
Department of Applied Mathematics, University of Venice

WORKING PAPER SERIES

Giovanni Fasano

Notes on a 3-term Conjugacy Recurrence

for the Iterative Solution of Symmetric

Linear Systems

Working Paper n. 179/2008

November 2008

ISSN: 1828-6887

This Working Paper is published under the auspices of the Department of Applied

Mathematics of the Ca’ Foscari University of Venice. Opinions expressed herein are

those of the authors and not those of the Department. The Working Paper series is

designed to divulge preliminary or incomplete work, circulated to favour discussion

and comments. Citation of this paper should consider its provisional nature.

Notes on a 3-term Conjugacy Recurrence for the

Iterative Solution of Symmetric Linear Systems∗

Giovanni Fasano
<fasano@unive.it>

Dept. of Applied Mathematics

University of Venice

(November 2008)

Abstract. We consider a 3-term recurrence, namely CG 2step, for the iterative solution of
symmetric linear systems. The new algorithm generates conjugate directions and extends
some standard theoretical properties of the Conjugate Gradient (CG) method [10]. We
prove the finite convergence of CG 2step, and we provide some error analysis.
Then, we introduce preconditioning for CG 2step, and we prove that standard error bounds
for the CG also hold for our proposal.

Keywords: Iterative methods, 3-term recurrences, Conjugate Gradient method, Error
Analysis, Preconditioning.

JEL Classification Numbers: C61, C63.

MathSci Classification Numbers: 90C99, 65K05.

Correspondence to:

Giovanni Fasano Dept. of Applied Mathematics, University of Venice
Dorsoduro 3825/e
30123 Venezia, Italy

Phone: [++39] (041)-234-6922
Fax: [++39] (041)-522-1756
E-mail: fasano@unive.it

∗ The author thanks Progetto di Ricerca VISIR and Programma PRIN 20079PLLN7 “Nonlinear Opti-

mization, Variational Inequalities, and Equilibrium Problems”, for the support received.

1 Introduction

Several real applications have required in the last decades the solution of both dense and
sparse challenging large scale linear systems. In a parallel process we have seen relevant
advances in the development of efficient and reliable iterative solvers for symmetric linear
systems [4]. More recently, parallel computing has also provided effective new tools to tackle
problems with specific structure [16, 15].
Iterative solvers for large linear systems often suffer from finite precision along with round-
off in the computation. However, depending on the problem in hand, the linear systems in
optimization frameworks may possibly not require large accuracy in the solution. In these
cases the stability analysis provides key suggestions [11], for the practical implementation
of the algorithms. In addition, optimization frameworks often require the computation of
reliable search directions, whose effective computation may result from the use of appropri-
ate linear systems solvers, based on conjugate directions. Indeed, Newton-type directions
can be easily generated using conjugate vectors, both with positive definite and indefinite
linear system [7, 5, 2].

Here we propose a 3-term conjugacy recurrence for solving symmetric positive definite
linear systems. We analyze some theoretical properties of the new algorithm, aiming to
possibly controlling the inaccuracy which arises in the CG. To a large extent our method
encompasses the CG and has some similarities with the Lanczos process, which belongs
to the class of 3-term recurrence iterative methods, too. Now we briefly review the latter
methods (see also [6]), in order to detail the differences with our proposal.

The CG algorithm is commonly used to iteratively solving the linear system

Ax = b, (1)

where A ∈ IRn×n is symmetric positive definite, b ∈ IRn. Observe that the CG is often
applied to the preconditioned version of (1), i.e. MAx = Mb, where M ≻ 0 is the pre-
conditioner. Though the theory for the CG requires A to be positive definite, in several
practical applications the CG is successfully used when A is indefinite, too [9]. The CG
method is reported in Table 1, and at Step k it iteratively generates the pair of vectors rk

and pk. The sequences {rk} (residuals) and {pk} (conjugate directions) satisfy at Step k [6]

orthogonality property : rT
i rj = 0, 0 ≤ i 6= j ≤ k, (2)

conjugacy property : pT
i Apj = 0, 0 ≤ i 6= j ≤ k, (3)

and the CG method solves (1) in at most n iterations (finite convergence), i.e. Axh = b for
some h ≤ n. Condition (2) states that at Step k, the CG method computes the residual rk

such that the so called Ritz-Galerkin condition

rk ⊥ Kk−1(r0, A)

holds with

Kk−1(r0, A) = span{b, Ab, A2b, . . . , Ak−1b} ≡ span{r0, . . . , rk−1},

1

where Kk−1(r0, A) is a Krylov subspace of dimension k. Moreover, the direction pk is
computed at Step k by imposing the conjugacy condition pT

k Apk−1 = 0. It can be proved
that the latter condition implicitly satisfies relations (3). Moreover, the vectors {p0, . . . , pk}
are linearly independent.
We remark that on practical problems, due to finite precision and roundoff in the iterative
computation of the sequences {pk} and {rk}, if |i − j| is large relations (2)-(3) may fail.
Thus, in the practical implementation of the CG, some theoretical properties may not be
satisfied and in particular the conjugacy properties (3) may progressively fail.

The Lanczos process (see Table 2) is another iterative Krylov-based method, widely
used to solve (1) or its preconditioned version. Unlike the CG, here the matrix A is pos-
sibly indefinite (though non singular). Similarly to the CG, at Step k the Lanczos process
generates the sequence {uk} (Lanczos vectors) which satisfies at Step k

orthogonality property : uT
i uj = 0, 0 ≤ i 6= j ≤ k.

In addition, in at most n steps (finite convergence) the Lanczos process provides the solution
of (1). Observe that by a simple inspection of Step k in Tables 1 and 2, the CG is slightly
computationally cheaper than the Lanczos process. On the other hand, the CG is slightly
less efficient than the Lanczos process if no preconditioning is used [1]. We recall that
both the CG and the Lanczos process are 3-term recurrence methods, with respect to the
residuals and the Lanczos vectors. In other words, the following relations hold for k ≥ 1

rk+1 ∈ span{Ark, rk, rk−1}

uk+1 ∈ span{Auk, uk, uk−1}.

Whenever A is positive definite and x0 = 0 in Tables 1-2, a full theoretical correspondence
between the sequences {rk} and {uk} is known [3], being

uk = sk
rk

‖rk‖
, sk ∈ {−1,+1}.

Unfortunately, in practical computation the latter theoretical correspondence may be un-
attainable, due to the nature of matrix A.

The algorithm CG 2step provides a framework which partially encompasses the CG
and resembles the Lanczos process. In particular, the CG 2step generates both conjugate
directions and orthogonal residuals, as the CG and the Lanczos process. However, the
CG 2step yields a 3-term recurrence with respect to conjugate directions, and a 4-term
recurrence with respect to the residuals. We remark that our proposal draws its inspiration
from the necessity to delay the conjugacy loss of the CG, which occurs in (3) when |i − j|
is large and finite precision is adopted.

We complete this section observing that the CG in Table 1 simply stores at Step k the
vectors rk−1 and pk−1, in order to compute respectively rk and pk. Unlike the CG, at Step
k our method requires the storage of one additional vector (namely pk−2), which contains
some information from iteration k−2. The idea of storing at Step k some information from
iterations preceding Step k−1, is not new for Krylov-based methods. Some examples which

2

differ from our approach are [15], for unsymmetric linear systems.

In this paper we only use standard notation and symbols. In Section 2 we describe
our method and some related properties. Section 3 shows a numerical experience with our
proposal, without introducing preconditioning. Then, in Section 4 we detail and comment
the preconditioned version of our method. Finally, the section of Conclusions completes the
paper and specifies the future work.

2 The CG 2step method

We sketch in Table 3 our new CG-based algorithm, namely algorithm CG 2step. We high-
light that the computation of the direction pk at Step k is the relevant difference between
the CG and the CG 2step method. In particular, in Table 3 the pair of coefficients σk−1

and ωk−1 is computed so that
pT

k Apk−1 = 0

pT
k Apk−2 = 0,

(4)

i.e. the conjugacy between the the direction pk and both the directions pk−1 and pk−2 is
imposed. On the other hand, the residual rk is computed by imposing the orthogonality
condition rT

k pk−1 = 0, as in the standard CG. The resulting method is evidently a bit more
expensive than the CG. Moreover, observe that after some computations we can prove that
rk+1 ∈ span{Ark, rk, rk−1, rk−2}. Thus, CG 2step provides a 4-term recurrence with respect
to the residuals, and a 3-term recurrence with respect to the conjugate directions.

Assumption 2.1 The matrix A in (1) is symmetric positive definite.

Lemma 2.1 Let Assumption 2.1 hold. At Step k of the CG 2step algorithm we have

Apj ∈ span {pj+1, pj , pj−1} , j ≤ k − 1. (5)

Proof

From the Step 0 of CG 2step, relation (5) holds for j = 0. Then, for j = 1, . . . , k − 1 the
Step j + 1 of CG 2step directly yields (5). 2

Theorem 2.2 Let Assumption 2.1 hold. At Step k of the CG 2step algorithm the directions
p0, p1, . . . , pk are mutually conjugate, i.e. pT

i Apj = 0, with 0 ≤ i 6= j ≤ k.

Proof

The statement holds for k = 1, as a consequence of the choice of the coefficient σ0 at Step 0.
Suppose it holds for k − 1; then, we have

pT
k Apj = (Apk−1 − σk−1pk−1 − ωk−1pk−2)

T Apj

= (Apk−1)
T Apj − σk−1p

T
k−1Apj − ωk−1p

T
k−2Apj = 0, j ≤ k − 1.

In particular, for j = k− 1 and j = k− 2 the choice of the coefficients σk−1 and ωk−1 yields
directly pT

k Apk−1 = pT
k Apk−2 = 0. For j < k − 2, the inductive hypothesis and Lemma 2.1

again yield the conjugacy. 2

3

Lemma 2.3 Let Assumption 2.1 hold. Then we have at Step k of the CG 2step algorithm

(Apk)
T (Api) =























‖Apk‖
2, if i = k,

pT
k Apk, if i = k − 1,

∅, if i ≤ k − 2.

Proof

The statement is a trivial consequence of Step k, Lemma 2.1 and Theorem 2.2. 2

Observe that from the previous lemma, a simplified expression for the coefficient σk−2,
at Step k of CG 2step is available, inasmuch as

σk−2 =
pT

k−1Apk−1

pT
k−2Apk−2

. (6)

Relation (6) has a remarkable importance: it avoids the storage of the vector Apk−2 at
Step k, requiring only the storage of the quantity pT

k−2Apk−2. Also observe that despite
the CG, the sequence {rk} in CG 2step is computed independently from the sequence {pk}.
Moreover, the residual rk is simply computed at Step k in order to check the stopping
condition for the algorithm.

The following result proves that the CG 2step algorithm substantially recovers the main
theoretical features of the standard CG.

Theorem 2.4 Let Assumption 2.1 hold. Let rk+1 6= 0 at Step k + 1 of the CG 2step
algorithm. Then, the directions p0, p1, . . . , pk and the residuals r0, r1, . . . , rk+1 satisfy

rT
k+1pj = 0, j ≤ k, (7)

rT
k+1rj = 0, j ≤ k. (8)

Proof

From Step k + 1 of CG 2step we have rk+1 = rk − αkApk = rj −
∑k

i=j αiApi, j ≤ k. Then,
from Theorem 2.2 and the choice of coefficients αj we obtain

rT
k+1pj =



rj −
k

∑

i=j

αiApi





T

pj = rT
j pj −

k
∑

i=j

αip
T
i Apj = 0, j ≤ k,

which proves (7). As regards relation (8), for k = 0 we obtain from the choice of α0

rT
1 r0 = rT

1 p0 = 0.

Then, assuming by induction that (8) holds for k − 1, we have

rT
k+1rj = (rk − αkApk)

T rj = (rk − αkApk)
T

(

r0 −

j−1
∑

i=0

αiApi

)

= rT
k r0 −

j−1
∑

i=0

αir
T
k Api − αkp

T
k Ar0 +

j−1
∑

i=0

αiαk(Apk)
T Api, j ≤ k.

4

The inductive hypothesis and Theorem 2.2 yield

rT
k+1rj = −

j−1
∑

i=0

αir
T
k (pi+1 + σipi + ωipi−1) +

j−1
∑

i=0

αiαk(Apk)
T Api, j ≤ k. (9)

Therefore, if j = k the relation (7) along with Lemma 2.3 and the choice of αk yield

rT
k+1rk = −αk−1r

T
k pk + αk−1αkp

T
k Apk = 0.

On the other hand, if j < k in (9), the inductive hypothesis, relation (7) and Lemma 2.3
yield (8). 2

Finally, we prove that likewise the CG algorithm, in at most n iterations CG 2step
determines the solution of the linear system (1), so that finite convergence holds.

Lemma 2.5 Let Assumption 2.1 hold. Then, at Step k of the CG 2step algorithm the
vectors p0, . . . , pk are linearly independent.

Proof

Let by contradiction
k

∑

i=0

γipi = 0, γ ∈ IRk, γ 6= 0. (10)

Then, multiplying (10) by Aph, with 0 ≤ h ≤ k, we obtain

k
∑

i=0

γip
T
h Api = 0, γ ∈ IRk, γ 6= 0,

and the conjugacy yields for 0 ≤ h ≤ k

0 =
k

∑

i=0

γip
T
h Api = γhpT

h Aph.

Finally, since A is positive definite the last equality implies γh = 0, for any 0 ≤ h ≤ k,
which contradicts relation (10). 2

Theorem 2.6 Let Assumption 2.1 hold. Then, in at most n iterations the CG 2step algo-
rithm computes the solution of the linear system (1), i.e. Axh = b, where h ≤ n.

Proof

From relation (8) at most n orthogonal residuals may be generated in the sequence {rh}.
Thus, suppose at Step h we have rh = 0, with h ≤ n. Then, by definition

xh = x0 +
h−1
∑

j=0

αjpj , (11)

5

therefore, recalling that rh = r0 −
∑h−1

j=0 αjApj , multiplying (11) by −A and adding b we
obtain

b − Axh = r0 −
h−1
∑

j=0

αjApj = rh = 0,

which proves that xh is a solution of the linear system Ax = b. 2

We observe that the geometry of vectors {pk} and {rk} in CG 2step is substantially
different with respect to the CG. Indeed, unlike the latter scheme where rT

k pk = ‖rk‖
2 > 0,

for any k, for the CG 2step we have

pT
k Apk

pT
k−1Apk−1

=
(Apk−1)

T Apk

pT
k−1Apk−1

= −
‖rk‖

2

αkαk−1p
T
k−1Apk−1

= −
‖rk‖

2pT
k Apk

rT
k pkr

T
k−1pk−1

,

and since A ≻ 0 we obtain
(rT

k pk)(r
T
k−1pk−1) < 0.

2.1 Issues on the conjugacy loss

Here we consider a simplified approach to describe the conjugacy loss for both the algorithms
CG and CG 2step, under Assumption 2.1. Suppose that both the algorithms CG and
CG 2step performed Step k + 1, and in the practical implementation a nonzero conjugacy
error εk,j respectively occurs between directions pk and pj , j < k, i.e.

εk,j = pT
k Apj 6= 0, j < k.

Then, we calculate the conjugacy error

εk+1,j = pT
k+1Apj , j ≤ k,

for both the CG and the CG 2step. First observe that at Step k + 1 of Table 1 we have

εk+1,j = (rk+1 + βkpk)
T Apj

(12)

= (pk − βk−1pk−1 − αkApk)
T Apj + βkεk,j

(13)

= (1 + βk)εk,j − βk−1εk−1,j − αk(Apk)
T Apj . (14)

Then, from relation Apj = (rj − rj+1)/αj and relations (2)-(3) we have for the CG

(Apk)
T Apj =











−
pT

k
Apk

αk−1

, j = k − 1,

∅, j ≤ k − 2.

6

Thus, observing that for the standard CG εi,i−1 = 0 and εi,i = pT
i Api, 1 ≤ i ≤ k + 1, after

some computation we obtain from (14)

εk+1,j =







































∅, j = k,

∅, j = k − 1,

(1 + βk)εk,k−2, j = k − 2,

(1 + βk)εk,j − βk−1εk−1,j + Σkj , j ≤ k − 3,

(15)

where Σkj ∈ IR summarizes the contribution of the term αk(Apk)
T Apj , due to a possible

conjugacy loss.
Let us consider now for the CG 2step algorithm a result similar to (15). We obtain the

following relations for 1 ≤ j ≤ k

εk+1,j = pT
k+1Apj = [Apk − σkpk − ωkpk−1]

T Apj

= (Apk)
T Apj − σkεk,j − ωkεk−1,j

= (Apk)
T [pj+1 + σjpj + ωjpj−1] − σkεk,j − ωkεk−1,j

= εk,j+1 + [σj − σk] εk,j + ωjεk,j−1 − ωkεk−1,j ,

and considering (4), the conjugacy among directions p0, p1, . . . , pk satisfies

εh,l = pT
h Apl = 0, for any | h − l | ∈ {1, 2}. (16)

Thus, relation (6) and the expression of the coefficients in CG 2step yields

εk+1,j =























































∅, j = k,

∅, j = k − 1,

ωk−2εk,k−3, j = k − 2,

[σk−3 − σk] εk,k−3 + ωk−3εk,k−4, j = k − 3,

εk,j+1 + [σj − σk] εk,j + ωjεk,j−1 − ωkεk−1,j , j ≤ k − 4.

(17)

Finally, comparing relations (15) and (17) we have

• in case j = k − 2 respectively the conjugacy error εk+1,k−2 is nonzero for both the
algorithms. However, for the standard CG

εk+1,k−2 > εk,k−2

7

since (1 + βk) > 1, which theoretically can lead to an harmful amplification of con-
jugacy errors. On the contrary, for the CG 2step the positive quantity ωk−2 in the
expression of εk+1,k−2 can be possibly smaller than one.
Furthermore, we also have the following results which describe the sensitivity of the
coefficients σk and ωk to the condition number κ(A) (λm(A) and λM (A) are the
smallest/largest eigenvalues of A):

|ωk| =
pT

k Apk

pT
k−1Apk−1











≥ λm(A)‖pk‖
2

λM (A)‖pk−1‖2 = 1
κ(A)

‖pk‖
2

‖pk−1‖2

≤ λM (A)‖pk‖
2

λm(A)‖pk−1‖2 = κ(A) ‖pk‖
2

‖pk−1‖2 ,

(18)

|σk| =
‖Apk‖

2

pT
k Apk











≥ λ2
m(A)‖pk‖

2

λM (A)‖pk‖2 = λm(A)
κ(A)

≤
λ2

M (A)‖pk‖
2

λm(A)‖pk‖2 = λM (A)κ(A).

(19)

This seems to indicate (as expected) that keeping κ(A) sufficiently close to one (with
λm ≈ λM ≈ small) may be crucial for the success of CG 2step (see Section 4).

• for the CG 2step algorithm relation (16) holds, while for the CG algorithm we have
εh,l = 0 for | h − l |= 1, which is a weaker condition.

3 Numerical results without preconditioning

We include some numerical results, where we compare the performance of the CG and the
CG 2step (implemented as in Tables 1 and 3) to solve linear system (1). In the compar-
ison we consider the positive definite matrix A with n = 300, then the condition number
κ = λM/λm of matrix A is suitably assigned. Here, 0 < λm ≤ λM are respectively the small-
est/largest eigenvalue of A. In particular, we consider in Tables 6-7 the values κ = exp(2h),
h = 0, . . . , 3. Moreover, though λm and λM are assigned, the intermediate eigenvalues λi,
i = 2, . . . , n − 1, of matrix A (i.e. λm ≤ λi ≤ λM) are randomly chosen.

The parameter it represents the number of iterations which are necessary to satisfy the
stopping condition ‖r∗‖/‖r1‖ ≤ 10−8, where r∗ = b − Ax∗ is the last computed residual.

We checked both the conjugacy (among the directions p1, . . . , pk) and the orthogo-
nality (among the residuals r1, . . . , rk) by reporting the quantities pT

1 Apk/(‖p1‖‖pk‖) and
rT
1 rk/(‖r1‖‖rk‖), k ∈ {3, 5, 7, 9, 11, 13, 15}. Observe that from Table 7, in accordance with

Section 2, the generation of the sequence {rk} substantially coincides for algorithms CG
and CG 2step, i.e. the orthogonality loss is not a critical issue.
Finally, each row in Tables 6-7 summarizes the average results on 10 randomly generated
instances, with the described parameters of matrix A. The starting point x0 was randomly
chosen, too.

Evidently, considering the number of iterations it, the standard CG algorithm outper-
forms the CG 2step method. In addition, when κ(A) is relatively small both conjugacy
and orthogonality conditions of the CG and the CG 2step are comparable. Unfortunately,

8

Step 0: Set k = 0, x0 ∈ IRn, r0 = b − Ax0.
If r0 = 0, then STOP. Else, set p0 = r0, k = k + 1.

Step k: Compute dk−1 = pT
k−1Apk−1, αk−1 = rT

k−1pk−1/dk−1,
xk = xk−1 + αk−1pk−1,
rk = rk−1 − αk−1Apk−1.
If rk = 0, then STOP. Else, set βk−1 = ‖rk‖

2/‖rk−1‖
2,

pk = rk + βk−1pk−1, k ← k + 1.
Go to Step k.

Table 1: The CG algorithm for solving (1).

Step 0: Set k = 0, x0 ∈ IRn, v0 = b − Ax0.
Set u0 = 0, δ0 = ‖b‖.

Step k: If δk = 0, then STOP. Else, set
uk+1 = vk/δk, k ← k + 1, γk = uT

k Auk,
vk = Auk − γkuk − δk−1uk−1,
δk = ‖vk‖.
Go to Step k.

Table 2: The Lanczos process for solving (1).

higher values for κ(A) determine numerical instability for the latter method. This can be
explained by recalling that from Table 3, at step k of CG 2step the coefficient σk−1 strongly
depends on the condition number of matrix A2, indeed by (19) it depends on λM and κ(A).

4 The Preconditioned CG 2step

In this section we propose the preconditioned version of algorithm CG 2step, in order to
comply with the drawback highlighted at the end of the previous section.
Let M ∈ IRn×n be nonsingular and consider the linear system (1). Since we have

Ax = b ⇐⇒
(

MT M
)−1

Ax =
(

MT M
)−1

b (20)

⇐⇒
(

M−T AM−1
)

Mx = M−T b

⇐⇒ Āx̄ = b̄, (21)

where

Ā = M−T AM−1

x̄ = Mx (22)

b̄ = M−T b,

9

Step 0: Set k = 0, x0 ∈ IRn, r0 = b − Ax0.
If r0 = 0, then STOP. Else, set p0 = r0, k ← k + 1.

Set σ0 = ‖Ap0‖2

pT
0

Ap0

, α0 = ‖r0‖2

pT
0

Ap0

,

x1 = x0 + α0p0, r1 = r0 − α0Ap0.
If r1 = 0, then STOP. Else, set
p1 = Ap0 − σ0p0, k ← k + 1.

Step k: Set σk−1 =
‖Apk−1‖

2

pT
k−1

Apk−1

, ωk−1 =
(Apk−1)T Apk−2

pT
k−2

Apk−2

=
pT

k−1
Apk−1

pT
k−2

Apk−2

, αk−1 =
rT
k−1

pk−1

pT
k−1

Apk−1

,

xk = xk−1 + αk−1pk−1, rk = rk−1 − αk−1Apk−1.
If rk = 0, then STOP. Else, set
pk = Apk−1 − σk−1pk−1 − ωk−1pk−2, k ← k + 1.
Go to Step k.

Table 3: The new CG 2step algorithm for solving (1).

Step 0: Set k = 0, x̄0 ∈ IRn, r̄0 = b̄ − Āx̄0.
If r̄0 = 0, then STOP. Else, set p̄0 = r̄0, k ← k + 1.

Set σ̄0 = ‖Āp̄0‖2

p̄T
0

Āp̄0

, ᾱ0 = ‖r̄0‖2

p̄T
0

Āp̄0

,

x̄1 = x̄0 + ᾱ0p̄0, r̄1 = r̄0 − ᾱ0Āp̄0.
If r̄1 = 0, then STOP. Else, set
p̄1 = Āp̄0 − σ̄0p̄0, k ← k + 1.

Step k: Set σ̄k−1 =
‖Āp̄k−1‖

2

p̄T
k−1

Āp̄k−1

, ω̄k−1 =
p̄T

k−1
Āp̄k−1

p̄T
k−2

Āp̄k−2

, ᾱk−1 =
r̄T
k−1

p̄k−1

p̄T
k−1

Āp̄k−1

,

x̄k = x̄k−1 + ᾱk−1p̄k−1, r̄k = r̄k−1 − ᾱk−1Āp̄k−1.
If r̄k = 0, then STOP. Else, set
p̄k = Āp̄k−1 − σ̄k−1p̄k−1 − ω̄k−1p̄k−2, k ← k + 1.
Go to Step k.

Table 4: The new CG 2step algorithm for solving the linear system Āx̄ = b̄ in (21).

10

Step 0: Set k = 0, x0 ∈ IRn, r0 = b − Ax0.
If r0 = 0, then STOP. Else, set p0 = Mr0, k ← k + 1.

Set σ0 =
‖Ap0‖2

M

pT
0

Ap0

, α0 =
rT
0

p0

pT
0

Ap0

,

x1 = x0 + α0p0, r1 = r0 − α0Ap0.
If r1 = 0, then STOP. Else, set
p1 = MAp0 − σ0p0, k ← k + 1.

Step k: Set σk−1 =
‖Apk−1‖

2

M

pT
k−1

Apk−1

, ωk−1 =
pT

k−1
Apk−1

pT
k−2

Apk−2

, αk−1 =
rT
k−1

pk−1

pT
k−1

Apk−1

,

xk = xk−1 + αk−1pk−1, rk = rk−1 − αk−1Apk−1.
If rk = 0, then STOP. Else, set
pk = MApk−1 − σk−1pk−1 − ωk−1pk−2, k ← k + 1.
Go to Step k.

Table 5: The new preconditioned CG 2step algorithm for solving (1).

solving (1) is equivalent to solve (20) or (21). Moreover, any eigenvalue λi, i = 1, . . . , n,

of M−T AM−1 is also an eigenvalue of
(

MT M
)−1

A. Indeed, if (MT M)−1Azi = λizi,
i = 1, . . . , n, then

(

M−1M−T
)

AM−1 (Mzi) = λizi

and
M−T AM−1 (Mzi) = λi (Mzi) .

Now, let us motivate the importance of selecting a promising matrix M in (21), in order to
reduce κ(Ā) (or equivalently to reduce κ[(MT M)−1A]). Observe that by using Chebyshev
polynomials analysis we can prove that in exact algebra, for the CG and the CG 2step the
following relation holds under the Assumption 2.1 (see [6] for details, and a similar analysis
holds for CG 2step)

‖xk − x∗‖A

‖x0 − x∗‖A
≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)k

, (23)

where ‖xi − x∗‖A =
[

(xi − x∗)T A(xi − x∗)
]1/2

, i ≥ 1, and Ax∗ = b. Relation (23) reveals
the strong dependency of the iterates generated by the CG and the CG 2step on κ(A). In
addition, if the CG and the CG 2step are used to solve (21) in place of (1), then the bound
(23) becomes

‖xk − x∗‖A

‖x0 − x∗‖A
≤ 2

(

√

κ[(MT M)−1A] − 1
√

κ[(MT M)−1A] + 1

)k

, (24)

which encourages to use the preconditioner (MT M)−1 when κ[(MT M)−1A] < κ(A).
On this guideline we want to introduce preconditioning in our scheme CG 2step, for solving
the linear system (21), where M is non-singular. We do not expect that when M = I (i.e.
no preconditioning is considered) CG 2step outperforms the CG. Indeed, Table 6 confirms
the opposite: M = I implies that at Step k of Table 3 the numerator of the coefficient σk−1

11

κ it
pT

1
Ap3

‖p1‖‖p3‖

pT

1
Ap5

‖p1‖‖p5‖

pT

1
Ap7

‖p1‖‖p7‖

pT

1
Ap9

‖p1‖‖p9‖

pT

1
Ap11

‖p1‖‖p11‖

pT

1
Ap13

‖p1‖‖p13‖

pT

1
Ap15

‖p1‖‖p15‖

exp(0) 1.0
exp(2) 24.0 0.0E + 00 0.6E − 15 0.1E − 15 −0.6E − 15 −0.3E − 14 −0.3E − 14 0.1E − 14
exp(4) 60.6 0.0E + 00 −0.8E − 14 −0.1E − 12 −0.2E − 12 −0.2E − 12 −0.3E − 12 −0.5E − 12
exp(6) 137.2 0.0E + 00 −0.1E − 12 −0.3E − 11 −0.5E − 11 0.3E − 11 0.1E − 10 0.4E − 10

κ it
pT

1
Ap3

‖p1‖‖p3‖

pT

1
Ap5

‖p1‖‖p5‖

pT

1
Ap7

‖p1‖‖p7‖

pT

1
Ap9

‖p1‖‖p9‖

pT

1
Ap11

‖p1‖‖p11‖

pT

1
Ap13

‖p1‖‖p13‖

pT

1
Ap15

‖p1‖‖p15‖

exp(0) 1.0
exp(2) 46.0 0.0E + 00 0.2E − 14 −0.3E − 14 −0.3E − 14 0.3E − 14 0.3E − 14 −0.3E − 14
exp(4) 119.0 0.0E + 00 −0.3E − 13 0.3E − 13 0.5E − 13 −0.4E − 13 −0.7E − 13 0.3E − 13
exp(6) 272.0 0.0E + 00 0.3E − 13 0.2E − 11 0.6E − 12 0.2E − 12 0.3E − 12 0.2E − 11

Table 6: The conjugacy loss for the CG method (above) and the CG 2step method (below).

depends on A2, which can be seriously harmful in case κ(A) increases. On the contrary,
suppose a suitable preconditioner M = (MT M)−1 is selected when κ(A) is large. Then,
since the algorithm CG 2step imposes stronger conjugacy conditions with respect to the
CG, it may possibly better recover the conjugacy loss.
We will soon see that M in CG 2step is just used to compute the product Mpk−1, i.e. we
do not need to store the possibly dense matrix M.

The algorithm CG 2step for (21) is described in Table 4, where of course each ‘bar’
quantity has a corresponding quantity in Table 3. After substituting the positions

x̄k = Mxk

p̄k = Mpk

r̄k = M−T rk

M =
(

MT M
)−1

,

(25)

in Table 4, the vector p̄k becomes

p̄k = Mpk = M−T AM−1Mpk−1 − σ̄k−1Mpk−1 − ω̄k−1Mpk−2,

hence
pk = MApk−1 − σ̄k−1pk−1 − ω̄k−1pk−2

with

σ̄k−1 =
‖M−T Apk−1‖

2

pT
k−1Apk−1

=
(Apk−1)

TMApk−1

pT
k−1Apk−1

(26)

ω̄k−1 =
pT

k−1M
T M−T AM−1Mpk−1

pT
k−2M

T M−T AM−1Mpk−2
=

pT
k−1Apk−1

pT
k−2Apk−2

.

12

κ it
rT

1
r3

‖r1‖‖r3‖

rT

1
r5

‖r1‖‖r5‖

rT

1
r7

‖r1‖‖r7‖

rT

1
r9

‖r1‖‖r9‖

rT

1
r11

‖r1‖‖r11‖

rT

1
r13

‖r1‖‖r13‖

rT

1
r15

‖r1‖‖r15‖

exp(0) 1.0
exp(2) 24.0 0.0E + 00 −0.7E − 16 0.7E − 15 −0.3E − 14 −0.9E − 15 −0.4E − 14 0.2E − 14
exp(4) 60.6 0.0E + 00 −0.2E − 14 −0.1E − 13 −0.2E − 13 −0.3E − 13 −0.4E − 13 −0.5E − 13
exp(6) 137.2 0.0E + 00 −0.1E − 13 −0.1E − 13 −0.1E − 12 0.3E − 13 0.2E − 12 0.5E − 12

κ it
rT

1
r3

‖r1‖‖r3‖

rT

1
r5

‖r1‖‖r5‖

rT

1
r7

‖r1‖‖r7‖

rT

1
r9

‖r1‖‖r9‖

rT

1
r11

‖r1‖‖r11‖

rT

1
r13

‖r1‖‖r13‖

rT

1
r15

‖r1‖‖r15‖

exp(0) 1.0
exp(2) 46.0 0.0E + 00 0.2E − 13 0.3E − 13 0.4E − 13 0.1E − 12 0.3E − 12 0.6E − 12
exp(4) 119.0 0.0E + 00 −0.1E − 13 0.8E − 14 0.3E − 13 −0.6E − 14 −0.6E − 13 0.1E − 13
exp(6) 272.0 0.0E + 00 −0.1E − 12 −0.2E − 12 −0.1E − 12 −0.2E − 12 −0.2E − 12 −0.4E − 12

Table 7: The orthogonality loss for the CG method (above) and the CG 2step method
(below).

Moreover, relation r̄0 = b̄ − Āx̄0 becomes

M−T r0 = M−T b − M−T AM−1Mx0 ⇐⇒ r0 = b − Ax0,

and since p̄0 = Mp0 = r̄0 = M−T r0 then p0 = Mr0, so that the coefficients σ̄0 and ᾱ0

become

σ̄0 =
pT
0 MT M−T AM−1M−T AM−1Mp0

pT
0 Ap0

=
(Ap0)

TM(Ap0)

pT
0 Ap0

=
‖Ap0‖

2
M

pT
0 Ap0

(27)

ᾱ0 =
rT
0 M−1M−T r0

pT
0 MT M−T AM−1Mp0

=
rT
0 Mr0

pT
0 Ap0

=
rT
0 p0

pT
0 Ap0

.

As regards relation p̄1 = Āp̄0 − σ̄0p̄0 we have

Mp1 = M−T AM−1Mp0 − σ̄0Mp0,

hence
p1 = MAp0 − σ̄0p0.

Finally, r̄k = M−T rk implies

r̄k = M−T rk = M−T rk−1 − ᾱk−1M
−T AM−1Mpk−1,

so that
rk = rk−1 − ᾱk−1Apk−1

13

and

ᾱk−1 =
rT
k−1M

−1Mpk−1

pT
k−1M

T M−T AM−1Mpk−1
=

rT
k−1pk−1

pT
k−1Apk−1

.

The overall resulting preconditioned algorithm CG 2stepM is detailed in Table 5. Observe
that the coefficients αk−1 and ωk−1 in Tables 3 and 5 are invariant under the introduction
of the preconditioner M (also observe that from (26) and (27) σk−1 now depends on AMA
and not on A2). Moreover, we recall that in Table 5 the introduction of the preconditioner
simply requires at each iteration k the additional cost of the product M× (Apk) (similarly
to the preconditioned CG, where at each iteration k the additional cost is given by M×rk).

Finally, in Table 5 at iteration 0 the products Mr0 and M(Ap0) are both required, in
order to compute σ0 and α0. This is just appearantly a drawback; indeed, considering that
Step 0 of CG 2step is equivalent to two iterations of the CG, then the additional cost of
preconditioning CG and CG 2step is the same.
Furthermore, there is an additional chance to replace the Step 0 in Table 3, with the
following

Step 0: Set k = 0, x0 ∈ IRn, r0 = b − Ax0.
If r0 = 0, then STOP. Else, set p0 = r0, k ← k + 1.

Set α0 = ‖r0‖2

pT
0

Ap0

,

x1 = x0 + α0p0, r1 = r0 − α0Ap0.

If r1 = 0, then STOP. Else, set σ0 = −‖r1‖2

‖r0‖2 ,

p1 = r1 − σ0p0, k ← k + 1.

which substantially corresponds to perform two steps of the CG. All the main results still
hold almost unchanged (some adjustments in Lemma 2.3), as well as the possibility of
preconditioning the resulting new CG 2step.

5 Conclusions

We have proposed a CG-based method, namely the CG 2step algorithm, for the iterative
solution of the symmetric positive definite linear system (1). Our method, which is based
on the generation of conjugate directions, is slightly more expensive at Step k than the CG,
and it requires the storage of one further vector. However, we proved for the CG 2step
some theoretical properties, which are stronger than those provided for the CG method.
Furthermore, we introduced preconditioning in our proposal, so that at Step k it may likely
prevent from the conjugacy loss between the directions pk and pk−2.
We are considering a numerical experience, which includes convex optimization problems
from CUTEr collection [8], where our preconditioned scheme is adopted to solve Newton’s
equation. In particular we want to investigate the choice M ≈ A−1, where M is computed
as a Quasi-Newton approximation of the inverse matrix A−1 (see also [3]).

14

References

[1] Axelsson, O, Iterative Solution Methods, Cambridge University Press, 1996.

[2] Fasano, G., Conjugate Gradient (CG)-type Method for the Solution of Newton’s Equa-
tion within Optimization Frameworks, Optimization Methods and Software, Vol. 19,
pp. 267–290, 2004.

[3] Fasano, G., Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on
Indefinite and Singular Systems, J. of Optimization Theory and Applications, Vol. 132,
pp. 267–285, 2007.

[4] Freund, R.W., Golub, G.H., and Nachtigal, N.M., Iterative Solution of Linear
Systems, Acta Numerica, pp. 1–44, 1992.

[6] Golub, G.H., and Van Loan, C.F., Matrix computations - 3rd edition, The John
Hopkins Press, Baltimore, USA, 1989.

[5] Gould, N.I.M., Lucidi, S., Roma, M. and Toint, Ph.L., Exploiting negative curva-
ture directions in linesearch methods for unconstrained optimization, Optim. Methods
& Soft., Vol. 14, pp. 75–98, 2000.

[8] Gould, N.I.M., Orban, D. and Toint, Ph.L., CUTE (and sifdec), a constrained
and unconstrained testing environment, revised, ACM Transaction on Mathematical
Software, Vol. 29, pp. 373–394, 2003.

[7] Grippo, L., Lampariello, F. and Lucidi, S. A truncated Newton method with non-
monotone linesearch for unconstrained optimization, J. of Optimization Theory and
Applications, Vol. 60, pp. 401–419, 1989.

[9] Hestenes, M.R. Conjugate Direction Methods in Optimization, Springer Verlag,
NewYork, Heidelberg, Berlin, 1980.

[10] Hestenes, M.R. and Stiefel, E., Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, Vol. 49, pp. 409–435, 1952.

[11] Higham, N.J., Accuracy and Stability of Numerical Algorithms , SIAM, Philadelphia,
USA, 1996.

[12] Manvich, A.I., and Boudinov, E., An efficient conjugate directions method without
linear minimization, Nuclear Instruments and Methods in Physics Research A 455, pp.
698–705, 2000.

[13] Manvich, A.I., and Boudinov, E., A conjugate direction method with orthogonal-
ization for large-scale problems, European Congress on Computational Methods in
Applied Sciences and Engineering, ECCOMAS 2004, P. Neittaanmäki, T. Rossi, K.
Majava and O. Pironneau (eds.), Jyväskylä, 24-28 July 2004.

15

[14] Saad, Y., and Van Der Vorst, H.A., Iterative Solution of Linear Systems in the
20th Century, Journal on Computational and Applied Mathematics, Vol. 123, pp. 1–33,
2000.

[15] Sleijpen, G.L.G. and Van DerVorst, H.A., Krylov subspace methods for large
linear systems of equations, Preprint 803, Department of Mathematics, University of
Utrecht, 1993.

[16] Van Der Vorst, H.A., and Chan, T.F., Linear System Solvers: Sparse-Iterative
Methods, Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Sci-
ence and Engineering, Edited by D.E.Keyes, A.Samed and V.Venkatakrishnan, Dor-
drecht, Kluwer Academic, Dodrecht, Holland, Vol. 4, pp. 91–118, 1997.

16

