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a b s t r a c t

In this paper we analyze the stochastic model proposed by Galam in [S. Galam, Modelling
rumors: The no plane Pentagon French hoax case, Physica A 320 (2003), 571–580], for
information spreading in a ‘word-of-mouth’ process among agents, based on a majority
rule. Using the communications rules among agents defined in the above reference, we
first perform simulations of the ‘word-of-mouth’ process and compare the results with
the theoretical values predicted by Galam’s model. Some dissimilarities arise in particular
when a small number of agents is considered. We findmotivations for these dissimilarities
and suggest some enhancements by introducing a new parameter dependent model. We
propose a modified Galam’s scheme which is asymptotically coincident with the original
model in the above reference. Furthermore, for relatively small values of the parameter,
we provide a numerical experience proving that the modified model often outperforms
the original one.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of social contagion, in particular of opinion spreading on a population, has been studied in many contexts,
with many different approaches and diverse applications in social sciences, experimental psychology, consumer research,
finance (see e.g. Refs. [2–5] and the references therein). The significance of word-of-mouth information and rumor diffusion
through social networks has been widely recognized as fundamental in all these contexts, see e.g. Refs. [6–10].
The leverage effect of word-of-mouth information on consumer behavior, for example, improves the effectiveness of

communication activities of a firm [11]. Word-of-mouth effects cannot be ignored as a powerful marketing tool, especially
in the case of new product introductions, when the aim is to reduce the probability of a post-launch failure [12].
We focus on adiffusionmodelwhich investigates opiniondynamics, drivenby rumors in a population, proposedbyGalam

[1,13,14]. He considers a population of agents who can have two opposite opinions, for example about political elections.
Each of them can shift their opinion to the opposite one, due to repeated discussions within a group of people, following a
majority rule which is biased in favor of one of the two opinions in the case of parity. The model provides an explanation
of the spreading of the rumor claiming that ‘‘No plane did crash on the Pentagon on September 11’’. Interestingly, for this
agent based model Galam provides a closed form formula for the probability of one of the opinions to prevail, at a certain
time instant.
Galam’s model has been extended, for example considering agents having three possible opinions [15], and applied in

several contexts, such as fashion industry [16] or political elections [8]. For a comprehensive review see Ref. [17].
In this paper we study the spreading of opinions in the special case when the number of interacting agents is relatively

small. This case is remarkable in practice. Consider for example the spreading of an opinion amongmembers of a board of di-
rectors, of amunicipal administration, of a faculty, or among consumers discussing about niche or highly technological prod-
ucts. In fact ‘‘research estimates that group-basedworkmethods exist in nearly 70% ofUS firms’’ [18,19]. The size of the group
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affects the dynamics of the opinion spreading: ‘‘verbal brainstorming groups, for example, should experience synergy that
increases as group size increases, and some social facilitation effects, but also suffer from process losses that increase with
the size of the group due to production blocking, social loafing, evaluation apprehension, and cognitive interference’’ [20].
We first simulated the rumor spreading following Galam’s guidelines [1]. Observing the outcomes, we figured out that,

considering a relatively small number of agents, Galam’smodelmay possibly return inaccurate results. Then, in order to cope
with the latter drawback, we proposed a modified Galam’s scheme, which is asymptotically coincident with the original
model. When few agents are considered the modified model often turns out to be preferable to the original one; i.e., a more
accurate estimation of the simulated data is obtained.
This paper is organized as follows: Section 2 introduces Galam’s model, details about its peculiarities and some possible

limits are provided in Section 3. Then, in Section 4we describe ourmodel, including amotivated numerical comparisonwith
Galam’s scheme. Finally, Section 5 completes the paper with suggestions for future work.

2. Galam’s model

Galam [1] considers a population whose individuals can change opinion after discussing in groups. Let N be the overall
number of people who meet into groups, in order to exchange their information. Each people either thinks, say, ‘+’ or ‘−’
and N = N+(t)+ N−(t), where N+(t)[N−(t)] is the number of people who respectively think ‘+’ [‘−’] at time step t .
At time step t the N people gather into k-sized groups, k = 1, . . . , L, with probability ak (a1+· · ·+ aL = 1). Then, after a

discussion in each group, at time t + 1 people can shift their opinion to the opposite one, following amajority rule. The rule
of shifting opinion is biased in favor of the opinion ‘−’, in case of parity.
Let P+(0) be the probability to find people thinking ‘+’ at time step ‘0’, and let

P+(0) =
N+(0)
N
; P−(0) = 1− P+(0).

Then, Galam’s model is described by the following formula

P+(t + 1) =
L∑
k=1

ak
k∑

j=
⌊
k
2+1

⌋ Ckj P+(t)j{1− P+(t)}k−j, (2.1)

where bxc indicates the largest integerwhich approximates x from below, and Ckj is the binomial coefficient. Observing (2.1),
we remark that the quantity P+(t + 1) does not depend explicitly on the number N of interacting people. As in Ref. [1], the
dynamic expression (2.1) may be drawn in the space (P+(t), P+(t + 1)), and can be used to compute a fixed point, which
approximates a so called, killing point. The killing point can be defined as the theoretical threshold P̄+ such that

if P+(0) > P̄+ then lim
t→∞

P+(t) = 1,

if P+(0) = P̄+ then P+(0) = P+(t), for each time step t > 0,
if P+(0) < P̄+ then lim

t→∞
P+(t) = 0.

3. Simulation of Galam’s model

We have implemented the Galam’s process of information exchange by a FORTRAN 90 code (we adopted Compaq
Visual Fortran 6.6). The simulation of Galam’s model requires a generator of uniformly distributed random numbers, which
is usually required to have a long period, low serial correlation, and a tendency not to ‘fall mainly on the planes’ (see
also Ref. [21]). FORTRAN 90 provides the intrinsic routines RANDOM_NUMBER and RANDOM_SEED for the generation of a
uniformdistribution of pseudo-randomnumbers. The routine RANDOM_NUMBER implements amodification of awell known
linear congruential generator by G. Marsaglia, which is combined with other three random number generators. Routine
RANDOM_NUMBER is often considered satisfactory (see also Ref. [22]) for general purposes; however, it may be improper
when invoked in parallel computing. Moreover, as reported in Ref. [23], RANDOM_NUMBER ‘‘may contain tendencies in the
beginning’’. In order to avoid the latter drawback, in all the tables of this paper we use RANDOM_NUMBER and the first 5000
random numbers generated are disregarded (see Ref. [23]).
To perform the simulation we consider N agents, each of which is an element of a binary string (either ‘+’ or ‘−’).

According with the initial probability P+(0), exactly N+(0) randomly chosen elements of the string are set to ‘+’. We label
each entry (agent) of the string, as belonging to a group of size kwith probability ak. In otherwords, we associate the random
number bi to the i-th entry: then, the i-th entry will belong to a k-sized group if

∑k−1
j=1 aj < bi ≤

∑k
j=1 aj. As a consequence,

the string is sub-divided into sub-strings whose length is exactly k, with k = 1, . . . , L. Inside each substring, the number of
‘+’ is updated according with the majority rule as described by Galam, so that N+(1) is the overall number of entries ‘+’ at
iteration 1. Finally, we compute the quantity N+(1)/N . We give an example.
Suppose N = 10, P+(0) = 0.7, with a2 = a3 = 0.5. Now, at t = 0, we randomly generate a N-digit string of agents,

say ‘{+ − + +++−+−+}’, along with the N random numbers b1, . . . , b10. If bi ≤ 0.5 then we associate the integer ‘2’
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Fig. 1. Results from 500 simulations. For P+(0) = 80%, 81%, . . . , 90%, two points represent the number of simulations respectively converging to 1
(continuous regression line) and 0 (dashed regression line), within 20 time steps. Following the example in Ref. [1], we set in the simulations N = 100,
L = 6, a1 = a5 = a6 = 0 with a2 = a3 = a4 = 1/3. The killing point P̄+ is evidently nearby 85%, as suggested in Ref. [1].

Table 1
Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1 = 500, Conv-0= 0, L = 20, ak = 1/20, k = 1, . . . , L. The column |∆|_Gal reveals that the
model (2.1) may be imprecise.

t-step Gal Simul |∆|_Gal

1 0.8000 0.8000 0.0000
2 0.9392 0.8868 0.0524
3 0.9891 0.9513 0.0379
4 0.9983 0.9819 0.0164
5 0.9997 0.9945 0.0053
6 1.0000 0.9984 0.0015
7 1.0000 0.9995 0.0005
8 1.0000 0.9999 0.0001
9 1.0000 1.0000 0.0000
10 1.0000 1.0000 0.0000

to the i-th agent of the string, otherwise we associate ‘3’. Let ‘{2323323222}’ be the resulting sequence. Now we collect 2s
and 3s into 2-sized and 3-sized groups respectively, so that the string of agents will be correspondingly subdivided into the
sub-strings {++}, {−++}, {++}, {−+}, {−00} (00 means that the second 3-sized group has two positions unfilled). Then,
after applying the majority rule inside each sub-string (bias for ‘−’ in case of ties), we obtain {++}, {+ + +}, {++}, {−−},
{−00}, so that at t = 1 the new string of agents will be ‘{+ + ++++−+−−}’. Observe that one ‘+’ and one ‘−’ of the
initial N-digit string, respectively moved to ‘−’ and ‘+’.
If N is finite, the expected number of agents with label k is Nk = akN: in general Nk might not be a multiple of k.
In order to test Galam’s model with a relatively small number of agents (N), in Fig. 1 we provide the results of 500

independent simulations, which reveal the killing point. We will focus on the latter issue in Section 4. The example in Fig. 1
was described in Ref. [1] (parameters of the simulations are detailed in the caption). Repeated simulations (see also Ref. [15])
reveal that the model (2.1) may be inaccurate when N is relatively small: an example of such a behavior is given in Table 1.
We remark that results reported in the tables of this paper are averaged over 500 runs (apart from Table 13). Moreover, we
set P+(0) = 80%, following the guidelines in Ref. [1]. Finally, our tables consider the following positions:

• numerical results are performed with the precision of 10−16, though they are reported with just 4 exact digits. In those
tables reporting comparisons (Tables 4–13), strictly better results are bolded;
• ‘Conv-1’ is the number of runs in which the final stationary point is ‘1’, i.e. all the people think eventually ‘+’;
• ‘Conv-0’ is the number of runs in which the final stationary point is ‘0’, i.e. all the people think eventually ‘−’;
• ‘t-step’ is the time step (we allowed up to 20 time steps as in Ref. [1]);
• ‘Gal’ is P+(t) provided by the Galam model (2.1), at any time step;
• ‘GalM ’ (Tables 4–13) is P+(t) provided by the modified model (4.3), at any time step;
• ‘simul’ is the average ratio N+(t)/N obtained from the simulations, at time step t;
• ‘|∆|-Gal’ is given by the quantity | Gal-simul |, and measures the displacement between ‘Gal’ and ‘simul’;
• ‘|∆|-GalM ’ (Tables 4–13) is given by the quantity | GalM-simul |, and measures the displacement between ‘GalM ’ and
‘simul’.

Observe from Table 1 that when N is relatively small, the model (2.1) possibly provides inaccurate results with respect
to the simulation. We will give a possible explanation of the latter fact, after introducing an improvement of the model in
Section 4.
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Table 2
Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 472, Conv-0= 0, L = 5, ak = 1/5, k = 1, . . . , L. The model (2.1) performs pretty well.

t-step Gal Simul |∆|_Gal

1 0.8000 0.8000 0.0000
2 0.8195 0.8190 0.0004
3 0.8418 0.8410 0.0008
4 0.8665 0.8647 0.0018
5 0.8921 0.8895 0.0026
6 0.9169 0.9130 0.0039
7 0.9392 0.9334 0.0058
8 0.9576 0.9514 0.0062
9 0.9717 0.9645 0.0072
10 0.9818 0.9752 0.0066
11 0.9885 0.9835 0.0050
12 0.9929 0.9886 0.0043
13 0.9957 0.9927 0.0030
14 0.9974 0.9954 0.0020
15 0.9984 0.9973 0.0012
16 0.9990 0.9984 0.0006
17 0.9994 0.9990 0.0004
18 0.9997 0.9994 0.0003
19 0.9998 0.9996 0.0002
20 0.9999 0.9998 0.0001

Table 3
Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 10, ak = 1/10, k = 1, . . . , L. The model (2.1) performs pretty well.

t-step Gal Simul |∆|_Gal

1 0.8000 0.8000 0.0000
2 0.8856 0.8849 0.0008
3 0.9514 0.9490 0.0024
4 0.9833 0.9814 0.0019
5 0.9947 0.9936 0.0011
6 0.9984 0.9979 0.0005
7 0.9995 0.9994 0.0002
8 0.9999 0.9997 0.0001
9 1.0000 0.9999 0.0000
10 1.0000 1.0000 0.0000
11 1.0000 1.0000 0.0000
12 1.0000 1.0000 0.0000
13 1.0000 1.0000 0.0000
14 1.0000 1.0000 0.0000
15 1.0000 1.0000 0.0000
16 1.0000 1.0000 0.0000
17 1.0000 1.0000 0.0000
18 1.0000 1.0000 0.0000
19 1.0000 1.0000 0.0000
20 1.0000 1.0000 0.0000

On the other hand, for L small (say in the range 5 ≤ L ≤ 10) and N relatively large, we observed that (2.1) possibly
recovers pretty well the results from simulation, as Tables 2 and 3 show.
Numerical results suggest that the following drawbacks may arise using model (2.1):

• as mentioned before, if N is finite (as in most of the applications), the rules to gather people into groups of size at most
L, possibly generate incomplete groups. Thus, the expected number of people assigned to groups of size k, i.e. Nk = akN
(with N1 + · · · + NL = N), is possibly not a multiple of k;
• themodel (2.1) relies on the strong lawof large numbers, which assumesN →∞.WhenN is finite the latter consideration,
alongwith the previous item, suggest that for small values ofN themodel (2.1)may yield inaccurate results (see Table 1);
• Galam’s model may even fail to precisely estimate the killing point. We will give an example at the end of Section 4,
where the inaccurate killing point prediction by Galam’s model causes a wrong computation of the stationary point
when t →∞.

4. A model refinement

Here we propose themodel GalM , a refinement of formula (2.1) which partially complies with the issues listed at the end
of the previous section.
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Table 4
Average results with N = 80, P+(0) = 80%, 500 runs, Conv-1= 482, Conv-0= 18, L = 6, a1 = a3 = a4 = a5 = 0, a2 = 1/4, a6 = 3/4. The performance
of models (2.1) and (4.3) coincide.

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8358 0.8358 0.8405 0.0047 0.0047 3.0
3 0.8797 0.8797 0.8812 0.0015 0.0015 3.0
4 0.9238 0.9238 0.9152 0.0086 0.0086 3.1
5 0.9578 0.9578 0.9368 0.0210 0.0210 3.0
6 0.9783 0.9783 0.9497 0.0286 0.0286 3.0
7 0.9891 0.9891 0.9553 0.0339 0.0339 3.1
8 0.9946 0.9946 0.9598 0.0348 0.0348 3.1
9 0.9973 0.9973 0.9618 0.0355 0.0355 3.1
10 0.9986 0.9986 0.9632 0.0354 0.0354 3.1
11 0.9993 0.9993 0.9643 0.0351 0.0351 3.1
12 0.9997 0.9997 0.9649 0.0348 0.0348 3.1
13 0.9998 0.9998 0.9648 0.0351 0.0351 3.1
14 0.9999 0.9999 0.9644 0.0355 0.0355 3.1
15 1.0000 1.0000 0.9640 0.0360 0.0360 3.0
16 1.0000 1.0000 0.9640 0.0360 0.0360 3.1
17 1.0000 1.0000 0.9640 0.0360 0.0360 2.9
18 1.0000 1.0000 0.9640 0.0360 0.0360 3.0
19 1.0000 1.0000 0.9640 0.0360 0.0360 2.8
20 1.0000 1.0000 0.9640 0.0360 0.0360 3.0

Table 5
Average results with N = 90, P+(0) = 80%, 500 runs, Conv-1= 481, Conv-0= 19, L = 6, a1 = a3 = a4 = a5 = 0, a2 = 1/4, a6 = 3/4. The model (2.1) is
almost outperformed by the model (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8358 0.8347 0.8440 0.0081 0.0093 2.9
3 0.8797 0.8773 0.8830 0.0032 0.0057 3.0
4 0.9238 0.9206 0.9153 0.0085 0.0053 3.0
5 0.9578 0.9548 0.9351 0.0227 0.0197 2.9
6 0.9783 0.9762 0.9500 0.0284 0.0262 3.1
7 0.9891 0.9878 0.9584 0.0307 0.0294 3.0
8 0.9946 0.9938 0.9603 0.0343 0.0335 3.0
9 0.9973 0.9968 0.9615 0.0358 0.0353 3.0
10 0.9986 0.9984 0.9623 0.0364 0.0361 3.1
11 0.9993 0.9992 0.9625 0.0368 0.0366 3.0
12 0.9997 0.9996 0.9625 0.0372 0.0371 3.1
13 0.9998 0.9998 0.9627 0.0371 0.0371 3.0
14 0.9999 0.9999 0.9627 0.0372 0.0372 3.0
15 1.0000 0.9999 0.9624 0.0375 0.0375 3.0
16 1.0000 1.0000 0.9620 0.0380 0.0380 3.0
17 1.0000 1.0000 0.9620 0.0380 0.0380 2.8
18 1.0000 1.0000 0.9620 0.0380 0.0380 2.9
19 1.0000 1.0000 0.9620 0.0380 0.0380 3.0
20 1.0000 1.0000 0.9620 0.0380 0.0380 3.0

Table 6
Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 20, ak = 1/20, k = 1, . . . , L. The modified model (4.3) is preferable
to (2.1) in the early time steps.

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.9392 0.9077 0.8868 0.0524 0.0209 74.2
3 0.9891 0.9750 0.9513 0.0379 0.0237 74.0
4 0.9983 0.9950 0.9819 0.0164 0.0131 73.8
5 0.9997 0.9990 0.9945 0.0053 0.0046 73.7
6 1.0000 0.9998 0.9984 0.0015 0.0014 73.8
7 1.0000 1.0000 0.9995 0.0005 0.0004 74.2
8 1.0000 1.0000 0.9999 0.0001 0.0001 74.3
9 1.0000 1.0000 1.0000 0.0000 0.0000 73.7
10 1.0000 1.0000 1.0000 0.0000 0.0000 73.7

We highlight that if N is the size of the overall population, and ak is the probability that a person is assigned to k-sized
groups, then the quantity Nk given by

Nk = akN,
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Table 7
Average results with N = 40, P+(0) = 80%, 500 runs, Conv-1= 423, Conv-0= 71, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is almost outperformed
by its modified version.

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8206 0.8288 0.0043 0.0082 7.2
3 0.8704 0.8445 0.8514 0.0189 0.0070 7.5
4 0.9080 0.8707 0.8679 0.0401 0.0028 7.2
5 0.9407 0.8976 0.8817 0.0590 0.0159 7.4
6 0.9651 0.9229 0.8881 0.0770 0.0348 7.5
7 0.9808 0.9447 0.8906 0.0901 0.0540 7.3
8 0.9899 0.9619 0.8890 0.1009 0.0729 7.5
9 0.9948 0.9746 0.8834 0.1114 0.0912 7.4
10 0.9974 0.9834 0.8786 0.1187 0.1048 7.5
11 0.9987 0.9894 0.8729 0.1257 0.1164 7.4
12 0.9993 0.9932 0.8670 0.1323 0.1262 7.5
13 0.9997 0.9957 0.8633 0.1364 0.1324 7.3
14 0.9998 0.9973 0.8610 0.1388 0.1363 7.7
15 0.9999 0.9983 0.8590 0.1409 0.1393 7.6
16 1.0000 0.9989 0.8567 0.1433 0.1422 7.4
17 1.0000 0.9993 0.8558 0.1442 0.1435 7.4
18 1.0000 0.9996 0.8548 0.1451 0.1447 7.3
19 1.0000 0.9997 0.8544 0.1456 0.1453 7.4
20 1.0000 0.9998 0.8541 0.1459 0.1457 7.5

Table 8
Average results with N = 60, P+(0) = 80%, 500 runs, Conv-1= 469, Conv-0= 26, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is almost outperformed
by the model (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8200 0.8299 0.0031 0.0099 7.3
3 0.8704 0.8436 0.8579 0.0125 0.0142 7.6
4 0.9080 0.8700 0.8820 0.0260 0.0120 7.5
5 0.9407 0.8974 0.9028 0.0379 0.0054 7.7
6 0.9651 0.9237 0.9196 0.0455 0.0041 7.4
7 0.9808 0.9464 0.9304 0.0504 0.0161 7.5
8 0.9899 0.9644 0.9387 0.0512 0.0257 7.6
9 0.9948 0.9773 0.9426 0.0522 0.0347 7.5
10 0.9974 0.9860 0.9435 0.0539 0.0425 7.5
11 0.9987 0.9915 0.9447 0.0540 0.0468 7.3
12 0.9993 0.9950 0.9450 0.0543 0.0500 7.4
13 0.9997 0.9970 0.9452 0.0544 0.0518 7.6
14 0.9998 0.9983 0.9450 0.0548 0.0532 7.8
15 0.9999 0.9990 0.9449 0.0550 0.0540 7.5
16 1.0000 0.9994 0.9445 0.0555 0.0549 7.6
17 1.0000 0.9997 0.9450 0.0550 0.0547 7.6
18 1.0000 0.9998 0.9447 0.0553 0.0551 7.3
19 1.0000 0.9999 0.9447 0.0553 0.0551 7.4
20 1.0000 0.9999 0.9449 0.0551 0.0550 7.5

represents the expected number of people assigned to k-sized groups. As a consequence, the quantity tailk defined as

tailk = bNkc −
⌊
akN
k

⌋
k, (4.1)

represents the number (integral) of people (i.e. a tail) assigned to an incomplete k-sized group, i.e. tailk < k. Observe that
for any k there is at most one incomplete k-sized group, which includes exactly tailk people. Moreover, at any time step the
probability Qk that an individual is assigned to the incomplete k-sized group containing tailk elements, is given by

Qk =
tailk
akN

. (4.2)

Therefore, we can consider a new model which encompasses both complete k-sized groups, and incomplete groups with
tailk elements. Based on (4.1)–(4.2), we propose the following refinement of Galam’s formula (2.1)

P+(t + 1) =
L∑
k=1

ak

(1− Qk) k∑
j=
⌊
k
2+1

⌋ Ckj P+(t)j{1− P+(t)}k−j + Qk
tailk∑

i=
⌊
tailk
2 +1

⌋ C tailki P+(t)i{1− P+(t)}tailk−i

 . (4.3)
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Table 9
Average results with N = 80, P+(0) = 80%, 500 runs, Conv-1= 474, Conv-0= 24, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is outperformed by its
modified version (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8306 0.8258 0.0073 0.0048 7.7
3 0.8704 0.8652 0.8554 0.0150 0.0098 7.4
4 0.9080 0.9005 0.8817 0.0263 0.0188 7.5
5 0.9407 0.9325 0.9051 0.0356 0.0273 7.3
6 0.9651 0.9577 0.9244 0.0407 0.0333 7.4
7 0.9808 0.9752 0.9384 0.0424 0.0369 7.6
8 0.9899 0.9861 0.9482 0.0417 0.0379 7.5
9 0.9948 0.9924 0.9530 0.0418 0.0394 7.3
10 0.9974 0.9960 0.9557 0.0417 0.0403 7.6
11 0.9987 0.9979 0.9558 0.0429 0.0421 7.4
12 0.9993 0.9989 0.9547 0.0446 0.0442 7.6
13 0.9997 0.9994 0.9534 0.0463 0.0460 7.5
14 0.9998 0.9997 0.9527 0.0472 0.0470 7.5
15 0.9999 0.9998 0.9516 0.0483 0.0482 7.7
16 1.0000 0.9999 0.9509 0.0491 0.0490 7.5
17 1.0000 1.0000 0.9504 0.0496 0.0496 7.3
18 1.0000 1.0000 0.9498 0.0502 0.0502 7.4
19 1.0000 1.0000 0.9495 0.0505 0.0505 7.6
20 1.0000 1.0000 0.9489 0.0510 0.0510 7.5

Table 10
Average results with N = 100, P+(0) = 80%, 500 runs, Conv-1= 486, Conv-0= 12, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is outperformed by the
model (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8274 0.8297 0.0033 0.0023 7.3
3 0.8704 0.8591 0.8622 0.0082 0.0031 7.6
4 0.9080 0.8928 0.8942 0.0137 0.0015 7.4
5 0.9407 0.9248 0.9193 0.0214 0.0055 7.6
6 0.9651 0.9515 0.9391 0.0260 0.0123 7.6
7 0.9808 0.9709 0.9524 0.0284 0.0185 7.6
8 0.9899 0.9835 0.9630 0.0269 0.0206 7.2
9 0.9948 0.9910 0.9701 0.0247 0.0209 7.5
10 0.9974 0.9952 0.9738 0.0236 0.0214 7.4
11 0.9987 0.9975 0.9762 0.0225 0.0213 7.4
12 0.9993 0.9987 0.9762 0.0231 0.0225 7.6
13 0.9997 0.9993 0.9761 0.0236 0.0232 7.4
14 0.9998 0.9996 0.9762 0.0236 0.0234 7.5
15 0.9999 0.9998 0.9764 0.0235 0.0234 7.5
16 1.0000 0.9999 0.9760 0.0239 0.0239 7.7
17 1.0000 0.9999 0.9759 0.0241 0.0240 7.3
18 1.0000 1.0000 0.9758 0.0242 0.0242 7.5
19 1.0000 1.0000 0.9759 0.0241 0.0241 7.4
20 1.0000 1.0000 0.9759 0.0241 0.0241 7.7

The first term in square brackets takes into account only the contribution of k-sized groups (as Galam’s formula). On the
other hand, the second term in square brackets only considers the contribution of incomplete groups with tailk elements.
Observing (4.3) we note that when N → ∞ our proposal (4.3) coincides with Galam’s formula (2.1), since Qk → 0. In

addition, unlike (2.1) the model (4.3) explicitly depends on the number of people N , since both Qk and tailk depend on N .
Thus, if N changes, the probabilities {P+(t)} computed by (4.3) are affected accordingly. Tables 4–13 report the results of
the simulations compared with both models (2.1) and (4.3).
From (4.1) and (4.2), if the quantity akN/k is integral, then tailk = 0 and Qk = 0. Thus, models (2.1) and (4.3) coincide (an

example is given in Table 4). This may be disappointing, since tailk = 0 does not mean that no incomplete k-sized groups are
formed. Indeed, simulations reveal (see the last column of Table 4) that the average number ‘av_tail’ of people in the tails
(i.e., in incomplete k-sized groups generated by the simulation, with k = 1, . . . , L), may be significant.
Obviously, this drawback appears only in special cases when akN/k is integral. In order to avoid the drawback just

described, for our model we can simply consider N such that akN/k is not integral. For this purpose, in order to carry on
a comparison with the results of Table 4, we set N = 90 in Table 5. As a result, observe that our proposal seems to be
preferable (in Table 5 we could not choose 81 ≤ N ≤ 89, since otherwise 80% of N would have not been integral, and a
comparison with Table 4 could be possibly meaningless).
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Table 11
Average results with N = 300, P+(0) = 80%, 500 runs, Conv-1= 500, Conv-0= 0, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is often improved by the
model (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8284 0.8324 0.0006 0.0040 7.3
3 0.8704 0.8610 0.8678 0.0025 0.0069 7.7
4 0.9080 0.8950 0.9028 0.0052 0.0077 7.4
5 0.9407 0.9268 0.9336 0.0072 0.0068 7.4
6 0.9651 0.9527 0.9574 0.0076 0.0047 7.6
7 0.9808 0.9714 0.9740 0.0067 0.0027 7.7
8 0.9899 0.9834 0.9848 0.0051 0.0014 7.4
9 0.9948 0.9907 0.9914 0.0034 0.0007 7.4
10 0.9974 0.9949 0.9951 0.0023 0.0002 7.2
11 0.9987 0.9972 0.9975 0.0012 0.0003 7.3
12 0.9993 0.9985 0.9987 0.0007 0.0002 7.4
13 0.9997 0.9992 0.9992 0.0004 0.0001 7.5
14 0.9998 0.9996 0.9996 0.0002 0.0001 7.5
15 0.9999 0.9998 0.9998 0.0001 0.0001 7.6
16 1.0000 0.9999 0.9999 0.0000 0.0001 7.5
17 1.0000 0.9999 1.0000 0.0000 0.0001 7.4
18 1.0000 1.0000 1.0000 0.0000 0.0000 7.5
19 1.0000 1.0000 1.0000 0.0000 0.0000 7.4
20 1.0000 1.0000 1.0000 0.0000 0.0000 7.5

Table 12
Average results with N = 500, P+(0) = 80%, 500 runs, Conv-1= 497, Conv-0= 0, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) is outperformed by its
modified version (4.3).

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.8000 0.8000 0.8000 0.0000 0.0000 0.0
2 0.8331 0.8330 0.8328 0.0002 0.0001 7.5
3 0.8704 0.8700 0.8679 0.0025 0.0021 7.7
4 0.9080 0.9072 0.9049 0.0031 0.0024 7.5
5 0.9407 0.9398 0.9371 0.0036 0.0027 7.6
6 0.9651 0.9642 0.9607 0.0044 0.0035 7.7
7 0.9808 0.9800 0.9763 0.0045 0.0037 7.6
8 0.9899 0.9894 0.9865 0.0033 0.0028 7.3
9 0.9948 0.9945 0.9929 0.0019 0.0015 7.6
10 0.9974 0.9972 0.9961 0.0012 0.0010 7.5
11 0.9987 0.9985 0.9981 0.0005 0.0004 7.4
12 0.9993 0.9993 0.9990 0.0003 0.0002 7.5
13 0.9997 0.9996 0.9996 0.0001 0.0001 7.5
14 0.9998 0.9998 0.9998 0.0001 0.0001 7.6
15 0.9999 0.9999 0.9998 0.0001 0.0001 7.2
16 1.0000 1.0000 0.9999 0.0001 0.0001 7.7
17 1.0000 1.0000 1.0000 0.0000 0.0000 7.6
18 1.0000 1.0000 1.0000 0.0000 0.0000 7.5
19 1.0000 1.0000 1.0000 0.0000 0.0000 7.6
20 1.0000 1.0000 1.0000 0.0000 0.0000 7.5

Table 6 completes the results reported in Table 1 (they are obtained by using the same parameters’ settings). Results
show that our model often yields smaller errors (bolded results). Again, the column ‘av_tail’ in Table 6 indicates that there
are large tails, which explain our performance.
More generally, on a wide range of numerical tests, the model (4.3) is quite often more accurate than (2.1), in particular
when tailk, 1 ≤ k ≤ L, is relatively large. The latter result confirms the theory described. Observe that by simply setting

N = 40, 60, 80, 100, 300, 500; L = 6; ak = 1/L, k = 1, . . . , L,

we obtained relatively large values of the tails in our simulations (see Tables 7–13).
So far we have focused on proving that, on average, our proposal is an improvement of Galam’s model, rather than

detecting possible failures of the latter model. Anyway, we also stressed the performance of our modified Galam’s model
on a critical numerical test, with N = 40, L = 6, ak = 1/6, k = 1, . . . , 6. We set P+(0) = 28/40 = 0.7, i.e. P+(0) is
slightly above the fixed point 0.697348 of formula (2.1), which is considered as the killing point by Galam in Ref. [1]. Then,
we found out that while Galam’s model converges to ‘1’, our model converges to ‘0’, which is closer to the result provided
by a simulation taking 1000 runs (see Table 13). In other terms, since Conv− 1 = 388 and Conv− 0 = 587, it turns out that
the threshold P̄+ lies clearly above 0.7.
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Table 13
Average results with N = 40, P+(0) = 70%, 1000 runs, Conv-1= 386, Conv-0= 589, L = 6, ak = 1/6, k = 1, . . . , L. The model (2.1) converges to ‘1’ while
our modified model (4.3) converges to ‘0’, according with the results of the simulation.

t-step Gal GalM Simul |∆|_Gal |∆|_GalM av_tail

1 0.7000 0.7000 0.7000 0.0000 0.0000 0.0
2 0.7012 0.6896 0.6914 0.0098 0.0017 7.4
3 0.7028 0.6750 0.6799 0.0229 0.0049 7.4
4 0.7052 0.6540 0.6536 0.0515 0.0004 7.3
5 0.7085 0.6236 0.6190 0.0895 0.0046 7.3
6 0.7133 0.5789 0.5767 0.1367 0.0022 7.4
7 0.7201 0.5125 0.5364 0.1838 0.0238 7.5
8 0.7296 0.4157 0.5028 0.2268 0.0871 7.5
9 0.7427 0.2851 0.4731 0.2696 0.1880 7.4
10 0.7605 0.1440 0.4506 0.3099 0.3067 7.4
11 0.7841 0.0469 0.4363 0.3478 0.3894 7.7
12 0.8139 0.0107 0.4254 0.3885 0.4146 7.4
13 0.8491 0.0021 0.4178 0.4313 0.4157 7.2
14 0.8872 0.0004 0.4109 0.4763 0.4105 7.0
15 0.9232 0.0001 0.4070 0.5163 0.4069 7.5
16 0.9526 0.0000 0.4049 0.5476 0.4049 7.3
17 0.9730 0.0000 0.4038 0.5692 0.4038 7.5
18 0.9855 0.0000 0.4032 0.5822 0.4032 7.4
19 0.9924 0.0000 0.4026 0.5898 0.4026 7.6
20 0.9961 0.0000 0.4016 0.5945 0.4016 7.4

5. Conclusions and further research

From the results described in the present paper, some issues arise and deserve to be analyzed in future works.
Suppose the number N of people is assigned. How should we choose the integer L and the vector a ∈ RL such that the
stationary point is reached as soon as possible? We conjecture that both L and amay play a key role.
Moreover, we experienced that in the runs converging to the stationary point ‘0’ (i.e., all agents think ‘−’) the average

number of time steps performed is relatively smaller than in the cases of convergence to the stationary point ‘1’ (i.e., all
agents think ‘+’). In this regard we already know that the rule of shifting opinion is slightly biased in favor of the opinion
‘−’ (i.e. towards the stationary point 0), in case of parity. However, we cannot exclude that other specific reasons may yield
the latter result.
Now, suppose N is given: how can we modify the information exchange protocol in order to possibly drive the solution

towards either the stationary point ‘1’ or ‘0’? This question turns to be relevant, for example, in marketing, where the
successful spreading of a product is a crucial issue.
Finally, let T be the maximum number of time steps allowed for our model (4.3). Can we predict the probability that a

given percentage of agents will be driven to either one opinion or the opposite one within T time steps? The latter scenario
may be of great interest when iterations correspond, for instance, to (expensive) meetings among managers or politicians.
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