail the differences with our proposal.

The CG algorithm is commonly used to iteratively solving the linear system

Az =D, (1)

where A € R™™ "™ is symmetric positive definite, b € IR™. Observe that the CG is often
applied to the preconditioned version of (1), i.e. MAxz = Mb, where M > 0 is the pre-
conditioner. Though the theory for the CG requires A to be positive definite, in several
practical applications the CG is successfully used when A is indefinite, too [9]. The CG
method is reported in Table 1, and at Step k it iteratively generates the pair of vectors rg
and pg. The sequences {ry} (residuals) and {pr} (conjugate directions) satisty at Step k [6]

orthogonality property : riTrj =0, 0<i+#j<k, (2)
conjugacy property : pl Ap; =0, 0<i#j<k, (3)

and the CG method solves (1) in at most n iterations (finite convergence), i.e. Axj, = b for
some h < n. Condition (2) states that at Step k, the CG method computes the residual ry,
such that the so called Ritz-Galerkin condition

T L Kg—1(ro, A)
holds with

Kr_1(ro, A) = span{b, Ab, A%b, ..., A*¥"1b} = span{ro,..., 41},



where Ki_1(rg, A) is a Krylov subspace of dimension k. Moreover, the direction py is
computed at Step k& by imposing the conjugacy condition pgApk_l = 0. It can be proved
that the latter condition implicitly satisfies relations (3). Moreover, the vectors {po, ..., px}
are linearly independent.

We remark that on practical problems, due to finite precision and roundoff in the iterative
computation of the sequences {py} and {ry}, if |¢ — j| is large relations (2)-(3) may fail.
Thus, in the practical implementation of the CG, some theoretical properties may not be
satisfied and in particular the conjugacy properties (3) may progressively fail.

The Lanczos process (see Table 2) is another iterative Krylov-based method, widely
used to solve (1) or its preconditioned version. Unlike the CG, here the matrix A is pos-
sibly indefinite (though non singular). Similarly to the CG, at Step k the Lanczos process
generates the sequence {uy} (Lanczos vectors) which satisfies at Step k

orthogonality property : uTuj =0, 0<i#j<k.

)

In addition, in at most n steps (finite convergence) the Lanczos process provides the solution
of (1). Observe that by a simple inspection of Step k in Tables 1 and 2, the CG is slightly
computationally cheaper than the Lanczos process. On the other hand, the CG is slightly
less efficient than the Lanczos process if no preconditioning is used [1]. We recall that
both the CG and the Lanczos process are 3-term recurrence methods, with respect to the
residuals and the Lanczos vectors. In other words, the following relations hold for £ > 1

Tht1 € span{Ary, Ty, Th—1}

ug11 € span{ Aug, ug, up_1}.

Whenever A is positive definite and xg = 0 in Tables 1-2, a full theoretical correspondence
between the sequences {r;} and {uy} is known [3], being
Up = Skrik, S € {—1,+1}.
(7%l
Unfortunately, in practical computation the latter theoretical correspondence may be un-
attainable, due to the nature of matrix A.

The algorithm CG_2step provides a framework which partially encompasses the CG
and resembles the Lanczos process. In particular, the CG_2step generates both conjugate
directions and orthogonal residuals, as the CG and the Lanczos process. However, the
CG_2step yields a 3-term recurrence with respect to conjugate directions, and a 4-term
recurrence with respect to the residuals. We remark that our proposal draws its inspiration
from the necessity to delay the conjugacy loss of the CG, which occurs in (3) when |i — j|
is large and finite precision is adopted.

We complete this section observing that the CG in Table 1 simply stores at Step k the
vectors r,_1 and pg_1, in order to compute respectively 7, and pi. Unlike the CG, at Step
k our method requires the storage of one additional vector (namely pp_5), which contains
some information from iteration k — 2. The idea of storing at Step k some information from
iterations preceding Step k£ — 1, is not new for Krylov-based methods. Some examples which



differ from our approach are [15], for unsymmetric linear systems.

In this paper we only use standard notation and symbols. In Section 2 we describe
our method and some related properties. Section 3 shows a numerical experience with our
proposal, without introducing preconditioning. Then, in Section 4 we detail and comment
the preconditioned version of our method. Finally, the section of Conclusions completes the
paper and specifies the future work.

2 The CG_2step method

We sketch in Table 3 our new CG-based algorithm, namely algorithm CG_2step. We high-
light that the computation of the direction pi at Step k is the relevant difference between
the CG and the CG_2step method. In particular, in Table 3 the pair of coefficients o;_1
and wy_1 is computed so that

pEApe—1 = 0

(4)

PrApL—2 = 0,
i.e. the conjugacy between the the direction p; and both the directions pr_1 and pg_o is
imposed. On the other hand, the residual 7 is computed by imposing the orthogonality
condition r,{pk_l = 0, as in the standard CG. The resulting method is evidently a bit more
expensive than the CG. Moreover, observe that after some computations we can prove that
Tip+1 € span{Arg, 1k, Tk—1,Tk—2}. Thus, CG_2step provides a 4-term recurrence with respect
to the residuals, and a 3-term recurrence with respect to the conjugate directions.

Assumption 2.1 The matriz A in (1) is symmetric positive definite.

Lemma 2.1 Let Assumption 2.1 hold. At Step k of the CG_2step algorithm we have

Ap; € span{pj+1,pjpj-1},  J<k—1. (5)
Proof
From the Step 0 of CG_2step, relation (5) holds for j = 0. Then, for j = 1,...,k — 1 the
Step j + 1 of CG_2step directly yields (5). O

Theorem 2.2 Let Assumption 2.1 hold. At Step k of the CG_2step algorithm the directions
D0, P1, - - - P are mutually conjugate, i.e. piTApj =0, with0<i#j<k.

Proof
The statement holds for k = 1, as a consequence of the choice of the coefficient oy at Step 0.
Suppose it holds for k£ — 1; then, we have

pEAp; = (Apr-1— 0k_1Pk—1 — wi—1Pk—2)" Ap;
= (Ape—1)"Apj — ok—1ph 1 Apj — wiapf o Ap; = 0, j<k-—1L
In particular, for j = k — 1 and j = k — 2 the choice of the coefficients oj_1 and wg_1 yields

directly pprk,l = pgApk,Q = 0. For j < k — 2, the inductive hypothesis and Lemma 2.1
again yield the conjugacy. O



Lemma 2.3 Let Assumption 2.1 hold. Then we have at Step k of the CG_2step algorithm

(Api)"(Api) = ¢ pfAps, if =k -1,
0, if ¢ <k-—2.
Proof
The statement is a trivial consequence of Step k, Lemma 2.1 and Theorem 2.2. O

Observe that from the previous lemma, a simplified expression for the coefficient o_o,

at Step k of CG_2step is available, inasmuch as
P;;F_lApkq
h= Ph_oApk—2 (©)

Relation (6) has a remarkable importance: it avoids the storage of the vector App_o at
Step k, requiring only the storage of the quantity pg_QApk,g. Also observe that despite
the CG, the sequence {ry} in CG_2step is computed independently from the sequence {p}.
Moreover, the residual 7 is simply computed at Step k in order to check the stopping
condition for the algorithm.

The following result proves that the CG_2step algorithm substantially recovers the main
theoretical features of the standard CG.

Theorem 2.4 Let Assumption 2.1 hold. Let rpy1 # 0 at Step k + 1 of the CG_2step

algorithm. Then, the directions pg,p1,...,pr and the residuals ro,r1, ... ,Tp+1 Satisfy
reap; = 0, j <k, (7)
oy = 0, j<k. ®)
Proof

From Step k£ + 1 of CG_2step we have 741 =1, — apApp =15 — Zf:j a; Ap;, 7 < k. Then,
from Theorem 2.2 and the choice of coefficients a; we obtain
T

k k
vy = (=D idpi | pp o= ripi— > aip! Ap; =0, j<k,
i=j i=j

which proves (7). As regards relation (8), for K = 0 we obtain from the choice of ag
rlTro = r{pg = 0.

Then, assuming by induction that (8) holds for k£ — 1, we have

j—1
T T
riary = (e —arApp)' = (rg — ax Apy) (7“0 - Z%‘M%)
i=0
j—1 j—1
= riro— Y airf Api — agpl Aro + > aion(Apy) " Aps, Jj<k
i=0 i=0



The inductive hypothesis and Theorem 2.2 yield

j—1 Jj—1
riary = =Y oarf (pir1 +oipi Hwipio1) + > i (Ap) " Ap;, J<k. (9
i=0 i=0

Therefore, if j = k the relation (7) along with Lemma 2.3 and the choice of «y, yield
Pepith = —agaripk + agaagp Apy, = 0.

On the other hand, if j < k in (9), the inductive hypothesis, relation (7) and Lemma 2.3
yield (8). O

Finally, we prove that likewise the CG algorithm, in at most n iterations CG_2step
determines the solution of the linear system (1), so that finite convergence holds.

Lemma 2.5 Let Assumption 2.1 hold. Then, at Step k of the CG_2step algorithm the
vectors pg, . .., pr are linearly independent.

Proof
Let by contradiction

k
Y vpi=0, veRF y#£0. (10)
=0

Then, multiplying (10) by App, with 0 < h < k, we obtain

k
> vipkApi=0, yeRF y#£0,
=0

and the conjugacy yields for 0 < h < k

k

0=">_%ipj, Api = WD}, Aph.
=0

Finally, since A is positive definite the last equality implies v, = 0, for any 0 < h < k,
which contradicts relation (10). O

Theorem 2.6 Let Assumption 2.1 hold. Then, in at most n iterations the CG_2step algo-
rithm computes the solution of the linear system (1), i.e. Az =b, where h < n.

Proof
From relation (8) at most n orthogonal residuals may be generated in the sequence {r},}.
Thus, suppose at Step h we have r, = 0, with h < n. Then, by definition

h—1

Th =20+ Y ayp;, (11)
i=0



therefore, recalling that r, = o — Z?;é a;Apj, multiplying (11) by —A and adding b we
obtain

h—1
b— Axp =rg — ZajApj =r, =0,
§=0
which proves that xj, is a solution of the linear system Az = b. O

We observe that the geometry of vectors {px} and {r;} in CG_2step is substantially
different with respect to the CG. Indeed, unlike the latter scheme where r} pj = ||rg||> > 0,
for any k, for the CG_2step we have

P Api (Apr—1)TApr, [EAls _klPri Aps

ph  Apra pl  Apr_1 k1Pt Apr—1 rEperl pe—1’

and since A = 0 we obtain
(Tgpk)(rkqukq) < 0.

2.1 Issues on the conjugacy loss

Here we consider a simplified approach to describe the conjugacy loss for both the algorithms
CG and CG_2step, under Assumption 2.1. Suppose that both the algorithms CG and
CG_2step performed Step k£ + 1, and in the practical implementation a nonzero conjugacy
error €y ; respectively occurs between directions py and p;, j < k, i.e.

erj = DLAD; # 0, j<k.
Then, we calculate the conjugacy error
Erily = Phy1AD), J<k,

for both the CG and the CG_2step. First observe that at Step k+ 1 of Table 1 we have

i1 = (rear + Gupr)” Ap;
(12)
= (pr — Br_1pr1 — cxApr)" Ap; + Brer
(13)
= (14 Br)er; — Br-16k-1,5 — ar(Apr)" Ap;. (14)

Then, from relation Ap; = (r; — rj+1)/; and relations (2)-(3) we have for the CG

_p(Z{Apk> j:k_]-a
T k—1
(Apr)” Ap; =
0, j<k-—2.



Thus, observing that for the standard CG ¢;;,-1 = 0 and ¢;; = p;fFApi, 1 <1< k+1, after
some computation we obtain from (14)

@, ] = ka
0, j=k—1,
€kl = (15)
(1 + Br)ek k-2, j=k—2,
(1 + Br)er,j — Br—1€k—1,5 + Xy, Jj<k-3,

where ¥;; € IR summarizes the contribution of the term ak(Apk)TApj, due to a possible
conjugacy loss.

Let us consider now for the CG_2step algorithm a result similar to (15). We obtain the
following relations for 1 < j <k

T
ert1j = Pradp; = [Apk — orpr — wipk—1]" Apj
= (Apr)" Apj — oe; — wrer-1
= (Apr)" pj+1 + ojpj + wipj—1] — okerj — wWrk-1,

= kg1 o5 — okl En; + wigk -1 — wker-14,
and considering (4), the conjugacy among directions pg, p1, .. ., pg satisfies
eny = ppAp = 0, forany | h—1| e {1,2}. (16)

Thus, relation (6) and the expression of the coefficients in CG_2step yields

0, J=k,
0, j=k—-1,
Ektl)j = § W28k k-3 J=k-2, (17)
[0k—3 — O] €k k=3 + Wh—3Ek k—45 J=k-=3,
Ekj1 + [0j — Opl €pj + Wik j—1 — WrEk—1,, J<k—4

Finally, comparing relations (15) and (17) we have

e in case j = k — 2 respectively the conjugacy error €41 r—2 is nonzero for both the
algorithms. However, for the standard CG

€k+1,k—2 > Ekk—2

7



since (1 + ;) > 1, which theoretically can lead to an harmful amplification of con-
jugacy errors. On the contrary, for the CG_2step the positive quantity wyp_o in the
expression of €541 r—2 can be possibly smaller than one.

Furthermore, we also have the following results which describe the sensitivity of the
coefficients o} and wy to the condition number x(A) (A, (A) and Ay(A) are the
smallest /largest eigenvalues of A):

T roreedl, = gl
A - M Prk—1 K Prk—1
or = R 2 2 (18)
k—14Pk—1 A (Alpell® |2l
S AP = A et
> )\%L(A)Hpk||2 — )\m(A)
| Apg |2 = A (A)[Ipx? r(A4)
o) = 1Anel (19)
pr Apy X2, (A) I

IN

TP = A (A)R(A).

This seems to indicate (as expected) that keeping x(A) sufficiently close to one (with
Am &~ Ay ~ small) may be crucial for the success of CG_2step (see Section 4).

e for the CG_2step algorithm relation (16) holds, while for the CG algorithm we have
epy = 0 for | h — 1 |=1, which is a weaker condition.

3 Numerical results without preconditioning

We include some numerical results, where we compare the performance of the CG and the
CG_2step (implemented as in Tables 1 and 3) to solve linear system (1). In the compar-
ison we consider the positive definite matrix A with n = 300, then the condition number
Kk = Anr/Am of matrix A is suitably assigned. Here, 0 < \,,, < Aps are respectively the small-
est/largest eigenvalue of A. In particular, we consider in Tables 6-7 the values k = exp(2h),
h =0,...,3. Moreover, though \,, and Aj; are assigned, the intermediate eigenvalues \;,
i=2,...,n—1, of matrix A (i.e. Ay, < \; < Aps) are randomly chosen.

The parameter it represents the number of iterations which are necessary to satisfy the
stopping condition [|7*||/||r1| < 1078, where r* = b — Az* is the last computed residual.

We checked both the conjugacy (among the directions pi,...,pg) and the orthogo-
nality (among the residuals rq,...,7;) by reporting the quantities p? Apy./(|[p1|||lpx|]) and
e/ [llmelD)s &k € {3,5,7,9,11,13,15}. Observe that from Table 7, in accordance with
Section 2, the generation of the sequence {r;} substantially coincides for algorithms CG
and CG_2step, i.e. the orthogonality loss is not a critical issue.
Finally, each row in Tables 6-7 summarizes the average results on 10 randomly generated
instances, with the described parameters of matrix A. The starting point xg was randomly
chosen, too.

Evidently, considering the number of iterations it, the standard CG algorithm outper-
forms the CG_2step method. In addition, when k(A) is relatively small both conjugacy
and orthogonality conditions of the CG and the CG_2step are comparable. Unfortunately,



Step 0: Set k=0, zo € R", rg =b— Axy.

If ro = 0, then STOP. Else, set pg =rg, k =k + 1.
Step k: Compute dy_1 = pi_ | Apy_1, a1 = r{_1pk—1/dk—1,

Tp = T—1 + Qg—1Pk—1,

Tk =Th—1 — Qp_1App_1.

If rj, = 0, then STOP. Else, set Bx_1 = ||7&||?/||7e—1l?,

Pk =Tk + Br—1Pk—1, k—k+ 1.

Go to Step k.

Table 1: The CG algorithm for solving (1).

Step 0: Set k=0, zg € IR", vg = b — Axy.
Set ug = O, 50 = Hb”
Step k: If 0 =0, then STOP. Else, set
Up1 = V[0, k—k+1, v =u} Aug,
v = Aug — Ypup — Op—1Uk—1,
5 = llowl.
Go to Step k.

Table 2: The Lanczos process for solving (1).

higher values for xk(A) determine numerical instability for the latter method. This can be
explained by recalling that from Table 3, at step k of CG_2step the coefficient oy _1 strongly
depends on the condition number of matrix A%, indeed by (19) it depends on Ay; and x(A).

4 The Preconditioned CG_2step

In this section we propose the preconditioned version of algorithm CG_2step, in order to

comply with the drawback highlighted at the end of the previous section.
Let M € IR™ ™ be nonsingular and consider the linear system (1). Since we have

MTM) " Aw = (MTM) b
M TAM Y)Y Mz =M"Tb

i=b,

Ar =b +—

—

—

|

N

—

where

M TAM!
Mx
= M Th,

N
I

o &I

(20)

(21)

(22)



Step 0: Set £ =0, 29 € IR™, ro = b — Axy.
If ro = 0, then STOP. Else, set pg =19, k<« k+ 1.
[l Apoll? an — lroll
pi Apo ’ pd Apo’
T1 = To + qoPo, T1 =70 — apApo.
If 1 = 0, then STOP. Else, set
p1 = Apo — oopo, k —k+ 1.

Set o =

Api—1]? (Apr— )T Apy_o _ PE_1APk—1 T PE—1
Ste k: Set OL_1 = ”7 We_1 = = N 1 — 77—
p k—1 pi | App—1’ k-1 pL L Apk_s pi L Apg_2’ k—1 pi  Apr_1

Tp = Tp—1 + Qp—1Dk—1, Tk = Th—1 — Cp—1App_1.
If 7, = 0, then STOP. Else, set

Pk = App—1 — Op—1Pk—1 — Wk—1Pk—2, k — k+ 1.
Go to Step k.

Y

Table 3: The new CG_2step algorithm for solving (1).

Step 0: Set k=0, Zg € R", 7y = b — AZy.

If 79 = 0, then STOP. Else, set pg = 79, k «— k+ 1.

~ _ |l Apol® - 7oll®

Set 00 = Tropy > 0 = pTas

Ty = To + aopo, T1 = To — aoApo.

If 71 = 0, then STOP. Else, set

p1 = Apo — oopo, k—k+1.
. Set 5y = JABal® o P APy o TPk
Step k: Set oy = ;0 T Wk-1= 51 55— WL = T Appy
Tp =Ty 1+ Qg 1Pk—1, Tk = Th—1 — Q1 ADp—1.
If 7, = 0, then STOP. Else, set
Pk = APpg—1 — Op—1Pk—1 — Wp—1Pk—2, kK —k+ 1.
Go to Step k.

Table 4: The new CG_2step algorithm for solving the linear system AZ = b in

10

(21).




Step 0: Set k=0, zg € R", ro = b — Axyg.
If rg = 0, then STOP. Else, set pg = Mrg, k«— k+ 1.

Apoll3 T po
Set opg = l14polli ag = —2
0 pd Apo p Apo’

x1 = w9 + ppo, T1 =T — pApo.

If 1 =0, then STOP. Else, set

P1 = MApo — 00pPo, k‘ — k‘ -+ 1.

) _ 1Ape_all3, _ Ph1APk—1 _ ThoiPr—1

Step k: Set 041 = i App_1’ W pl L App—2’ Ak—1 = Pl App_q

Tp = Th—1 + Qp—1Ph—1, Tk = Th—1 — Ok—1APk_1.

If 7, = 0, then STOP. Else, set

pr = MApp_1 — Op—1Pk—1 — Wk—1Pk—2, kK —k+ 1.

Go to Step k.

)

Table 5: The new preconditioned CG_2step algorithm for solving (1).

solving (1) is equivalent to solve (20) or (21). Moreover, any eigenvalue \;, ¢ = 1,...,n,
of M—TAM™" is also an eigenvalue of (]\4TM)71 A. Indeed, if (MTM) YAz, = Nz,
i=1,...,n, then

(M7IMT) AM ™ (M z;) = Nz

and

MTAM Y (Mz) =\ (Mz).
Now, let us motivate the importance of selecting a promising matrix M in (21), in order to
reduce x(A) (or equivalently to reduce x[(MTM)~LA]). Observe that by using Chebyshev

polynomials analysis we can prove that in exact algebra, for the CG and the CG_2step the
following relation holds under the Assumption 2.1 (see [6] for details, and a similar analysis

holds for CG_2step)
k
—z* A)—1
[ an<2< w(A) )7 (23

Jeo—a7lla =\ \/m(A) + 1

where [lz; — 2*||a = [(z; — 2*)T A(z; —2%)] /", i > 1, and Az* = b. Relation (23) reveals
the strong dependency of the iterates generated by the CG and the CG_2step on k(A). In
addition, if the CG and the CG_2step are used to solve (21) in place of (1), then the bound
(23) becomes

1/2

Hm—wWA<2< ﬂ@ﬂwn*m—m>ﬂ o)

2o —a*la = \ /k[(MTM)=1A] +1

which encourages to use the preconditioner (MT M)~! when x[(MT M)~ A] < k(A).

On this guideline we want to introduce preconditioning in our scheme CG_2step, for solving
the linear system (21), where M is non-singular. We do not expect that when M =TI (i.e.
no preconditioning is considered) CG_2step outperforms the CG. Indeed, Table 6 confirms
the opposite: M = I implies that at Step k of Table 3 the numerator of the coefficient oj_1

11



" it plTAps 1 Aps p?Am plTApg p?Apn p?Ams pTAms
llpllIpsll P2 llipsll o1 7l o1 [Ipoll [lpalllp1all [lp1llllp1sll P11l
exp(0) 1.0
exp(2) 24.0 || 0.0E + 00 0.6E — 15 0.1F—-15 | —0.6E—15 | —0.3E —14 | —0.3E — 14 0.1F — 14
exp(4) 60.6 || 0.OE+00 | 08K —14 | —0.1E —12 | —02E —-12 | —02FE —-12 | —0.3E —12 | —0.5F — 12
exp(6) | 137.2 || 0.0E 4+ 00 | —0.1E —12 | —0.3F — 11 | —0.5E — 11 0.3F — 11 0.1FE — 10 0.4FE — 10
K it p{ Aps p{ Aps p{ Apy p{ Apg p{ Ap11 p{ Apis p{ Apis
e llpsll [FZIEE [lp1 (7]l [lp1 [l ll [lp1lllp1all [lp1llllp1all lp1[llp1s5l
exp(0) 1.0
exp(2) 46.0 || 0.0E + 00 02F —14 | —0.3E —14 | —0.3E — 14 0.3F — 14 03F —14 | —0.3E — 14
exp(4) | 119.0 || 0.0E +00 | —0.3E — 13 0.3E — 13 05E —13 | —0.4F —13 | —0.7TE — 13 0.3E —13
exp(6) | 272.0 || 0.0E + 00 0.3F — 13 0.2F — 11 0.6F — 12 0.2F — 12 0.3F — 12 0.2F — 11

Table 6: The conjugacy loss for the CG method (above) and the CG_2step method (below).

depends on A2, which can be seriously harmful in case x(A) increases. On the contrary,
suppose a suitable preconditioner M = (M7 M)~! is selected when r(A) is large. Then,
since the algorithm CG_2step imposes stronger conjugacy conditions with respect to the
CG, it may possibly better recover the conjugacy loss.
We will soon see that M in CG_2step is just used to compute the product Mpy_1, i.e. we
do not need to store the possibly dense matrix M.
The algorithm CG_2step for (21) is described in Table 4, where of course each ‘bar’
quantity has a corresponding quantity in Table 3. After substituting the positions

in Table 4, the vector p; becomes

hence

with

T = Muxy

pe = Mpg

e = M_T’I"k
M = (MTM)™,

pr = MApP_1 — Op—1Pk—1 — Qk—1Dk—2

| M~T Apg_1||? _ (Apr—1)" MApy_1

pf_lApkq
ph  MTM-TAM'Mpy,_y - ph  Apra

pf_lApkq

P = Mpy =M TAM " Mpy_y — 541 Mpj_1 — @p_1 Mpp_2,

P MTM-TAMMpy_s  p} o Apr—2

12

(25)



T T T T T T ya
173 T17T5 Ty TT7 T17T9 71 T11 71 T13 71 T15

EEVIER] llralifirsl [Fra ({7l [frafifiroll flra il [EENIERE] lrlifirasll

] 1.0
(2) | 24.0 || 0.0E+00 | —0.7E—16 | 0.7TE—15 | —03E—14 | —0.9E —15 | —0.4E —14 | 02E —14
exp(4) | 60.6 || 0.0E+00 | —0.2E—14 | —0.1E—13 | —02E —13 | —0.3E —13 | —0.4E —13 | —0.5E — 13
(6) | 137.2 || 0.0E+00 | —0.1E—13 | —0.1E—13 | —0.1E—12| 03E—13| 02E—12| 05E—12

T T T T T T T
Ty T3 T T5 T TT Ty T9 T T11 T T13 ™| T15

[ESNIESY] [ESIESYT [ESNEdl [ESNIER] [ESNIIESEY] S ESTY] lrafilras il

0] 10
(2) | 46.0 || 00E+00| 02E-13| 03E—13| 04E—13| 01E—12| 03E—12| 0.6E—12
exp(4) | 119.0 || 0.0E+00 | —0.1E—13 | 08E—14| 03E—13 | —06E—14 | —06E—13 | 0.1E—13
(6) | 272.0 || 0.0E+00 | —0.1E —12 | —0.2E — 12 | —0.1E — 12 | —0.2E — 12 | —0.2E — 12 | —0.4F — 12

Table 7: The orthogonality loss for the CG method (above) and the CG_2step method
(below).

Moreover, relation 7o = b — AZg becomes
M Trg=M"To— M TAM Mz, — ro = b — Axg,

and since pg = Mpg = 7o = M~ Try then pg = Mrg, so that the coefficients 69 and &g
become
poM M TAM M TAM " Mpo _ (Apo)" M(Apo) _ [ Apolli
g Apo P Apo g Apo
TOTM_lM_Tro _ T(%FMTO _ rgpo ‘
pEMTM-TAM-'Mpy  pYApo & Apo

(27)

As regards relation p; = Apy — dopo we have
Mpy = M~ AM ™" Mpy — 5o Mpo,

hence
p1 = MApy — Fopo.

Finally, 7, = M~ "7, implies
=M Try =M "Tr_ — a1 M TAM "Mpy,_1,

so that
TR = Tp—1 — Qp—1ADPp_1
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and . . -
T M~ Mpg—1 _ Tp_1Pk—1

ol MTM-TAM~*Mpy_y  p}_Ape_1

Qf—1

The overall resulting preconditioned algorithm CG_2stepay is detailed in Table 5. Observe
that the coefficients ay_1 and wj_1 in Tables 3 and 5 are invariant under the introduction
of the preconditioner M (also observe that from (26) and (27) ox_; now depends on AMA
and not on A2%). Moreover, we recall that in Table 5 the introduction of the preconditioner
simply requires at each iteration k the additional cost of the product M x (Apy) (similarly
to the preconditioned CG, where at each iteration k the additional cost is given by M x r).
Finally, in Table 5 at iteration 0 the products Mrg and M(Apg) are both required, in
order to compute oy and ag. This is just appearantly a drawback; indeed, considering that
Step 0 of CG_2step is equivalent to two iterations of the CG, then the additional cost of
preconditioning CG and CG_2step is the same.
Furthermore, there is an additional chance to replace the Step 0 in Table 3, with the
following

Step 0: Set k=0, g € R", r9g = b — Axyg.
If ro = 0, then STOP. Else, set pg = rg, k «— k+ 1.
l[oll?
pd Apo’
T1 = T + aopo, T1 =10 — apApo.

If r{ = 0, then STOP. Else, set o¢ = ””‘:z,

vl

Set o =

p1 =11 —0ogpo, k—k+1.

which substantially corresponds to perform two steps of the CG. All the main results still
hold almost unchanged (some adjustments in Lemma 2.3), as well as the possibility of
preconditioning the resulting new CG_2step.

5 Conclusions

We have proposed a CG-based method, namely the CG_2step algorithm, for the iterative
solution of the symmetric positive definite linear system (1). Our method, which is based
on the generation of conjugate directions, is slightly more expensive at Step k£ than the CG,
and it requires the storage of one further vector. However, we proved for the CG_2step
some theoretical properties, which are stronger than those provided for the CG method.
Furthermore, we introduced preconditioning in our proposal, so that at Step k it may likely
prevent from the conjugacy loss between the directions p; and pj_s.

We are considering a numerical experience, which includes convex optimization problems
from CUTEr collection [8], where our preconditioned scheme is adopted to solve Newton’s
equation. In particular we want to investigate the choice M ~ A~!, where M is computed
as a Quasi-Newton approximation of the inverse matrix A=! (see also [3]).
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