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Abstract In this paper we propose the use of damped techniques within Nonlinear
Conjugate Gradient (NCG) methods. Damped techniques were introduced by Powell
and recently reproposed by Al-Baali and till now, only applied in the framework of
quasi-Newton methods. We extend their use to NCG methods in large scale uncon-
strained optimization, aiming at possibly improving the efficiency and the robustness
of the latter methods, especially when solving difficult problems. We consider both
unpreconditioned and PreconditionedNCG. In the latter case, we embed damped tech-
niques within a class of preconditioners based on quasi-Newton updates. Our purpose
is to possibly provide efficient preconditioners which approximate, in some sense,
the inverse of the Hessian matrix, while still preserving information provided by the
secant equation or some of its modifications. The results of an extensive numerical
experience highlights that the proposed approach is quite promising.
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1 Introduction

In this paper we consider the large scale unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f :Rn −→ R is a real valued function and the dimension n is large. It is assumed
that f is a twice continuously differentiable function and that for a given x1 ∈ R

n the
level set L1 = {x ∈ R

n : f (x) ≤ f (x1)} is compact.
Nowadays, the Nonlinear Conjugate Gradient (NCG) and the Limited Memory

quasi-Newton methods are usually considered effective iterative methods for large
scale unconstrained optimization. In particular, L-BFGS is typically the method of
choice due to its efficiency (see e.g. Nocedal and Wright 2006). However, on nonlin-
ear “difficult” problems where the Hessian matrix is possibly highly ill-conditioned,
also quasi-Newton methods may be inefficient. This was already known since Powell
(1986) analyzed the performance of the BFGS and DFP algorithms in the case of a
quadratic function of two variables (see also Al-Baali and Purnama 2012).

To overcome the latter drawback, in this paper we aim at introducing in the
framework of NCG methods a technique originated by Powell (1978), and recently
reproposed byAl-Baali (2014) for quasi-Newtonmethods: the so called “damped tech-
nique”. To the best of our knowledge, the first damped update was defined in Powell
(1978). In that paper, Powell deals with SQP Lagrangian BFGS methods for nonlin-
early constrained problems. He proposes a modification of BFGS that, to some extent,
offsets the lack of positive definiteness in the Hessian of the Lagrangian at the solution.
Indeed, due to the presence of negative curvature directions of the Lagrangian function,
using BFGS for approximating the Hessian matrix with a positive definite matrix, may
be seriously inappropriate (see also Nocedal and Wright 2006, Sect. 18.3). Damped
techniques have been recently extended by Al-Baali also to the restricted Broyden
class of quasi-Newton methods for unconstrained optimization problems in Al-Baali
(2014). The author extends the global and superlinear convergence properties that the
Broyden family of methods fulfills for convex functions, to a novel class of methods,
namely the D-Broyden class (see also Al-Baali and Grandinetti 2009, 2017; Al-Baali
et al. 2014a, b; Al-Baali and Purnama 2012).

Weaimat extending the use of damped techniques to bothNCGandPNCGmethods.
To this purpose, the following possibilities can be considered:

– Modified methods. In this case a damped technique is only used to modify the
scalar (usually denoted by βk) which characterizes the different NCG methods.
The search direction is therefore modified, hence the necessity to ensure the global
convergence of the resulting novel NCG method, the damped one.

– Preconditionedmethods. They are obtainedwithoutmodifying the original expres-
sion of the scalar βk . Here, the damped techniques are only used for constructing
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Exploiting damped techniques for nonlinear conjugate… 503

a preconditioner based on quasi-Newton updates. In this case we do not obtain a
novel NCG algorithm or focus on a particular NCG method. On the contrary, we
have a new methodology for defining preconditioning strategies, to be possibly
used within any NCG method for improving its performance.

– Modified preconditioned methods. In this case, a damped technique is used both to
modify the scalar βk and to construct a suitable preconditioner for NCG schemes.

We deal with all the three items above, even if the main focus is actually on the second
one. Indeed, we believe that, since damped techniques were conceived in the frame-
work of quasi-Newtonmethods, we expect to inherit their good features when building
a preconditioner based on quasi-Newton updates. To this aim, we introduce two dif-
ferent damping strategies, which seem to be suited for our purposes. In particular, we
focus on Polak–Ribière (PR) (recently, Polak–Ribière–Polyak (PRP)) method, prov-
ing that under reasonable assumptions, the damped and preconditioned version of this
method (denoted by D-PR-PNCG) to some extent retains the convergence properties
of the (undamped and unpreconditioned) PR method.

We propose to combine damped techniques with preconditioning strategies, aiming
at making the resulting D-PR-PNCG method able to efficiently tackle also difficult
problems. To this aim, in order to perform extensive numerical results, we consider
a novel class of preconditioners based on quasi-Newton updates, which has been
recently introduced in Caliciotti et al. (2017a). These preconditioners are based on
novel low-rank quasi-Newton symmetric updating formulae, resulting as by-product
of the NCG method at some previous steps. Hence, the construction of this class of
preconditioners is matrix-free and iteratively defined. Their purpose is to approximate,
in some sense, the inverse of the Hessian matrix, while still retaining efficiency and
preserving information provided by the secant equation or some of its modifications.
The rationale behind the idea of adopting a damped strategy in defining precondition-
ers for NCG methods, relies on the fact that an approximation of the (inverse of the)
Hessian matrix by means of a positive definite matrix is required. Therefore, modify-
ing the quasi-Newton updates used for building a preconditioner for NCG methods,
in order to prevent the lack of positive definiteness of the Hessian matrix, sounds
meaningful. An extensive numerical experience confirmed this fact, showing the pos-
sible fruitful use of the damped techniques in constructing preconditioners for NCG,
based on quasi-Newton updates. For the sake of completeness, we also report results
obtained by using the modified methods, showing that these latter do not seem to
produce noticeable improvement in terms of efficiency and robustness.

The paper is organized as follows. In Sect. 2, we recall the PNCG methods and
briefly describe the original damped techniques. Moreover, we report the class of pre-
conditioners we adopt. Section 3 describes the novel damped strategies we propose
and some adaptive criteria used. In Sect. 4 we study the global convergence of one
modified preconditioned method, the damped Polak–Ribière method (D-PR-PNCG).
In Sect. 5 the results of an extensive numerical testing by using the class of precon-
ditioners proposed in Caliciotti et al. (2017a) are described. Finally, Sect. 6 includes
some concluding remarks and some guidelines for future works.

As regards the notations, given a sequence of points {xk}, xk ∈ R
n , we denote by

gk = g(xk) = ∇ f (xk) and fk = f (xk), the gradient and the function value at xk ,
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504 M. Al-Baali et al.

respectively. Similarly, Mk = M(xk) indicates that the matrix Mk depends on the
iterate xk . Moreover, we use the following standard settings:

yk = gk+1 − gk, sk = xk+1 − xk . (1.2)

Finally, A � 0 indicates that the matrix A is positive definite, ‖x‖ denotes the 2-
norm of the vector x ∈ R

n , and λm(A), λM (A) stand for the smallest and the largest
eigenvalue of A, respectively.

2 Preliminaries

In this section we report some basics which wewill use in the sequel. In particular, first
we recall a general scheme of a PNCG algorithm. Afterwards, we report the damped
strategies introduced in literature in quasi-Newton frameworks. Finally, we detail the
preconditioning strategy we adopt.

2.1 The preconditioned nonlinear conjugate gradient (PNCG) algorithm

A PNCG algorithm can be outlined in the following standard scheme (see e.g. Pytlak
2009), where Mk � 0 denotes the preconditioner at the k-th iteration.

Preconditioned Nonlinear Conjugate Gradient algorithm

Step 1: Set x1 ∈ R
n and M1 � 0. Set p1 = −M1g1 and k = 1.

If a stopping criterion is satisfied then stop.

Step 2: Compute the steplength αk by using a linesearch procedure,
which ensures the strong Wolfe conditions, and compute

xk+1 = xk + αk pk .

Step 3: If a stopping criterion is satisfied then stop,
else compute a scalar βk and a new search direction

pk+1 = −Mk+1gk+1 + βk pk, (2.1)

set k := k + 1 and go to Step 2.

By settingMk = I for all k, the popular (unpreconditioned)NCGmethod is trivially
obtained. In practice, the explicit expression ofMk+1 that we adopt in (2.1) is specified
later on in (2.7). As is well known, several expressions for the parameter βk have been
proposed in literature. We recall the classical ones (Fletcher–Reeves, Polak–Ribière,
Hestenes–Stiefel)
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βFR
k = g�

k+1Mk+1gk+1

g�
k Mkgk

, βPR
k = y�

k Mk+1gk+1

g�
k Mkgk

, βHS
k = y�

k Mk+1gk+1

y�
k pk

, (2.2)

respectively, and among the many others, the recent proposal by Hager and Zhang
(2013)

βHZ
k = y�

k Mk+1gk+1

p�
k yk

− Θk
y�
k Mk+1yk

p�
k yk

p�
k gk+1

p�
k yk

,

where Θk is a suitable parameter.

2.2 Basics on damped techniques

Damped techniques were introduced in the framework of quasi-Newton methods and
the rationale behind these techniques is the following. As is well known (see e.g.
Fletcher 1987; Nocedal and Wright 2006), in dealing with the BFGS update, a crucial
issue in order to guarantee positive definiteness of the updated Hessian approximation
is the curvature condition

s�
k yk > 0. (2.3)

If f is strongly convex on an open set containing L1, then (2.3) holds for any two
points xk and xk+1 belonging to L1 (see, e.g. Boyd and Vandenberghe 2004). In
case of nonconvex functions, the satisfaction of condition (2.3) must be ensured by
means of the linesearch procedure used for determining the stepsize αk . Indeed, the
satisfaction of (2.3) can be always obtained by a linesearch procedure if the objective
function is bounded below onL1. To this aim theWolfe conditions (in practice, strong
Wolfe conditions) are usually adopted, which ensure condition (2.3). However, if the
linesearch is not fairly accurate, the value of s�

k yk may not be sufficiently positive.
In addition, if only the backtracking linesearch framework is employed, the curvature
condition (2.3) may not hold.

A first possible strategy to cope with this issue is to reinitialize the model Hessian
to the identity matrix or skip the update whenever s�

k yk ≤ 0 [see e.g. Sect. 4.2.2
of Kelley (1999)]. However, this strategy is usually not recommended, due to the
loss of information on the curvature of the function. A more successful strategy is
the damped technique proposed by Powell (1978), in the context of SQP Lagrangian
BFGS method for constrained optimization, for which (2.3) may not hold even when
theWolfe conditions are employed. To overcome this difficulty, the author proposes to
modify the difference of the gradients vector yk in (1.2) before performing the update.
Namely, on denoting by Bk the available positive definite Hessian approximation at
k-th iteration of the method, the following modified (damped) vector is used:

ŷk = ϕk yk + (1 − ϕk)Bksk, (2.4)
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where ϕk is chosen in (0, 1] such that s�
k ŷk is “sufficiently positive”. Namely, given

σ ∈ (0, 1], the value of ϕk is set as follows:

ϕk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σ s�
k Bksk

s�
k Bksk − s�

k yk
, if s�

k yk < (1 − σ)s�
k Bksk,

1, otherwise,

(2.5)

[see also Sect. 18.3 in Nocedal and Wright (2006)]. This choice ensures that s�
k ŷk =

(1−σ)s�
k Bksk which is sufficiently positive, since Bk is imposed to be positive definite

at each iteration. In Powell (1978) the value of σ = 0.8 is suggested as a “suitable
size” to be used in (2.5) (see also Nocedal and Wright 2006); the value of σ = 0.9 is
sometimes used, too (see e.g. Al-Baali 2014; Al-Baali and Purnama 2012).

To the best of our knowledge, Powell’s damped technique was never applied to
unconstrained optimization problems until Al-Baali used it for improving the per-
formance of the standard BFGS and DFP methods (see Al-Baali 2014; Al-Baali and
Grandinetti 2009, 2017; Al-Baali et al. 2014a, b; Al-Baali and Purnama 2012). In
particular, the author extends the damped technique to the Broyden family of quasi-
Newtonmethods for unconstrained optimization. The choice given in (2.5) is modified
so that the damped vector ŷk replaces yk in the quasi-Newton updating formulae when-
ever the ratio s

�
k yk/s

�
k Bksk is sufficiently close to zero or negative (like in the Powell’s

strategy). This choice enforces both global and superlinear convergence properties of
the novel class of methods proposed in Al-Baali (2014), namely the D-Broyden class.
We note that (2.5) does not modify yk when s

�
k yk/s

�
k Bksk is larger than 1. There-

fore, Al-Baali also suggests using the modified damped vector (2.4) when the ratio
s

�
k yk/s

�
k Bksk is large enough by extending the above choice as follows:

ϕk =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

σ s�
k Bksk

s�
k Bksk − s�

k yk
, if s�

k yk < (1 − σ)s�
k Bksk,

σ̂ s�
k Bksk

s�
k Bksk − s�

k yk
, if s�

k yk > (1 + σ̂ )s�
k Bksk,

1, otherwise,

(2.6)

where σ̂ ≥ 2. In this paper, we consider the value of σ̂ = ∞ which reduces the above
choice to (2.5).

2.3 The class of preconditioners

The preconditioners we adopt belong to the class of preconditioners proposed in Cali-
ciotti et al. (2017a). They are based on low-rank (quasi-Newton) updates and they
approximate, in some sense, the inverse of the Hessian matrix. It has been shown that
their application leads to an improvement of the performance of an NCG algorithm,
both in terms of efficiency and robustness. For all the details we refer to Caliciotti
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et al. (2017a) and here we just report the expression of the preconditioners along with
some comments. The preconditioners can be written as follows:

Mk+1 = τkCk + γkvkv
�
k + ωk

k
∑

j=k−m

s j s�
j

y�
j s j

, (2.7)

with

Ck = s�
k yk

‖yk‖2 In, vk = sk − τk
s�
k yk

‖yk‖2 yk − ωk

k
∑

j=k−m

s�
j yk

y�
j s j

s j ,

γk = 1

(1 − τk)s
�
k yk − ωk

∑k

j=k−m

(s�
j yk)

2

y�
j s j

,

and where the following parameters are used in practice:

m = 4, ωk =
1

2
s�
k yk

y�
k Ck yk + ∑k

j=k−m
(s�j yk )2

s�j y j

, τk = ωk, γk = 2

s�
k yk

. (2.8)

In (2.7) the term γkvkv
�
k represents a rank-1 matrix, while the rightmost term is aimed

at building an approximate inverse of the Hessian matrix on a specific subspace. The
integer m can be viewed as a “limited memory” parameter, similarly to the L-BFGS
method. The matrix Ck , the vector vk and the parameters τk , γk and ωk are such
that the preconditioners are positive definite, and satisfy the secant equation at the
current iterate, namely Mk+1yk = sk , along with a modified secant equation at some
previous iterates (see e.g. Caliciotti et al. 2016, 2017b). In Caliciotti et al. (2017a),
besides some theoretical properties, the results of an extensive numerical experience
is reported, showing that the use of such preconditioners makes PNCG algorithms
more efficient and robust than the unpreconditioned ones, on most CUTEst (Gould
et al. 2015) large scale problems.

These preconditioners are also inspired by some recent proposals in the context of
Newton–Krylov methods (see Fasano and Roma 2013, 2016), along with some effec-
tive preconditioning techniques from the literature of preconditioners for symmetric
linear systems, namely the Limited Memory Preconditioners (Gratton et al. 2011).

3 Novel damped strategies

In this section we introduce two novel damped strategies, to be considered within
NCG methods, along with an adaptive criterion for deciding if it is worth to replace
the undamped vector with the damped one. In the sequel, whenever we consider the
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preconditioned case, we refer to a positive definite preconditioner based on quasi-
Newton updates, which will be denoted by Pk(yk, sk) to evidence the current pair
(yk, sk) used for constructing the quasi-Newton update.

Drawing inspiration from the Al-Baali–Powell proposals briefly described in
Sect. 2, now we aim at defining modifications of the vector yk which should lead to
obtainmore efficient and/or robust NCGmethods. Once a damped vector ŷk is defined,
it can be used: (i) in the definition of βk , replacing yk with ŷk (modified method); (ii)
in the definition of the preconditioner replacing Pk(yk, sk) with Pk(ŷk, sk). In order
to clearly evaluate the effect of the damped techniques, we study the cases (i) and
(ii) separately. Furthermore, we also investigate in this paper the joint modification of
both βk and Pk(yk, sk), by means of the damped vector ŷk (modified preconditioned
method). Note that in the unpreconditioned case, a damped strategy obviously may
affect the definition of βk only when yk explicitly appears in the formula of βk .

Broadly speaking, in extending the definition of the damped vector ŷk introduced
in (2.4), our aim is to define a vector ŷk as a combination of the original vector yk and
an appropriate vector zk , namely

ŷk = ϕk yk + (1 − ϕk)zk, (3.1)

such that s�
k ŷk is sufficiently positive for suited values of ϕk ∈ (0, 1]. Of course, a key

point of this approach is an appropriate choice of zk , both in terms of certain gained
information and in terms of a good relative scaling of ŷk . Note that the choice (3.1)
is reduced to (2.4) if zk = Bksk , which cannot be computed explicitly in the NCG
context, being Bk unavailable.

In our first proposal, we set zk = ηksk , where ηk is a positive scalar, based on
approximating Bk by ηk I . It originates from the idea of using zk = Ak+1yk in (3.1),
where Ak+1 is a positive definitive approximation of the inverse Hessian, satisfying
the modified secant equation

Ak+1yk = ηksk .

Hence, by using the latter equation, we can define the damped formula

ŷ(1)
k = ϕk yk + (1 − ϕk)ηksk, (3.2)

which does not require the explicit knowledge of the approximate inverse Ak+1 of the
Hessian matrix. Since (3.2) follows from (2.4) with Bksk replaced by ηksk , we use the
same replacement in (2.5) to obtain the following formula

ϕk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

σηk‖sk‖2
ηk‖sk‖2 − s�

k yk
if s�

k yk < (1 − σ)ηk‖sk‖2

1, otherwise,

(3.3)

where ηk ≥ 1.
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Then, in order to set ϕk �= 1 only whenever s�
k yk is sufficiently small, we modify

(3.3) as

ϕk =

⎧

⎪

⎨

⎪

⎩

σηk‖sk‖2
ηk‖sk‖2 − s�

k yk
if s�

k yk < (1 − σ)‖sk‖2

1, otherwise.
(3.4)

Note that on some iterations, the former formula may modify yk , while the latter one
may not, because the condition in the former formula, i.e.

s�
k yk < (1 − σ)ηk‖sk‖2, (3.5)

can be satisfied for sufficiently large values of ηk . For certain choices of ηk , our
numerical experience (whichwewill describe in Sect. 5) was carried on adopting (3.4),
which showed favourable results avoiding the dependence on the product (1 − σ)ηk .
Nevertheless, the numerical impact of (3.5) deserves further investigations.

We nowgive an alternativemotivation for choice (3.2) which, in practice, represents
a combination of yk and sk with the scalar ηk . Moreover, we can derive the novel
adaptive criterion used in (3.4) starting from a geometric interpretation of the curvature
condition (2.3).

As already mentioned, (see e.g. Boyd and Vandenberghe 2004) if f is strongly
convex, the curvature condition (2.3) holds. Roughly speaking, f strongly convex
means that its curvature is positive and not too close to zero. Hence, motivated by
the former idea of Powell (1978), we intend to define a criterion based on the (local)
strong convexity of the function for deciding if a damped vector ŷk must be used in
place of yk .

It is well known that if f is strongly convex on a convex set S ⊆ R
n , then there

exists θ > 0 such that

[∇ f (y) − ∇ f (x)]� (y − x) ≥ θ‖y − x‖2, (3.6)

for all x and y belonging to S. For θ = 0,we recover the basic inequality characterizing
the convexity, namely the curvature condition, provided by the Wolfe line search
procedure. For θ > 0, we obtain a strong lower bound in (3.6). Hence, given θ > 0,
if we adopt (3.6) as selection criterion, we actually obtain the one used in (3.4) with
θ = 1 − σ . Therefore, the rationale behind this criterion is the following: whenever
s�
k yk ≥ (1 − σ)‖sk‖2 > 0 and hence the curvature is “sufficiently positive”, there is
no need to modify the vector yk ; otherwise the damped vector ŷk is considered.

Now, we remark that we are interested in obtaining the vector ŷk such that s�
k ŷk is

sufficiently positive, and that an improvement in the curvature condition is obtained,
namely

s�
k ŷ(1)

k ≥ s�
k yk . (3.7)

Recalling thatwe are considering in (3.4) the case s�
k yk < (1−σ)‖sk‖2, by substituting

the value of ϕk in (3.2), by simple computation we obtain

s�
k ŷ(1)

k = (1 − σ)ηk‖sk‖2. (3.8)
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Therefore s�
k ŷ(1)

k is sufficiently positive for suited values of the parameters σ and
ηk . Moreover, we can guarantee that ŷ(1)

k satisfies (3.7) by setting ηk > 1 whenever
s�
k yk > 0. On the other hand, if s�

k yk is negative, (3.7) is trivially satisfied by the
choice ŷ(1)

k .
In our second proposal we set zk = −αkgk in (3.2) to obtain the damped vector

ŷ(2)
k = ϕk yk − (1 − ϕk)αkgk (3.9)

which arises from the following observation: if Bk � 0 is an approximation of the
Hessian and we consider as search direction −B−1

k gk , it immediately follows that
sk = xk+1 − xk = −αk B

−1
k gk which implies

Bksk = −αkgk .

This allows us to consider the original damped vector (2.4), without computing Bk

explicitly, i.e. by replacing Bksk with −αkgk , as defined in (3.9). In this case adapting
the Powell’s rule in (2.5) (replacing Bksk with −αkgk), it follows that

ϕk =

⎧

⎪

⎨

⎪

⎩

σαks�
k gk

αks�
k gk + s�

k yk
, if s�

k yk < −(1 − σ)αks�
k gk,

1, otherwise.

(3.10)

Substituting the value of ϕk from the first case (i.e. ϕk �= 1) into (3.9), we obtain

s�
k ŷ(2)

k = −αk(1 − σ)s�
k gk = −α2

k (1 − σ)p�
k gk > 0,

where the last inequality follows since pk is a descent direction at xk . Moreover, here
we also have that the final steplength computed by the line search procedure plays a
keynote role.

Following guidelines adopted to obtain (3.4), formula (3.10) can be changed to
define

ϕk =

⎧

⎪

⎨

⎪

⎩

σηkαks�
k gk

ηkαks�
k gk + s�

k yk
, if s�

k yk < −(1 − σ)αks�
k gk,

1, otherwise,

(3.11)

where ηk ≥ 1. Furthermore, similar formulae with the three cases in (2.6) can be also
defined.

Finally, observe that in our first proposal the conditions (3.4)–(3.8) omit the depen-
dency on any considerations regarding the global convergence of the final damped
techniques. In this regard, a further study on the latter issue (see also Al-Baali 1985,
2014; Al-Baali et al. 2014b) seems to be necessary, which will be the object of future
research.
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4 Convergence properties for preconditioned damped Polak–Ribière
(D-PR-PNCG) method

As already recalled, in paper Al-Baali (2014) the author extends global convergence
properties of the Broyden family of quasi-Newton methods to the damped version
of such methods. In a similar fashion, we aim at proving that some global conver-
gence properties of NCG methods still hold in the general case corresponding to the
damped and preconditioned version (modified PNCG method). Obviously, results for
undamped and/or unmodified methods are straightforwardly obtained as particular
cases.

As first step of the convergence analysis, in this section our preliminary focus
is on the Polak–Ribière (PR) version of the NCG. In particular, here we limit our
analysis to consider only the first proposal in (3.2). Note that in this regard, developing
convergence properties with the choice ŷ(2)

k needs additional analysis, which is part of
our future work.

Using the damped vector ŷ(1)
k we therefore consider the damped preconditioned PR

method (namely D-PR-PNCG method):

β̂PR
k = ŷ(1)�

k Mk+1gk+1

g
�
k Mkgk

. (4.1)

The resulting D-PR-PNCG method actually is a novel modified NCG method. Hence
the necessity of ensuring its global convergence properties. To this aim, in this section,
we prove that, to some extent, the D-PR-PNCG method enjoys the same properties as
the standard (undamped and unpreconditioned) PRmethod (see e.g. Grippo and Scian-
drone 2011). In particular, we have the following result. We also need the following
assumption to prove our final results.

Assumption 1 (a) Given the vector x1 ∈ R
n and the function f ∈ C1(Rn), the level

set L1 = {x ∈ R
n : f (x) ≤ f1} is compact.

(b) There exists an open ball Br := {x ∈ R
n : ‖x‖ < r} containing L1 where f (x)

is continuously differentiable and its gradient g(x) is Lipschitz continuous. In
particular, there exists L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖ for all x, y ∈ Br .

(c) There exist λ > 0 and Λ > 0 such that the preconditioner M(x), for any x ∈ Br ,
is positive definite with the smallest [largest] eigenvalue λm(M(x))[λM (M(x))]
satisfying

0 < λ ≤ λm (M(x)) ≤ λM (M(x)) < Λ.

Proposition 1 Let {xk} be an infinite sequence (with gk �= 0) generated by the D-PR-
PNCG method, where the steplength αk > 0 is determined by a linesearch procedure
such that, for all k, the following conditions hold:

(i) xk ∈ L1 for all k;
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(ii) lim
k→+∞

|g�
k pk |

‖pk‖ = 0;

(iii) lim
k→+∞ αk‖pk‖ = 0.

If Assumption 1 holds, then

lim inf
k→+∞ ‖gk‖ = 0

and hence there exists at least a stationary limit point of {xk}.

Proof First observe that by the Lipschitz continuity of g(x) and the compactness of
L1, there exists a number Γ > 0 such that

‖g(x)‖ ≤ Γ, for all x ∈ L1. (4.2)

Moreover, from (i) and the compactness of L1, the sequence {xk} admits limit points
in L1. Now, by contradiction, assume that there exist ε > 0 and k̄ such that

‖gk‖ ≥ ε, for all k > k̄. (4.3)

By using (4.1)–(4.3) and (i), and recalling that we are considering D-PR-PNCG, we
get for any k ≥ k̄,

‖pk+1‖ =
∥

∥

∥−Mk+1gk+1 + β̂PR
k pk

∥

∥

∥

=
∥

∥

∥

∥

∥

−Mk+1gk+1 + [ϕk yk + (1 − ϕk)ηksk]�Mk+1gk+1

g
�
k Mkgk

pk

∥

∥

∥

∥

∥

≤ ‖Mk+1gk+1‖ + ‖ϕk yk + (1 − ϕk)ηksk‖‖Mk+1gk+1‖
‖gk‖‖Mkgk‖ ‖pk‖

≤ Γ λM (Mk+1) + Γ λM (Mk+1)
‖ϕk yk + (1 − ϕk)ηksk‖

ε2λm(Mk)
‖pk‖. (4.4)

From (4.4), recalling the Lipschitz continuity of g(x) on L1, we have

‖ϕk yk + (1 − ϕk)ηksk‖ = ‖ϕk(gk+1 − gk) + (1 − ϕk)ηk(xk+1 − xk)‖
≤ ϕk L‖xk+1 − xk‖ + (1 − ϕk)ηk‖xk+1 − xk‖
= ‖αk pk‖(ϕk L + (1 − ϕk)ηk). (4.5)

Hence, by using (4.4) we obtain

‖pk+1‖ ≤ Γ λM (Mk+1) + Γ λM (Mk+1)

(

ϕk L + (1 − ϕk)ηk

ε2λm(Mk)

)

‖αk pk‖‖pk‖. (4.6)
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Now, by (iii), given q ∈ (0, 1), we can assume there exists k1 sufficiently large such
that

Γ λM (Mk+1)

(

ϕk L + (1 − ϕk)ηk

ε2λm(Mk)

)

‖αk pk‖ ≤ q < 1, for any k ≥ k1 > k̄.

(4.7)
Thus, by (4.6)–(4.7) we get

‖pk+1‖ ≤ Γ λM (Mk+1) + q‖pk‖, for any k ≥ k1,

and by Lemma 1 in the “Appendix” section

‖pk+1‖ ≤ Γ λM (Mk+1)

1 − q
+

(

‖pk1‖ − Γ λM (Mk+1)

1 − q

)

q(k+1)−k1 , ∀k ≥ k1, (4.8)

showing that ‖pk+1‖ is bounded as ‖pk1‖ is bounded. As a consequence, again from
(iii) we have

lim
k→+∞ αk‖pk‖2 = 0. (4.9)

Furthermore, the boundedness of ‖pk‖ and (ii) yield

lim
k→+∞ |g�

k pk | = 0. (4.10)

Since Mk+1gk+1 = β̂PR
k pk − pk+1, by (4.6) it results

g�
k+1Mk+1gk+1 = g�

k+1β̂
PR
k pk − g�

k+1 pk+1

≤ ‖gk+1‖‖β̂PR
k pk‖ + |g�

k+1 pk+1|
≤ αkΓ λM (Mk+1)‖gk+1‖‖pk‖2(ϕk L + (1 − ϕk)ηk)

ε2λm(Mk)

+ |g�
k+1 pk+1|. (4.11)

By (4.9), (4.10) and the compactness of L1, taking limits in (4.11) as k → +∞, we
obtain

lim
k→+∞ g�

k+1Mk+1gk+1 = 0.

Finally, by (c) of Assumption 1

lim
k→+∞ ‖gk‖ = 0

and this contradicts assumption (4.3). ��
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As is well known, in the last two decades, several papers have been devoted to define
inexact linesearch procedures ensuring (i)–(iii) of Proposition 1 or other similar tech-
nical conditions. The latter procedures enable to guarantee some global convergence
properties for the PR method [see e.g. Grippo and Lucidi (2005) and the references
reported therein]. We only mention here, as an example, the approach proposed in
Grippo and Lucidi (1997) where an Armijo-type linesearch method is given with an
acceptability criterion of the steplength based on a “parabolic bound”. We are cer-
tainly aware of the fact that to guarantee the properties (ii)–(iii) might not be easy, and
requires some additional effort.

However, in the current paper we limit our numerical experience to consider stan-
dard linesearch procedures based on the Wolfe conditions, so that we adopt the well
known implementation proposed inMoré andThuente (1994),which finds a steplength
such that the strong Wolfe conditions hold with the parameter values of 0.0001 and
0.1. Our choice is motivated by the fact that, in order to avoid a possible bias for the
conclusions in our study, we need to accurately discard nonstandard elements in our
scheme.

5 Damped preconditioned NCG methods: a numerical experience

In this section we consider the use of the damped vectors defined in (3.2)–(3.9), for
constructing a preconditioner based on quasi-Newton updates. Therefore, according to
the taxonomy in Sect. 1, here we consider unmodified PNCG methods, where the use
of damped techniques only affects the preconditioning strategies and not the value of
βk . Our aim is to perform a numerical assessment when adopting damped techniques
within a PNCG method. On the other hand, note that as regards the convergence
(and the order of convergence) of PNCG methods, an interesting theoretical result
has been proved in Al-Baali and Fletcher (1996). However, it considers the use of an
exact linesearch and a strong assumption on the preconditioner is required, namely the
preconditioner is assumed to be a “strongly consistent approximation” of the Hessian
matrix at the solution. Therefore this result risks to be seldom applied in practice.

The preconditioner we use is an approximate inverse preconditioner belonging
to the class proposed in Caliciotti et al. (2017a) and briefly recalled in Sect. 2.3. It
is based on quasi-Newton updates and thus constructed, at each iteration k of the
PNCG method, by adding the contribution of the current pair (yk, sk). According to
the “limited memory” strategy, it looks backwards by taking into account the most
recent m pairs. Since it is iteratively constructed, it is quite simple to introduce an
adaptive rule and to choose, at each iteration k, if it convenient to replace yk with a
damped vector ŷk . If so, the resulting preconditioner Pk(ŷk, sk) is then used in place
of Pk(yk, sk).

We embedded the latter strategy in the implementation of the PNCG described
in Caliciotti et al. (2017a) (we refer to this paper for all the details). Note that this
implementation is based on the standard CG+ code (see Gilbert and Nocedal 1992),
where the preconditioner reported in (2.7) with the parameters in (2.8) is included,
and the linesearch technique is the same as that of Moré and Thuente (1994).
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Fig. 1 Comparison among different choices of ηk in (3.2), setting σ = 0.8 in (3.4). Profiles with respect
to # iterations (left) and # function and gradient evaluations (right)

In particular, we focused on the unmodified preconditioned Polak–Ribière method
and performed an extensive numerical testing by considering all the large scale prob-
lems available in the CUTEst collection (Gould et al. 2015), namely 112 problems
whose dimension ranges from 1000 to 10,000. The stopping criterion is the standard
one (see e.g. Morales and Nocedal 2000) which is given by

‖gk‖ ≤ 10−5 max{1, ‖xk‖}.

In the sequel our numerical results are reported by using performance profiles (Dolan
and Moré 2002), both in terms of number of iterations and number of function and
gradient evaluations. For each comparison we report two profiles: a standard profile
and a detailed profile; the latter one differs from the standard one only with respect
to the scale of the abscissa axis, which is restricted to values closer to 1. Moreover,
we also recall that in the linesearch procedure adopted by the authors in Moré and
Thuente (1994), the number of function and gradient evaluations coincide.

We started by considering our first proposal, namely the use of the damped vector
ŷ(1)
k in (3.2) combined with the adaptive rule in (3.4). First of all, we needed to tune the
choice of the two parameters ηk in (3.2) and σ in (3.4). In Fig. 1 (profile) and Fig. 2
(detailed profile)we report the results obtained for different choices of ηk ∈ {2, 3, 4, 5}
and by setting σ = 0.8. Conversely, in Fig. 3 (profile) and Fig. 4 (detailed profile)
we report the results obtained for different choices of σ ∈ {0.8, 0.6, 0.4, 0.2} and by
setting ηk = 4. By observing the profiles, the values ηk = 4 and σ = 0.8 seem to be
the best ones, based on our experiments on the above mentioned set of test problems.
These latter have been used in the sequel of this section as default values of ηk and σ .

Figures 5 and 6 report the results of the comparison between the unmodified pre-
conditioned PR method, whose preconditioner is damped according to the formula
(3.2), and the standard preconditioned PR method. These profiles clearly evidence the
fruitful use of the first damped strategy both in terms of efficiency and in terms of
robustness.

Then we turned to our second proposal, namely the use of the damped vector ŷ(2)
k

in (3.9) combined with the original rule in (2.5) for choosing ϕk (with Bksk replaced
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Fig. 2 Comparison among different choices of ηk in (3.2), setting σ = 0.8 in (3.4). Detailed profiles with
respect to # iterations (left) and # function and gradient evaluations (right)

Fig. 3 Comparison among different choices of σ in (3.4), setting ηk = 4 in (3.2). Profiles with respect to
# iterations (left) and # function and gradient evaluations (right)

Fig. 4 Comparison among different choices of σ in (3.4), setting ηk = 4 in (3.2). Detailed profiles with
respect to # iterations (left) and # function and gradient evaluations (right)
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Fig. 5 Comparison between unmodified preconditioned PR damped according to (3.2) and the standard
preconditioned PR (undamped). Profiles with respect to # iterations (left) and # function and gradient
evaluations (right)

Fig. 6 Comparison between unmodified preconditioned PR damped according to (3.2) and the standard
preconditioned PR (undamped). Detailed profiles with respect to # iterations (left) and # function and
gradient evaluations (right)

by −αkgk) with σ = 0.8. In the Figs. 7 and 8 the comparison between the unmodified
preconditioned PR method, whose preconditioner is damped according to formula
(3.9), and the standard preconditioned PR method is reported. Also in this case the
adoption of the damped strategy for computing the preconditioner is very useful.

Finally, we compared the two damped strategies proposed in this paper. The results
of this comparison are reported in Figs. 9 and 10. By observing these profiles, the
adoption of the first damped strategy seems to be slightly preferable.

It is also worth to highlight that from the detailed complete numerical results we
obtained (not all reported in this paper), as expected the damped strategy occurs
in few cases. In particular, when it takes place it enhances either the robustness or
the efficiency of the algorithm. In other words, in the case of test problems without
“pathologies”, correctly the damped strategy is not invoked by the adaptive rule.
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Fig. 7 Comparison between unmodified preconditioned PR damped according to (3.9) and the standard
preconditioned PR (undamped). Profiles with respect to # iterations (left) and # function and gradient
evaluations (right)

Fig. 8 Comparison between unmodified preconditioned PR damped according to (3.9) and the standard
preconditioned PR (undamped). Detailed profiles with respect to # iterations (left) and # function and
gradient evaluations (right)

Fig. 9 Comparison between the adoption of the two damped strategies in (3.2) and in (3.9). Profiles with
respect to # iterations (left) and # function and gradient evaluations (right)
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Fig. 10 Comparison between the adoption of the two damped strategies in (3.2) and in (3.9). Detailed
profiles with respect to # iterations (left) and # function and gradient evaluations (right)

On the overall, the results of the numerical experiences reported indicate that the
use of a damped strategy can definitely improve the performance of the PR algorithm,
at least on the CUTEst problems considered.

So far, the damped strategy was experimented in constructing our quasi-Newton
based preconditioner, which is the main focus of this paper. Now, for the sake of
completeness, since the theoretical part in Sect. 4 encompasses the possibility to embed
the damped strategy both in the definition of the scalar βk and in the preconditioner,
we urge to perform numerical testing also on the use of ̂βPR

k in (4.1). In this regard,
note that the use of damped strategy was conceived in the context of quasi-Newton
updates, and it is not expected to be successfully exploited in the definition of the
scalar βk used in a NCG/PNCG method. In the sequel we report results obtained by
using the damped vector ̂βPR

k confirming this claim. In particular, we first consider the
unpreconditioned cased and compare the behaviour of the unmodified NCG method
with the method which adopts ̂βPR

k , setting ŷk = ŷ(1)
k with the default values of

σ = 0.8 and ηk = 4. Then, we perform the same comparing in the preconditioned
case. Figures 11 and 12 report the performance profiles in terms of number of iterations
and number of function/gradient evaluations corresponding to these comparisons. As
it can be observed from these profiles, the use of the ̂βPR

k does not yield a noteworthy
improvement neither in terms of iterations or function evaluations. Nevertheless we
also observe that the D-PR-PNCG scheme which also uses ̂βPR

k reveals to outperform
the standard NCG method. Thus, on the overall, the adoption of the damped strategy
within PNCG methods seems to be definitely promising.

6 Conclusions and future works

In this seminal paper we proposed the introduction of damped techniques within the
framework of the NCG methods. We drew our inspiration from the damped quasi-
Newton methods proposed by Al-Baali and Powell. In particular, by referring to the
PR method, we investigated separately two possibilities:
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Fig. 11 Comparison between the use ̂βPR
k in (4.1) (setting ŷk = ŷ(1)

k ) and βPR
k in (2.2), in both precon-

ditioned and unpreconditioned cases. Profiles with respect to # iterations (left) and # function and gradient
evaluations (right)

Fig. 12 Comparison between the use ̂βPR
k in (4.1) (setting ŷk = ŷ(1)

k ) and βPR
k in (2.2), in both precon-

ditioned and unpreconditioned cases. Detailed profiles with respect to # iterations (left) and # function and
gradient evaluations (right)

– The use of a damped vector in the definition of the scalar βk , hence affecting the
definition of the search direction and producing a modified NCG/PNCG method;

– The use of a damped vector in the unmodified preconditioned NCG method.

As regards the first one, we proved that some global convergence properties still hold
for the modified D-PR-PNCG method, while substantially preserving numerical per-
formance. As concerns the second one, we used the damped strategy for constructing
a preconditioner based on quasi-Newton updates to be used in the PNCGmethod. The
results obtained clearly highlighted the potentialities of this approach.

Of course several other aspects of interest on damped PNCG were not treated in
this paper. They range from (but are not limited to) the use of damped techniques
to possibility enhance some global convergence properties of the NCG methods, to
their more sophisticated use in the construction of a preconditioner (for instance, by
introducing a dependence on the iteration k of the parameter σ = σk and a dependence
of σk and ηk on ‖gk‖ or the number of iterations). Considering self-scaling quasi-
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Newton methods, it might be also useful to consider the choice of η̄k = sTk Bksk
sTk yk

=
−αk sTk gk
sTk yk

and to use ηk = max(η̄k, 2) in the numerical experiences. Moreover, the

combined use of damped strategies with other linesearch procedures (different from
the standard Wolfe method) is surely of great interest, too. Finally, adopting the test
(3.5) in place of the one in (3.4) can be a possible alternative to explore, in order to
improve performance.

Appendix

In this appendix, we report a technical result used in the proofs of Proposition 1 (see
Grippo and Sciandrone 2011).

Lemma 1 Let {ξk} be a sequence of nonnegative real numbers. Let Ω > 0 and
q ∈ (0, 1) and suppose that there exists k1 ≥ 1 such that

ξk ≤ Ω + qξk−1, for any k ≥ k1.

Then,

ξk ≤ Ω

1 − q
+

(

ξk1 − Ω

1 − q

)

qk−k1 , for any k ≥ k1.

Proof Starting from relation

ξk ≤ Ω + qξk−1, for any k ≥ k1,

considering k − k1 iterations we get:

ξk ≤ Ω

(

k−k1−1
∑

i=0

qi
)

+ qk−k1ξk1 ,

from which we obtain

ξk ≤ Ω
(1 − qk−k1

1 − q

)

+ qk−k1ξk1 = Ω

1 − q
+

(

ξk1 − Ω

1 − q

)

qk−k1 .

��
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